A possible experimental determination of $m_s=m_f$ from K_4 decays

M. Knecht, H. Sazdjian, J. Stern

Division de Physique Theorique [], Institut de Physique Nuclaire
F-91406 Orsay Cedex, France

N. H. Fuchs

Department of Physics, Purdue University, West Lafayette IN 47907

Abstract

K scattering and K_4 decays are studied at leading order of improved chiral perturbation theory. It is shown that high precision K_4 experiments at, e.g., DA NE should allow for a direct measurement of the quark mass ratio $m_s=m_f$.

IPNO/TH 93-17
April 1993

Unite de Recherche des Universites Paris XI et Paris VI associee au CNRS.
The light flavour symmetry breaking sector of QCD involves various parameters whose precise determination is of a fundamental importance. In particular, the products of running quark masses \(m_u, m_d, m_s \) with the quark-antiquark condensate of the massless theory,

\[
B_0 \quad F_0^2 < uu > = F_0^2 < dd > = F_0^2 < ss > ;
\]

are well defined renormalization group invariant quantities which are in principle measurable and which are not determined within the standard model. \(F_0 \) denotes the chiral limit of the pion decay constant \(F = 93.1 \text{ MeV} \). While quark masses can be chosen freely within QCD, the magnitude of the scale dependent condensate \(B_0 \) is an intrinsic property of the theory, reflecting the mechanism of spontaneous symmetry breaking. Since the latter is not yet clearly understood in QCD, the order of magnitude of \(B_0 \) is hard to estimate a priori: \(B_0 \) could be as large as \(\sim 2 \) as the scale of formation of massive bound states, \(H \sim 1 \text{ GeV} \), or it could be as small as the fundamental order parameter \(F_0 \sim 90 \text{ MeV} \).

For sufficiently small quark masses, the expansions of Goldstone boson masses are dominated by the linear terms

\[
M_0^2 = (m_u + m_d)B_0 + \cdots ; \quad M_K^2 = (m_u + m_s)B_0 + \cdots ; \quad M_{K^0}^2 = (m_d + m_s)B_0 + \cdots ; \quad (2)
\]

How small the quark masses should actually be in order to ensure this dominance is controlled by the size of \(B_0 \): For the pseudoscalar meson \(ab \) \((a, b = u, d, s; a \neq b)\) such a dominance requires

\[
m_a + m_b = B_0 = A_0 ; \quad (3)
\]

where \(A_0 \) is a dimensionless parameter of order one characteristic of contributions to the expansion (2) coming from terms which are quadratic in quark masses. \(A_0 \) has been defined in Ref. [3] in terms of a two-point QCD correlator. For \(B_0 \) of the order of the bound state scale \(H \sim 1 \text{ GeV} \), the condition (3) is likely to be satisfied for actual values of quark masses. In this case, the standard [4] chiral perturbation theory (PT) — which counts each insertion of quark mass as two powers of pion momentum — should describe the low energy data well already within a few lowest orders. If, on the other hand, \(B_0 \) turned out to be comparable to the fundamental order parameter \(F_0 \sim 90 \text{ MeV} \), the condition (3) would certainly be violated already for \(m_a \) or \(m_b \) equal to the strange quark mass, but also for non strange quark masses in the range 20–30 MeV, where they are still small as compared to \(H \). The first term in the expansion (1) would then be considerably lower than the pseudoscalar mass \(M_P^2 \), and consequently, the standard expansion of the symmetry breaking part of the QCD effective lagrangian should be rearranged in order to improve its convergence. An improved PT has been proposed in references [5], [6]: it is an expansion in pion momentum \(p = H \), in quark masses \(M_q = H \) and in powers of \(B_0 = H \), with \(M_q \) and \(B_0 \) counting as a single power of \(p \). This modified counting rule leads to
a consistent rede
dition of individual chiral orders. The leading $O(p^2)$ order now consists of 5 independent terms: in a standard notation,

$$
\mathcal{L}_2 = \frac{F^2}{4} fhD U^+ D U i + 2B_0 M q U + M q U^+ i
+ A_0 h (M q U)^2 + (M q U^+)^2 i + Z^S_0 M q U + M q U^+ i^2
+ Z^P_0 M q U M q U^+ l^2 g ;
$$

The term s quadratic in the quark mass matrix M_q that are usually relegated to the $O(p^3)$ order [4] can now give contributions comparable to the B_0-term, respecting the violation of condition (3). (Notice that Z^S_0 and Z^P_0 violate the Zweig rule in the 0^+ and 0^- channels, respectively. Z^P_0 will play no role in the present work.)

