Chiral Sum Rules and Their Phenomenology

John F. Donoghue and Eugene Golowich
Department of Physics and Astronomy
University of Massachusetts
Amherst MA 01003 USA

Abstract
We present an analysis of four sum rules, each based on chiral symmetry and containing the difference $V(s) - A(s)$ of isovector vector and axial-vector spectral functions. Experimental data from tau lepton decay and electron-positron scattering identify the spectral functions over a limited kinematic domain. We summarize the status of the existing database. However, a successful determination of the sum rules requires additional content, in the form of theoretical input. We show how chiral symmetry and the operator product expansion can be used to constrain the spectral functions in the low energy and the high energy limits and proceed to perform a phenomenological test of the sum rules.
1 Motivation

Despite a concerted effort by physicists extending over many years, an understanding of QCD from first principles continues to be elusive. Fortunately, data continue to appear which provide a rather direct probe of the inner workings of the strong interactions.

A case in point involves semileptonic tau lepton decay and hadron production in e^+e^- scattering. For both of these, multihadron states such as $2; 3; \ldots$ are excited from the operation of quark vector and axial vector currents on the QCD vacuum. In this paper, we shall restrict our discussion to the isospin currents,

$$V_a = q \frac{\bar{a}}{2} q \quad \text{and} \quad A_a = q \frac{\bar{a}}{2} 5q ; \quad (1)$$

where $a = 1, 2, 3$ and $q = (u, d)$. Such current-induced processes provide information about the current bilinears,

$$\mathcal{H} \bar{f}(V_a(x)V_b(0)) \right f \quad \text{and} \quad \mathcal{H} \bar{f}(A_a(x)A_b(0)) \right f ; \quad (2)$$

It has been long recognized that these quantities appear in certain chiral sum rules. Since these sum rules follow rather directly from QCD and chiral symmetry, a test of their correctness is, in effect, an experimental check on the validity of QCD itself.

Unfortunately, there are several formidable obstacles to a successful implementation of this procedure. For one, the sum rules encompass an infinite range of energy, whereas existing data covers a very modest range, $s < m^2$ for tau decay and $s < 5 GeV^2$ in e^+e^- scattering. Moreover, as we shall see there are uncertainties in existing data which future experimental work must clear up.

We feel that such difficulties can be overcome. In this work, we shall argue that a combination of chiral symmetry and QCD sum rule methods constrain the low-energy and high-energy limits of the dispersion integrals and that data can be used to fill in much of the rest. The content of the paper is organized as follows. We begin by introducing the spectral functions and their sum rules in Sect. 2, review the state of existing data in Sect. 3 and then describe various theoretical constraints in Sect. 4. Armed with experimental data and theoretical constraints, we present details of a phenomenological analysis of the chiral sum rules in Sect. 5. The final part in Sect. 6 summarizes our findings.
Spectral Representations

In this section, we shall work exclusively in the chiral world of massless up and quarks. Here, the spin-0 axial contribution is given by the pion pole and the two-current time-ordered products can be expressed in terms of spin-one spectral functions \(V_A(s) \).

\[
\hbar \not p (V_a(x)V_b(0)) \not p i = \int ds \ v(s) \ (sg @ @) \frac{Z}{d} \frac{e^i p \cdot x}{p^2} s + i \tag{3}
\]

and

\[
\hbar \not p (A_a(x)A_b(0)) \not p i = \int ds \ a(s) (sg @ @) \frac{Z}{d} \frac{e^i p \cdot x}{p^2} s + i \tag{4}
\]

For completeness, we also give the corresponding relations involving non time-ordered products,

\[
\frac{1}{2} \ 4 \ x \ e^{i \not p} \ h_0 Y_a(x)V_b(0) \not p i = \int ab v(q^2) (qq q^2 q) \tag{5}
\]

\[
\frac{1}{2} \ 4 \ x \ e^{i \not p} \ h_0 A_a(x)A_b(0) \not p i = \int ab [a(q^2) (qq q^2 q) + F^2 (q^2 q q)] \tag{6}
\]

It follows from chiral symmetry and the high energy behavior of QCD that the vector and axial-vector spectral functions contribute to certain sum rules,

\[
Z \int \not p (V_s(s) \ A(s)) = 4L_{10} = (2.73 \ 0.12) \ 10^2 \tag{6}
\]

\[
Z \int \not p (V_s(s) \ A(s)) = F^2 \tag{7}
\]

\[
Z \int s \ln s \ (V_s(s) \ A(s)) = 0 \tag{8}
\]

\[
Z \int \not p (V_s(s) \ A(s)) = \frac{16 \ 2F^2}{3e^2} (m^2 m^2) \tag{9}
\]
In the remainder of the paper, we shall refer to the above sum rules respectively as W_0, W_1, W_2 and W_3. In the first one, W_0, the quantity L_{10} is related to the renormalized coefficient $L_{10}^{(r)}$ of an $O(E^4)$ operator appearing in the effective chiral lagrangian of QCD. Although the value of $L_{10}^{(r)}$, which is measured in the radiative pion decay $\pi^0 \rightarrow e^+ e^-$, refers to a renormalization scale, the quantity L_{10} is itself independent of μ.

$$L_{10} = L_{10}^{(r)} + \frac{144}{\pi} \ln \frac{m_2^2}{\mu^2} + 1 \quad (624\,03) \times 10^{-3} \quad (10)$$

The next two relations, W_1 and W_2, are respectively the first and second Weinberg sum rules. The third sum rule, W_3, is a formula for the π^0 mass splitting in the chiral limit. Although apparently containing an arbitrary energy scale, this sum rule is actually independent of μ by virtue of W_2. For reference, we have displayed the physical values of the nonzero entries which appear on the right hand side of the chiral sum rules. These quantities have slightly shifted values in a chiral invariant world. This point is discussed at the end of Sect. 3.