The improved PT generalizes the standard expansion since at each order the former contains additional terms, that the latter relegates to higher orders. Consequently, it is less predictive, but constitutes a more appropriate theoretical framework for an unbiased experimental determination of symmetry breaking parameters such as the ratios of quark masses, $m_q B_0$ and other non-perturbative characteristics of the massless QCD vacuum. It is convenient to use the improved $O(p^2)$ expression for M^2 and $M_K^2 = \frac{1}{2} (M_K^2 + M_K^2_B)$,

$$
M^2 = 2m^2_0 + 4m^2 A_0 ;
$$

$$
M_K^2 = (m^2 + m_s) A_0 + (m^2 + m_s) A_0^2 ;
$$

where $m = \frac{1}{2} (m_u + m_d)$, $0 = B_0 + 2(m_s + 2m) Z^S_0$, and to express the low energy constants of \mathcal{L}_2 in terms of

$$
r = \frac{m_s}{m} ; \quad \frac{Z^S_0}{A_0} :
$$

(6)

(In the same way, the constant Z^P_0 can be expressed in terms of the mass.) The masses M^2, M_K^2, the quark mass ratio r and the Zweig rule violating constant are independent parameters, except for the restriction [3]

$$
\frac{Z^S_0}{M_K^2} = \frac{1}{2} r \frac{2m}{M} ;
$$

arising from the requirement of vacuum stability. The leading order of the standard PT [4] is reproduced for the particular choice $r = r_2 = 25.9, Z^S_0 = 0$, implying $A_0 = 0$. The other extreme, viz. $r = r_1 = 6.3$, $A_0 = 0$, corresponds to the order parameter $B_0 = 0$. The value of the quark mass ratio r should ultimately be determined from experiment, which may confirm or invalidate the a priori estimate $r = r_2$. Actually, a recent analysis of the deviations from the Gell-Mann-Treiman relation suggests that r might be less than 25 by a factor of 2 or 3 [4].
There are not many physical processes directly accessible to experiment that exhibit a strong dependence on the quark mass ratio \(r \) already at the order \(O(p^2) \). One of them is the scattering. At the tree level, the corresponding amplitude can be parametrized as

\[
A(s,t;u) = \frac{F^2}{F^2}(s - \frac{4}{3}M^2) + \frac{3}{3F^2}M^2; \tag{8}
\]

where, at leading \(O(p^2) \) order \([4],[5]\),

\[
\text{lead} = 1 + 6 \frac{r_2}{r_1} (1 + 2) ; \tag{9}
\]

As \(r \) decreases from \(r_2 \) to \(r_1 \), \(\text{lead} \) increases from the canonical value \(\text{lead} = 1 \) \([4]\) to \(\text{lead} = 4 \).

A method of determining \(r \) from the forthcoming precise low-energy scattering data has been discussed in Ref. \([6]\).

The main purpose of this letter is to point out that there exists another independent case of similar interest: the decay

\[
K^+ \rightarrow \pi^+ \pi^+ \pi^+ \pi^-; \tag{10}
\]

which, although less abundant than the standard \(K_{e4} \) decay, can be easily accessible at future high statistics Kaon factories, e.g. at DA NE \([10]\). To the leading \(O(p^2) \) order, the axial-vector part of the \(K_{44} \) matrix element receives two contributions, shown in Fig.1. While the direct interaction vertex of Fig.1a is independent of \(r \), the \(K \) pole contribution of Fig.1b exhibits an \(r \) dependence through the virtual \(K \) scattering amplitude. The latter gives rise to a contribution proportional to the lepton mass, and hence invisible in \(K_{e4} \) decays. In this paper, the question of whether the \(r \) dependence can be observed in the \(K_{44} \) decays is answered positively within the leading order. The loop corrections to this result will be presented elsewhere.

Ignoring isospin breaking effects (from now on \(m_u = m_d = m_l \)), the amplitude for the \(K \) scattering process

\[
a^+ K^i! \leftrightarrow b^+ K^j; \tag{11}
\]

\(a,b = 1;2;3; i,j = 1;2;3 \), is described in terms of two invariant amplitudes \(A(s,t;u) \),

\[
A(a^+K^i! b^+K^j)(s,t;u) = \sum_{i,j} A(s,t;u) \sum_{i,j} (c) A(s,t;u); \tag{12}
\]

with

\[
A(s,t;u) = A(u;t;s); \tag{13}
\]
They are related to the isospin amplitudes $A_{I}^{s}(s; t; u)$; $I = \frac{1}{2}, \frac{3}{2}$, by

$$A_{3=2} = A^{+} + A$$

$$A_{1=2} = A^{+} + 2A$$

Upon neglecting $O(p^4)$ terms, the tree level amplitudes are described by three constants: K, K, analogous to the constants and occurring in the low energy parametrization of the tree level amplitude in Eq. (8), and K,

$$A^{+}(s; t; u) = \frac{K}{4F^{2}}(t \ \frac{2}{3}M^{2} \ \frac{2}{3}M_{K}^{2}) + \frac{1}{6F^{2}}g_{M}M^{2} + 2M_{K}K$$

$$A_{I}^{s}(s; t; u) = \frac{K}{4F^{2}}(s \ u)$$

At leading order, these constants read

$$\text{lead}_{K} 1 = \frac{r + 1}{r_{1} + 1}$$

$$\text{lead}_{K} 1 = 1$$

$$\text{lead}_{K} = 1$$

At this stage, the r dependence enters the K amplitude through the constant K only (cf. the similar situation in the case). When r differs from r_{1} this leads to an enhancement of the K amplitude; as it is defined, lead_{K}, like lead_{K}, varies from 1 (the standard case [4], [3]) to 4, for $r = r_{1}$. At the same order, the scattering lengths a_{I}^{s} and slope parameters b_{I}^{s} ($I = 0, 1, I = \frac{1}{2}, \frac{3}{2}$) read

$$a_{0}^{1=2} = \frac{M_{K}5 + \text{lead}_{K}}{32F_{0}^{2}};$$

$$a_{1}^{1=2} = \frac{1}{64F_{0}^{2}};$$

$$a_{0}^{3=2} = \frac{4\text{lead}_{K}}{3};$$

$$a_{1}^{3=2} = 0;$$

$$b_{0}^{1=2} = \frac{3}{32F_{0}^{2}}\frac{(M + M_{K})^{2}}{M_{K}2};$$

$$b_{0}^{3=2} = \frac{1}{32F_{0}^{2}}\frac{(M + M_{K})^{2}}{M_{K}};$$

One notices that the combination $2a_{0}^{3=2} + a_{0}^{1=2}$, which vanishes in the standard case, is the most sensitive one to departures of r from r_{2}. The combination $a_{0}^{3=2} - a_{0}^{1=2}$, which may, in principle, be determined through an accurate measurement of the lifetime of K atom s[3].

\footnote{For the definition of the threshold parameters a_{I}^{s} and b_{I}^{s} we follow the conventions of Ref. [4]}
does not depend on r at leading order. (The lifetime of ^{12}C similarly gives access to the combination $a_0^2 - d_0^2$ of scattering lengths, which still depends on r at leading order.) On the other hand, model independent informations on the $I = \frac{1}{2}$ phase shifts may be extracted from high precision data on D_{1s} decays (e.g., $D^+ \to K^+ + e^+$). Quite generally, and as already noticed in the case of scattering, for $r < 10$, the improved leading order modifies the scattering lengths in the same direction and by roughly the same amount as the standard loop corrections.