We note in passing that the current correlators defined in Eqs. (5b) have been the subject of much recent attention. Several analyses have been carried out of hadron production in tau-lepton decay in order to obtain a determination of $\Lambda(m_{\pi})$, the running strong structure constant evaluated at the tau mass scale.

3 Data Inputs

It is possible, in principle, to analyze the chiral sum rules on the basis of pure theory. For example, in the original derivation of W_3, the pion electromagnetic mass difference was estimated by using (770) and $a_1(1100)$ contributions to saturate the vector and axialvector spectral functions. However, a more sound procedure is to use data from tau lepton semi-leptonic decays into pions and/or pion production in $e^+ e^-$ annihilations.

The rate for tau decay into an even or odd number of pions at invariant squared-energy s is given by

$$\frac{d}{ds} \left(\frac{E}{O} \right) = \frac{G^2 V_{ud}^2}{8 m^3} \left(m^2 - s \right)^2 \left(m^2 + 2s \right)^2 \left(\frac{\Lambda(s)}{\Lambda_0} \right)^2 + \frac{m^2}{A(s)} \left(\frac{\Lambda(s)}{\Lambda_0} \right)^2 \quad (11)$$
and the corresponding n branching ratio is

\[B_n = \frac{G^2 V_{ud}^2 m^2}{8 \sqrt{\lambda}} \text{all} \quad \text{with} \quad I_n = \frac{Z m^2}{(n m)^2} \quad ds \quad 1 \quad \frac{s}{m^2} \quad 1 + \frac{2s}{m^2} \quad n(s) : \]

(12)

In addition to the Particle Data Group (hereafter PDG), the primary sources for tau decay data are the ARGUS and CLEO detectors, via the reaction \(e^+ e^- \rightarrow \tau^+ \tau^- \), and the LEP detectors via the decay \(Z^0 \rightarrow \tau^+ \tau^- \). A review of tau physics up to 1988 is given by Barish and Stroynowski. Experimental aspects of tau decay continue to be presented up to the most recent conferences.\[1,13,16,17\]

At first, using \(e^+ e^- \) annihilation data to test the chiral sum rules would appear to be problematic. Although the range of energy is (at least in principle) unlimited, the production mechanism involves the electromagnetic current and so is generally a mixture of the needed isospin 1 component and an unwanted isospin 0 component. However, for final states which consist of an even number of pions it is only the isovector electromagnetic current which contributes. This is a consequence of the G-parity relation

\[G_n = (\frac{1}{2})^n, \]

(13)

Together with the property that any n-particle state produced by the action of the electromagnetic current on the vacuum must have charge conjugation \(C = 1 \). Since \(G = C(\frac{1}{2})^n \), it follows that \(I = 1 \) for n even. Of course, the isospin components which are measured in \(e^+ e^- \) scattering and tau decay are distinct, having \(I_3 = 0 \) and \(I_3 = 1 \) respectively. The corresponding 2 and 4 states are related by

\[T_j^+ \quad 1 \quad = \quad \frac{p}{2j} \quad 0 \quad i \quad \quad \quad T_j^+ \quad 2 \quad 0 \quad i \quad = \quad \frac{p}{2j} \quad 0 \quad 3 \quad 0 \quad i \quad + \quad 2 \quad p \quad 0 \quad 2 \quad 0 \quad \]

Extracting the n component of \(\nu(s) \) from \(e^+ e^- \) data proceeds via the relation

\[\tilde{\nu}(s) = \frac{1}{16} \quad 3 \quad z \quad 2 \quad s \quad n_{\nu=1}(s) : \]

(14)

For the specific case of two-pion production, the \(e^+ e^- \) annihilation data is often expressed in terms of the pion electromagnetic form factor \(F^+(s) \) evaluated at squared-energy s. In this notation, one has

\[\tilde{\nu}^2(s) = \frac{1}{48} \quad 1 \quad 4m^2 \quad 1 \quad 3=2 \quad \frac{s}{s} \quad \tilde{F}^+(s) \frac{s}{s} : \]

(15)
A plot of the pion form factor in the timelike region appears in Fig. 1. Early results on pion production in e^+e^- scattering is summarized in Ref. [13]. Experiments at Frascati, Orsay, and Novosibirsk have continued to supply data. [13] [26]

As a whole, tau and e^+e^- data reveal that each of the multipion contributions rises fairly sharply from threshold to a peak value and then falls rather more slowly. At energies below 2 GeV, the role of meson resonances is significant. Thus, the 2 contribution has the familiar narrow resonant structure of (770), the 3 modes are dominated by $a_1(1260)$, and the 4 sector is influenced by (1450) and (1700). Although lacking a detailed dynamical understanding of higher multiplicity distributions, we can anticipate their form as a consequence of general physical considerations. They will occur sequentially in mass (due to increasingly higher mass thresholds), exhibit slowly decreasing peak values (from competition with other channels as constrained by unitarity), and become increasingly broad (since phase space grows with particle number). As energy increases, one soon enters the asymptotic domain and the sum over all modes becomes featureless, in a manner similar to the total e^+e^- hadronic cross section.