Next, we turn to the K_{14} decays, $l = e^+$; we shall concentrate on the process

$$K^+(k) \to p_+ (p) \Lambda^4 \to K^+(k) : \tag{19}$$

The axial current matrix element is described by three form factors, F, G, R,

$$< + (p_+) (p) \Lambda^4 \to K^+(k) > =$$

$$= \frac{i}{M_K} (p_+ + p \bar{\Lambda} F + (p_+ p \bar{\Lambda} G + (k \bar{p} p \bar{p}) R) ; \tag{20}$$

while the vector current matrix element requires only one form factor, H,

$$< + (p_+) (p) \Lambda^4 \to K^+(k) > = \frac{H}{M_K^3} k (p_+ + p \bar{\Lambda} (p_+ p \bar{p}) : \tag{21}$$

These form factors are functions of the invariants

$$s = (p_+ + p \bar{\Lambda})^2 ;$$

$$s_1 = (k \bar{p} p \bar{p})^2 ; \tag{22}$$

$$= 2k (p_+ p \bar{\Lambda}) :$$

 Contributions to H start only at order $O(p^4)$ in the effective Lagrangian with the Wilson-Zumino term which gives

$$H = \frac{p \Delta M^3}{8 2F_0^2} : \tag{23}$$

At leading order, the form factors F and G are also constant and read

$$F = G = \frac{M_K}{2F_0} : \tag{24}$$

The form factor R is the sum

$$R = R_{\text{direct}} + R_{\text{pole}} : \tag{25}$$
R_{direct} arises from diagrams where the axial current A_4 couples directly to three pseudoscalar mesons (Fig. 1a), while R_K pole is obtained from diagrams where A_4 couples to a single internal pseudoscalar line (Fig. 1b). At leading order, one obtains

$$R_{\text{direct}} = \frac{M_K}{2F_0} \frac{2}{3};$$

and

$$R_K \text{ pole } = \frac{M_K}{2F_0} \frac{1}{s_1} \frac{1}{M_K^2} \frac{1}{2} s + \frac{1}{2} \frac{1}{6} (s_1 - M_K^2) + \frac{2}{3} M_K (\frac{\text{lead}_K}{M_K} 1);$$

At leading order, the dependence on r appears only in R_K pole, through the K scattering parameter lead_K. In the differential decay rate, the contributions of R appear always with a multiplicative factor m_2^2 (a review of the kinematics of K_4 processes and explicit formulae for differential decay rates may be found in Refs. [11], [12]). Hence, K_{e4} decays will be quite insensitive to the value of r. On the other hand, K_{e4} processes offer the possibility for a direct experimental determination of $m_2 = m$. In Fig. 2, we have plotted the differential decay rate $d = ds_1$ for different values of r using the $O(p^2)$ expressions for the form factors $F, G, R,$ and formula (23) for H. As r varies between r_1 and r_2, one sees an overall effect of $20 - 25\%$, and which is not sensitive to the value of the Zweig rule violating parameter taken in the range $0 - 0.2$. (One could, in principle, obtain both the values of r and from separate measurements of K_4.) A statistical sample of 30,000 events, which might be obtained at DUNE, should be sufficient for an experimental determination of r. At order $O(p^2)$, one computes the total decay rate for the process (19) to be $\approx 156 \text{ s}^{-1}$ for $r = r_2$ and $\approx 112 \text{ s}^{-1}$ for $r = r_1$. The loop corrections are expected to modify the above results in a nonnegligible way. There is however, no reason to believe that they would destroy the sensitivity with respect to r exhibited at leading order. The experience from the analysis shows that loops rather tend to amplify the tree level effects. The results of the loop calculations will be presented elsewhere.

References

Figure Captions

Figure 1. The matrix element of the axial current A^4_{15} (wavy line) between an incoming K (solid line) and two outgoing πs (broken lines), showing: a) the direct contribution and, b) the K-pole contribution to the form factor R.

Figure 2. The differential K^4 decay rate $d = ds_1$ (in units of M) as a function of s_1 (in units of M^2) plotted for different values of r and for $\eta = 0.1$. Starting from the bottom curve, corresponding to $r = r_1 = 6.3$, the subsequent curves correspond to $r = 10$, $r = 15$ and $r = r_2 = 25.9$, respectively.