Let us now present a critique of the current status for various individual contributions:

Tau Lepton Properties

The most recent compilation given by the Particle Data Group for the primary tau lepton properties of mass (m), lifetime (τ) and electron branching ratio B_{e} are:

$$m_{\text{PDG}} = 1784\,\text{GeV} ; \quad \text{PDG} : 305\,\text{fs} ; \quad B_{\text{e}_{\text{PDG}}} = 0.1793 : \quad (16)$$

However, there have been recent downward revisions to [21]

$$m = 1777\,\text{GeV} ; \quad 297\,\text{fs} ; \quad B_{\text{e}} = 0.1771 ; \quad (17)$$

and these are the values that we shall use throughout our analysis. Observe that there is a slight inconsistency between the listed central values for m, and B_{e} in Eq. (12). As a result, the theoretical constraint

$$B_{\text{e}} = 0.06125 \times 10^{-13} \,\text{sec}$$

(18)
is not exactly satisfied. Thus, the relation between branching branching ratios and spectral functions in Eq. (12) depends on which of the following relations is assumed,

(i) \(B_n = 4.39 \times 10^{-13} \text{sec} \) or (ii) \(B_n = 71.31 B_e I_n \): \(19 \)

Throughout this paper, we shall for definiteness assume that \(B_e = 0.1771 \) in our numerical work. This value is an average of the value in Eq. (14) and the recent experimental determination cited in Ref. [23].

Two-pion Component

Data for \(\frac{2}{V} \) comes from the part of one-prong decay \([11, 29]\) and from the neutral state in \(e^+e^- \) scattering \([13, 22, 24, 25]\). The consistency of tau decay and \(e^+e^- \) annihilation results in the vicinity of the (776) peak has been verified by Gan in Ref. [26]. We display in Fig. 2 the two-pion spectral function \(\frac{2}{V} (s) \) as inferred from the pion form factor data of Fig. 1. Numerical integration of \(\frac{2}{V} \) yields a branching ratio of \(B_2 = 0.247 \). There are also recent determinations of the \(h^0 \) (where \(h \) is a hadron) and \(0 \) branching ratios by CLEO \([12]\) and LEP \([13]\),

\[
B^{\text{CLEO}}_{h^0} = 0.2483 \quad 0.0015 \quad 0.0053 ; \quad B^{\text{LEP}}_{h^0} = 0.243 \quad 0.008 ; \quad B^{\text{CLEO}}_{0} = 0.2435 \quad 0.0055 ;
\]

where the \(0 \) value is inferred by subtracting the \(K \) branching ratio from that of \(h^0 \). The above are in reasonable accord with the value cited by the PDG \([31]\), which is based on earlier data.

All in all, the two-pion part of the vector current spectral function is well determined. As we shall now see, although much is known about the three-pion and four-pion distributions, more experimental input would be welcome.

Three-pion Component

We denote branching ratios for the two \(3 \) modes in decay as \(B_{\frac{3}{2}} \) and \(B_{\frac{5}{2}} \). Basic isospin considerations imply the inequalities \([21]\)

\[
1 \quad B_{\frac{3}{2}} \quad 4 \quad 5 \quad B_{\frac{5}{2}} \quad \frac{1}{2} : \quad (21)
\]
PDG lists the three-hadron branching ratios based on a number of experiments as
\[
B_{h, 2h} = 0.084 \quad 0.004 \quad \text{and} \quad B_{h, 2} = 0.013 \quad 0.009 \quad ; \quad (22)
\]
CLEO \cite{4} and LEP \cite{3} have recently announced the results
\[
\begin{align*}
B_{CLEO}^{2h, 0} &= 0.0821 \quad 0.0038 \quad 0.0028 \quad ; \\
B_{LEP}^{2h, 0} &= 0.0104 \quad 0.008 \quad ; \\
B_{LEP}^{2h, 2} &= 0.00949 \quad 0.0036 \quad 0.0063 \quad ;
\end{align*}
\]
Collectively, these imply that \(B_{h, 2} \) \(B_{2, 0} \) and indicate a total 3 branching ratio of 16% -19%. For definiteness, we shall assume that both modes have equal decay rates and employ total three-pion branching ratios in this range. This is in accord with the findings of Davier who, in a review of early and recent 3 branching ratio determinations, summarizes the current situation as
\[
B_{h, 2} = B_{2, 0} = 0.0093 \quad 0.0036 \quad ; \quad (24)
\]
but at the same time warns that "extreme care should be exercised when using world average values for branching ratios".

The equality of \(B_{h, 2} \) \(B_{2, 0} \) is expected of a final state which is dominated by the \(A_1 \) resonance. The isospin decomposition
\[
\begin{align*}
A_1 & = \frac{1}{2} j^0 \quad \frac{1}{2} i \\
A_2 & = \frac{1}{2} j^0 \quad \frac{1}{2} i
\end{align*}
\]
shows that the \(+2 \) (from the first term) and the \(2^0 \) (from the second term) final states will occur with equal probability.

As regards the spectral function \(A_3 \), reconstruction from experiment would require 3 mass distributions for both \(+2 \) and \(2^0 \) modes. None of the latter exists. However, in view of \(A_1 \) dominance it seems safe to know just the \(-2 \) spectrum. We refer the reader to Ref. \cite{17} for histograms of the 3 mass distribution measured some time ago by the DELCO, MAC and MARK II detectors. The literature also contains an early ARGUS determination \cite{17}, corresponding to the rather small branching ratio \(B_{h, 2} = 0.0056 \quad 0.0007 \). In this paper, we shall employ recent ARGUS data \cite{82} to determine \(A_3 \). From the number of counts \(N \) per energy bin \(E \), one can construct the 3 spectral function via
\[
A_3(s) = \frac{m^2}{24} \frac{B_3}{24} \sqrt{\frac{2}{\alpha_d}} \frac{1}{Be \left(1 + 2s m^2 \right)} \frac{1}{2EN_{tot}} N \quad ; \quad (26)
\]
where $E = P^2$. Upon taking $B_3 = 0.17$ rather than the value given in Ref. [23] (which would imply $B_3 = 0.13$), we obtain the spectral function shown in Fig. 3. The large error bars near the end-point occur because one must divide the number of counts per energy bin by a phase space factor which vanishes at $s = m^2$. Even so, it is clear from Fig. 3 that tau decay data is able to cover essentially all the region where $\frac{3}{4}$ is nonvanishing.

Four-pion Component

In tau decay, there are two 4 modes, 3^0 and $^0 2^+$. The corresponding four-pion final states in e^+e^- scattering are $2^+ 2^+$ and $^0 2^+ 2^0$. The four-pion spectral function measured in tau decay can be decomposed as

$$V^4_v(s) = V^0_v(s) + V^{000}_v(s);$$

where the quantities on the right-hand side are inferred from the four-pion mass distributions in the 3^0 and $^0 2^+$ modes. It is also possible to obtain the quantities V^0_v and V^{000}_v from $e^+e^- \rightarrow e^+e^- 4$ cross sections via the relations

$$V^{000}_v(s) = \frac{1}{32} \frac{3}{2} s^{2^+ 2^+};$$

$$V^0_v(s) = \frac{1}{32} \frac{3}{2} s^{2^+ + 2^0 2^+};$$

The set of 3^0 and h_3^0 tau decay branching ratios taken from recent conference presentations Refs. [12], [13] and the average cited by the PDG [10] provide a reasonably consistent picture,

$$B^\text{CLEO}_h_{3^0} = 0.0098 0.0007 0.0012 0.0003;$$

$$B^\text{LEP}_h_{3^0} = 0.0153 0.004 0.006;$$

$$B^\text{PDG}_h_{3^0} = 0.027 0.009;$$

implying $B_{3^0} = 0.01$. To our knowledge, there is no published spectral information from tau decay data for the $^0 2^+$ mode. However, we can obtain $V^{000}_v(s)$ from $2^+ 2^+$ as in Eq. (24). The set of $^0 2^+$ cross section data taken from Refs. [12] (for $\sqrt{s} < 1.4$ GeV) and from Refs. [20], [21] (for $\sqrt{s} > 1.4$ GeV) is displayed in Fig. 4. Note that Fig. 4 clearly demonstrates how V^4_v must extend beyond $s = m^2$, i.e. tau decay alone cannot determine the 4 spectral function over its full range. The resulting V^{000}_v obtained in this manner is shown in Fig. 5. From this, we predict the 3^0
mass spectrum to have the form shown in Fig. 6, where a smooth curve has been added to help guide the eye. Integrating this mass spectrum leads to a branching ratio $B_{3 \rightarrow 0}^0 = 0.009$, in good agreement with the values of Eq. (30).

Turning to the larger $+2^0$ tau decay mode, we cite the branching ratio values appearing in Refs. [13], [16],

$$B_{h^+2h}^{\text{LEP}} \quad 1^0 = 0.0489 \quad 0.008 ;$$
$$B_{h^+2h}^{\text{ARGUS}} \quad 1^0 = 0.054 \quad 0.004 \quad 0.005 ;$$
$$B_{h^+2h}^{\text{PDG}} \quad 1^0 = 0.053 \quad 0.004 ;$$

where the ARGUS value is preliminary. Two of these values include unknown amounts of strange particle contributions. Allowing for such non-four contributions, the PDG and LEP values indicate a $+2^0$ branching ratio in the $0.040 \quad 0.050$ range. We are aware of just one published $+2^0$ mass spectrum measurement, an ARGUS analysis (Ref. [33]) which cites the branching ratio $B_{6 \rightarrow 0}^0 = 0.042 \quad 0.005 \quad 0.009$. This value is smaller than, although not inconsistent with, the more recent ARGUS value of Eq. (31).

Using an appropriate binning procedure, we can construct the full 4^0 spectral function $\frac{4}{\sqrt{s}}$ over the restricted energy region $s < m^2$ by combining the $+2^0$ tau data together with the 2^+2^0 cross sections. The result is shown in Fig. 7, together with an asymmetric Breit-Wigner fitting curve (see Sect. 4).

Alternatively, one could use the combination of cross sections as in Eq. (28) to determine the total 4^0 spectral function. In principle at least, this procedure can provide the 4^0 spectral function over a larger energy interval. $+2^0$ cross section data taken from Ref. [24] (for $s < 1.4$ GeV) and from Ref. [20] (for $s > 1.4$ GeV) are displayed in Fig. 8. These turn out to imply $+2^0$ tau decay branching ratios somewhat smaller than the recent determinations cited in Eq. (31). For this reason, we have chosen to base our analytical work on the determination of $\frac{4}{\sqrt{s}}$ as shown in Fig. 7.

Higher Components

The $
u$-pion component in tau decay involves the branching ratios $B_{4 \rightarrow 0}^0$, $B_{3 \rightarrow 2^0}$, and $B_{2 \rightarrow 2^0}$. Isospin constraints for these modes are

$$0 \quad \frac{B_{4 \rightarrow 0}^0}{B_5} \quad \frac{3}{10} ; \quad 0 \quad \frac{B_{3 \rightarrow 2^0}}{B_5} \quad \frac{8}{35} ; \quad \frac{B_{2 \rightarrow 2^0}}{B_5} \quad \frac{8}{35} \quad 1 ;$$

(32)
At present, Refs. [12] , [10] , [16] provide the following branching ratio determinations,

\[
\begin{align*}
B_{\text{CLEO}}^{h \rightarrow 4^0} & = 0 \cdot 0015 \quad 0 \cdot 0004 \quad 0 \cdot 0005 \quad 0 \cdot 0001; \\
B_{\text{PDG}}^{h \rightarrow 3h^*} & = 0 \cdot 00056 \quad 0 \cdot 00016; \\
B_{\text{ARGUS}}^{0 \rightarrow 2^0} & = 0 \cdot 0054 \quad 0 \cdot 0005 \quad 0 \cdot 0008; \\
\end{align*}
\]

(33)

Noting that \(B_{3^2}^{h = 0} \), \(B_{3h^*}^{3h = 2^*} \), we find that these values are consistent with the bounds of Eq. (22). However, the isospin bounds do not imply any useful information for disentangling \(B_{3^2}^{h = 0} \) from \(B_{3h^*}^{3h = 2^*} \). To our knowledge, the above branching ratios are the only 5 data currently available. To obtain useful spectral information for the 5 mode requires a substantial number of events, e.g. as would be generated from a factory.

Some 6 spectral information is available from e\(^+\)\(e^-\) scattering and some 6 branching ratio information is available, but in view of the paucity of 5 data we have not included this sector in the analysis described in this paper.

Although our statement of the chiral sum rules in Sect. 2 refers to the limit of massless quarks, the data reviewed in this section are taken in the real world of \(u_d \neq 0 \). In principle, we might attempt to perform corrections on the data set with an eye towards working in the chiral limit. For example, it is apparent that taking \(m_u \neq 0 \) would induce minor shifts in resonance masses and phase space. However, we anticipate that such effects would be of order \(m_u^2 \approx 1 \text{ GeV} \). Since such changes are much smaller than the present uncertainty in the data, it seems most prudent not to try to model the effect of finite \(m_u \) effects. Thus, we shall use the unmoded experimental information in our phenomenological analysis.

4 Theoretical Constraints

Although the vector and axial vector spectral functions are not theoretically prescribed for all values of \(s \), it is possible to place constraints on their low and high energy limits.

We begin by taking the Fourier transform of Eq. (32),

\[
\begin{align*}
ab V(q^2) & = \int \frac{d^4x}{(2\pi)^4} \exp[i \cdot] \left(V_a(x) V_b(0) \right) \mathcal{D} \left(x \right) \\
& = \int \frac{d^4q}{(2\pi)^4} \int \frac{d^4g}{(2\pi)^4} \int \frac{d^4q'}{(2\pi)^4} \ \mathcal{V}(q^2) ;
\end{align*}
\]

(34)
and of Eq. (4),

$$ ab \ A(q^2) = i \ d^4x \ \exp[i \ \not{q} \cdot (A_a(x)A_b(0))] \ \delta_i $$

$$ ab \ A(q^2) = i \ d^4x \ \exp[i \ q \cdot A(q^2)] \ q \ q \ \theta_{A}^{(q^2)}(q^2)$$ \ : \ (35)

In the chiral limit, the spin-0 axial contribution $A_A^{(q^2)}$ is given entirely by the pion pole. The correlators $\nu_A(q^2)$ are the real parts of analytic functions whose imaginary parts are the spectral functions $\nu_A(s)$. Of interest to us are the dispersion relations involving the difference of vector and axial-vector quantities,

$$ \nu(q^2) - A(q^2) = \frac{\nu(s) - A(s)}{q^2} = \frac{1}{q^2} \int_0^1 ds \frac{\nu(s) - A(s)}{q^2} \ : \ (36) $$

In our normalization, the behavior of the individual $\nu_A(q^2)$ to leading order at large q^2 is

$$ \nu_A(q^2) \ \frac{1}{q^2} \ 1 + s(q^2) \ln \frac{2}{q^2} \ : \ (37) $$

where $\nu_A(q^2)$ is the renormalization scale. In order to determine the difference $\nu_A(q^2)$ for q^2 large but finite, one must go beyond the form in Eq. (37). From the operator product expansion of vector and axial-vector currents, we learn that the asymptotic dependence is $O(q^6)$ and the local operators which control this behavior are the four-quark condensates. \[34\] \[35\]

In the approximation of vacuum saturation, one finds

$$ \nu(q^2) - A(q^2) = \frac{32}{9} \ \frac{F^2}{q^6} \ \frac{\bar{q}q}{q^2} \ 1 + s(q^2) \ln \frac{2}{q^2} \ : \ (38) $$

It turns out that theory also predicts the low energy or threshold behavior of the vector and axial-vector correlators. However, in this case, it is the machinery of chiral perturbation theory that is invoked to show \[32\]

$$ \nu(q^2) - A(q^2) = \frac{F^2}{q^2} + \frac{1}{48} \ ln \frac{2}{q^2} + \frac{5}{3} \ L^{(r)}_{10} () \ : \ (39) $$

where $L^{(r)}_{10} ()$ is defined in Eq. (10).
The above statement all involve the correlators \(V_A \). Similar threshold and asymptotic constraints can be placed on the spectral functions \(V_A(s) \). Thus, as stated in Ref. [34] the threshold behavior \(s > 4m^2 \) of \(V(s) \) and \(A(s) \) is

\[
V(s) = \frac{1}{48s^2} - \frac{1}{s} \left(s - 4m^2 \right) + O(p^2) ;
\]

\[
A(s) = O(p^2) ;
\]

Later in this section, we shall sharpen the threshold result for \(A \) by specifying the 3 threshold contribution in more detail. The perturbative result for the asymptotic limit \(s \) of the individual \(V_A \) to leading order is

\[
V_A(s) = \frac{1}{8s^2} \left(1 + \frac{s}{s(s)} \right) ;
\]

Finally, Eq. (38) determines the asymptotic form of \(V(s) \) \(A(s) \) to be

\[
V(s) = \frac{C}{s^3} \left(\frac{8s^3}{9} \right) \frac{\bar{q}q^2}{s^3} \quad \text{for large } s ;
\]

Note that the difference of the spectral functions is of order \(\frac{1}{s} \). Our analysis of the chiral sum rules will require a numerical value for the coefficient \(C \) of the \(s^3 \) term. From the estimate

\[
h \frac{\bar{q}q^2}{s} \left(0.24 \text{ GeV} \right) \leq 1 \times 10^{-4} \text{ GeV}^6
\]

and taking \(s > 0.2 \), we obtain

\[
C \leq 3 \times 10^{-5} \text{ GeV}^6 ;
\]

The magnitude of this quantity is obviously model dependent and quite possibly will be modified by future work. However, even folding in uncertainties of the vacuum condensates, it is clear that the coefficient of the \(s^3 \) term is very small, and that \(V - A \) approaches zero very quickly at large \(s \). Even if one imagines \(V(s) - A(s) \) to exhibit increasingly damped oscillations indefinitely, duality suggests that Eq. (43) captures the correct average behavior. As we shall see, the asymptotic constraint of Eq. (43) will have significant impact in the analysis of the chiral sum rules to come.

The results presented in this section are well known, and collectively they represent a fairly powerful set of conditions regarding how the chiral
correlators can be related. Actually, additional thought can reveal even more. For example, let us employ the asymptotic behavior of Eq. (38) in the dispersion relation of Eq. (36). Expansion of the dispersion integral in powers of \(q^2 \) yields the sum rule

\[
\frac{32}{9} \frac{d^3 p}{p^4 q^2} = \int_0^1 ds^2 (V(s) A(s)) : \quad (46)
\]

Some care must be taken to interpret this result correctly. Observe that Eq. (46) is valid to \(O(s) \). Since the \(O(s^3) \) tail of \(V(s) A(s) \) is itself of higher order in \(s \), one must subtract it in this relation. Accordingly, we write

\[
\frac{32}{9} \frac{d^3 p}{p^4 q^2} = \int_0^1 ds^2 (V(s) A(s))^0 ; \quad (47)
\]

where \((V(s) A(s))^0 \) refers to subtraction procedure just mentioned.

Finally, let us return now to the matter of the threshold behavior of \(A(s) \). It is associated with the 3 component. Using chiral lagrangian methods, we have determined that in the chiral limit the threshold behavior is

\[
h_0 A^0(0) j^+ p^+ p^0 p \ i = \frac{2}{3F} (p_+ + p_0 + 2p_0) \frac{3s}{3F} s Q \quad (48)
\]

where \(Q = p_+ + p_0 + s_+ Q^2 \) and \(s_+ = (p_+ + p_0)^2 \). Upon rearrangement of terms \(s \), this can be expressed as

\[
h_0 A^0(0) j^+ p^+ p^0 p \ i = \frac{2}{F} \frac{Q}{Q^2} \frac{p}{p_0} \quad (49)
\]

Observe that this obeys \(h_0 \beta A^0(0) \beta i = 0 \), as must be the case since \(i \) is only the spin-one part of the axial current which contributes here. The threshold behavior of \(A^0(s) \) can then be read off from the general form of Eq. (48) by first squaring Eq. (49) and integrating over 3 phase space,

\[
A^0(s) = \frac{s}{96 (4F)^2} + \cdots ; \quad (50)
\]

In practice, however, the very low \(s \) behavior for the 3 state turns out to be less important in the chiral sum rules than the higher energy effect of the A1 resonance.
5 Empirical Determinations of Chiral Sum Rules

Before discussing our own methodology, we wish to take note of two interesting works involving aspects of chiral sum rules. In the earlier of these, spectral functions based on 2, 3, and 4 data extracted from tau decay are used to study the sum rules W_1, W_2, and W_3. The associated spectral integrals are studied as a function of cut-off s_0 for $s_0 = 2.5$ GeV2. However, the 3 analysis was taken from Ref. [11] data, which as we have seen is not in agreement with a large number of more recent branching ratio measurements. In addition, the 2 spectral function was too small in the vicinity of the (770) peak by roughly a factor of 2. Interestingly, these two features combined to make the sum rules appear reasonably in agreement with expectations, although this result was fortuitous.

In the analysis of Ref. [38], 2 and 4 data are inferred from e^+e^- scattering, but the 3 data again comes from Ref. [11]. Setting these components, use is made of Breit-Wigner resonance form with energy-dependent decay widths. The particular form of energy dependence is taken from Lorentz-invariant phase space. The 5 and higher components are parameterized to give rise to the asymptotic behavior

\[V_A(s) \rightarrow \frac{5}{32} s^{-\frac{1}{2}} \quad \text{and} \quad V_A \rightarrow 0 \, (s^{-\frac{1}{2}}) \quad (51) \]

This disagrees with the chiral and operator product expansion results of Eq. (42) and Eq. (43) respectively. The specific form in Ref. [11] used for the higher components is chosen to fit the sum rule W_1 exactly and the sum rule W_0 is evaluated in terms of the t.

The summary given in Sect. III of available data demonstrates that there is hope for successfully extracting much about the spectral functions $V_A(s)$ from experiment, but that our knowledge of them will always be limited. In view of the current database, we have decided that for the purposes of testing the chiral sum rules, it is most prudent to take the empirical 2, 3, and 4 modes explicitly into account, and to treat all higher components according to some reasonable prescription. We have followed two distinct approaches in doing so:

1. Numerical: We ensure that the empirical databases for $V_A(s)$ evolve smoothly in the variable s to the correct asymptotic limits by generating smooth curves separately for V and A which pass through the experimental data sets at low energy and which satisfy the asymptotic limits, while reproducing the four chiral sum rules.
2. Analytical: This actually encompasses a class of ts to the difference of spectral functions \(V_A \) in which all contributions higher than the four-pion sector are lumped into a single theoretical term. A convenient method for constructing the spectral functions this way is to start with a delta function form, then introduce finite-widths via Breit-Wigner representations, and finally modify these to a more realistic asymmetric form.

Let us consider each possibility in turn.

Numerical Representation

Surely the simplest method for generating acceptable global versions of \(V_A \) is to numerically smoothly join the low energy empirical data with asymptotic theoretical information. A reasonable region for matching the two occurs at about \(s' \approx 5 \text{ GeV}^2 \). As we have already seen, the constraint of Eq. (42) reveals that the spectral functions approach a nonzero constant at infinite energy, with an additive correction factor proportional to \(s(s) \).

In general, we expect the large \(s \) behavior

\[
V_A(s) = V_A^0 + \frac{V_A^1}{s} + \frac{V_A^2}{s^2} + \cdots ;
\]

We can obtain a determination of the dominant power correction in the large \(s \) limit as follows. Using an operator product expansion, Braaten, Narison and Pitch have displayed the structure of the correlators \(V_A \) for Euclidean momentum \(Q^2 \) in Appendix A of their paper:

\[
V_A(Q^2) = a_0 V_A^0(Q) + \frac{a_1 V_A^1(Q)}{Q^2} + \frac{a_2 V_A^2(Q)}{Q^4} + \cdots ;
\]

where \(s = Q^2 \) and each of the \(a_n V_A^n(Q) \) is expandable in powers of \(s(Q) \).

We require the imaginary part of this expression, analytically continued to timelike momentum. Since the \(O(Q^4) \) contribution to \(V_A \) turns out to be proportional to quark mass, the coefficient \(V_A^1(s) \) vanishes in the chiral limit. Thus, the first nonvanishing subleading contribution is the \(O(Q^6) \) component, from which we extract the result

\[
V_A^2(s) = \frac{11}{192} \frac{G^2}{s} \quad \text{for large } s ;
\]

15
Let us estimate the magnitude of this quantity at $s = 5 \text{ GeV}^2$. The strong
structure constant is determined in terms of s of an assumed value
for the QCD scale parameter,

$$Q_{\text{CD}} = 150 \text{ MeV} \quad s (5 \text{ GeV}^2)^{1/2} = 0.26 \quad (55)$$

and the gluon condensate from phenomenological applications of QCD sum
rules,

$$\hbar^2 G^2 \langle 0 \rangle = (0.02, 0.01) \text{ GeV}^4 \quad (56)$$

Altogether, these values imply that the $O (s^2)$ component to ν_A has a
tiny coefficient,

$$\nu_A \approx 0.9 \times 10^{-5} \text{ GeV}^4$$

A result, even at the modest energy $s' = 5 \text{ GeV}^2$ the $O (s^2)$ term has a
negligible effect. Of course, this component on addition to ν and A will cancel
when the difference is taken and hence will not contribute to the chiral sum
rules. In addition, the difference of the spectral functions was chosen to be compatible with the asymptotic constraint given in the previous section.
Again, the magnitude of this contribution is so small that it is essentially
irrelevant at modest energies. Thus while we have made an effort to generate
spectral functions with the right high energy behavior, the precise value of the
high energy term s is not important since their numerical size is quite
small.

Let us summarize our procedure at this point. We have generated nu-
merical representations for ν and A which are available data on multipion production, and which are compatible with the theoretical behavior expected at high energy, and which when integrated yield the correct experi-
mental values for the four chiral sum rules. Although highly constrained at
low and high energies, the spectral functions have a modest uncertainty in
the $s = 2 \text{ GeV}^2$ range, and this was exploited in order to precisely duplicate
the expected values of the sum rules. Of course, both this numerical procedure and the analytic one to follow are subject to the
choice of input values. Given the uncertainties in especially the 3 and 4
branching ratios, we have explored a variety of possibilities. Corresponding
to the input set

$$B_2 = 0.240; \quad B_3 = 0.165; \quad B_4 = 0.048 \quad (58)$$
curves for ν, A and $\nu - A$ are displayed respectively in Figs. 9-11.
Analytical Representations

(a) Delta Function

In the delta function description, the spectral functions are

\[\nu(s) = \alpha(s) = \sum_{k=1}^{\infty} \left(\frac{F_k}{m_k^2} \right)^2 \]

This representation of the spectral functions, although crude, provides a nice pedagogical example with which to organize one's thoughts. We begin by noting that there are 2 parameters per contribution, a mass \(m \) and a coupling \(F \). In this approach, the four sum rules reduce to

\[
W_0 = \sum_{k=1}^{\infty} \left(\frac{F_k}{m_k^2} \right)^2 ; \\
W_1 = \sum_{k=1}^{\infty} \left(\frac{F_k}{m_k^2} = F \right) ; \\
W_2 = \sum_{k=1}^{\infty} \left(\frac{m_k^2 F_k^2}{m_k^2} = 0 \right) ; \\
W_3 = \sum_{k=1}^{\infty} \left(\frac{m_k^2 F_k^2}{m_k^2} ln m_k^2 \right) ;
\]

and the tau decay branching ratios become

\[B_k = 71.6 \pm 2 B e F_k^2 \]

We can specify the mass parameters \(m_{1,2,3} \) from the observed \(n = 2;3;4 \) distributions and the coupling strengths \(F_{1,2,3} \) from the observed branching ratios (cf. Eq. (61)). Even in the extreme narrow width approximation of the delta function representation, this step turns out to be a surprisingly accurate one, e.g. width effects modify the branching ratio relations by only a few percent.

This leaves the problem of determining the coupling \(F_4 \) and mass \(m_4 \). It seems reasonable to require that the sum rules \(W_1 \) and \(W_2 \) be obeyed exactly (cf. Eq. (61) and Eq. (62)). Thus we determine \(F_4 \) from Eq. (61) and \(m_4 \) from Eq. (62). Doing so leaves the remaining sum rules \(W_0 \) and \(W_3 \) as predictions.
(b) Breit-Wigner

In the finite width Breit-Wigner (BW henceforward) extension of Eq. (59), the spectral functions are represented by

\[V(s) = \chi^2 \sum_{k=1}^{\infty} \frac{F_k^2 m_k}{(s - m_k^2)^2 + (m_k^2)^2} \] : (65)

Each contribution still has mass and coupling parameters \(m_k \) and \(F_k \), but now in addition a width \(\kappa_k \). In the most general Breit-Wigner resonance form, decay widths are taken to be energy-dependent, e.g. the \(\kappa \) widths have the \(O(p^3) \) threshold behavior to reflect the \(P \)-wave nature of the \(\kappa \) system. However, in order to maintain a simplicity of description and the ability to represent each \(n \) component in analytic form, we shall employ energy-independent widths throughout.

An advantage of the delta-function approach was the ability to express all the sum rules and the tau branching ratios in elementary form. This is still true in the BW approximation for the sum rules \(W_0, W_1, W_2 \) and the tau branching ratios. For example, working with a generic Breit-Wigner spectral function,

\[(s) = \frac{F^2 m^2 r}{(s - m^2)^2 + (m^2 r^2)^2} \] : (66)

where \(r = (m) \) is an expansion parameter for finite-width effects, we can evaluate integrals such as

\[I_{BW}^{(0)} \int_{s_0}^{Z} ds \ BW (s) = F^2 1 \int \frac{1}{1 - \arctan \left(\frac{r}{s - m^2} \right)} \frac{1}{1 - \arctan \left(\frac{r}{s_0 - m^2} \right)} \] : (67)

and

\[I_{BW}^{(1)} \int_{s_0}^{Z} ds s \ BW (s) = m^2 r_{BW}^{(0)} + F^2 r \ln \frac{m}{s_0} + 0.5 \ln \left(\frac{m^2}{s_0 - m^2} \right) \] : (68)

By passing to the limit \(r = 0 \) of zero decay width, we regain the results of the delta function model.

18
A analogous to the procedure used in the delta function model, parameters for the first 3 BW poles are obtained by fitting to experimental data. In passing, we note that since a given spectral contribution has the asymptotic behavior $O(s^{-2})$, the individual BW spectral integrals for W_2 and W_3 are divergent. The numerator of the fourth pole is fixed by demanding that the $O(s^{-2})$ asymptotic term in V_A vanish. This implies

$$X^4 \sum_{k=1}^{k+1} P_k^2 m_k^k = 0 :$$

(69)

By virtue of this relation, the asymptotic behavior of the vector and axial-vector spectral functions becomes

$$V(s) \quad A(s) = \frac{C_{BW}}{s^3} + O(s^4)$$

(70)

where

$$C_{BW} = \frac{2X^4}{\sum_{k=1}^{k+1} \bar{P}_k^2 m_k^k} :$$

(71)

The constant C_{BW} may be considered either as a quantity to be fixed by Eq. (43) or as a prediction of the analysis.

We find it hard to see how any analytical study of the sum rules could succeed without incorporating the above features or something similar. In our approach, all the chiral sum rules are convergent even though individual pole contributions may diverge. Moreover, the condition given by Eq. (63) ensures that our description has the smoothness in energy expected from duality.

(c) A symmetric Breit-Wigner

Although having the virtue of simplicity, the representation of Eq. (63) is deficient in several important respects. A Breit-Wigner form is symmetric about its resonant energy whereas the contributions to V_A exhibit asymmetric bumps. Besides, the BW contributions extend to energies lying below thresholds which characterize the various components.

An improved treatment can be realized in a variety of ways. One simple parametrization which treats the various components uniformly, yields a reasonable fit to data and allows us to maintain analytic control is

$$V(s) \quad A(s) = \frac{X^4}{\sum_{k=1}^{k+1} \frac{P_k(s)}{m_k^2 + (m_k^k)^2} F_k^2 m_k^k + (m_k^k)^2} :$$

(72)
The functions $P_k(s)$ are polynomials

$$P_k(s) = 1 - \frac{s^{1+n_k}}{s^2};$$

(73)

each containing two parameters, a threshold energy s_k and an integer-valued exponent $n_k = 1,2,\ldots$. Although the choice $n_k = 1$ is the simplest one, it yields an n-spectral function which rises linearly just above threshold. This does not appear to provide an adequate fit to the data, and thus we have used $n_k = 2$ ($k = 1,\ldots,4$). A fit of this type to the 3-spectral function appears in Fig. 12.

Introduction of the polynomials $P_k(s)$ will clearly lead to integrals involving inverse moments of Breit-Wigner form s,

$$I^{(n)}_{\text{BW}} = \int_{s_0}^{s} \frac{B_W(s)}{s^n} ds;$$

(74)

Although it is straightforward to evaluate such integrals analytically, the resulting expressions can be quite cumbersome. In practice, it is more efficient to employ the recursion relation

$$I^{(n)}_{\text{BW}} = \frac{1}{m^4(1 + 2\pi^2)} \left[2m^2 I^{(n+1)}_{\text{BW}} - I^{(n+2)}_{\text{BW}} + \frac{s_0^{n+1}}{n+1} \right];$$

(75)

Upon applying relations of this type, we have carried out the calculational program described earlier in this section. As stated earlier, because of the uncertainty in the experimental 3 and 4 contributions, we have performed the analysis for several different sets of tau-lepton branching ratios. Typical results are shown in Table 1, where we display both input values (parameters for the 2, 3 and 4 asymmetric Breit-Wigner poles and the associated branching ratios) and results (parameters for the 4th pole, the constant C and the values for W_0 and W_3). We have purposely exhibited two solutions (# 1 and # 2) to show that it is possible to fit the sum rules yet not obtain an acceptable value of C. The graph of χ corresponding to solution # 3 of Table 1 is displayed in Fig. 13. The overall appearance of this curve clearly mimics the one in Fig. 11 which is based on the numerical approach. We view the fact that the different methods generate rather similar spectral functions as an indication that there is not great freedom in χ once the theoretical and experimental constraints are imposed.
6 Concluding Remarks

What we have done in this paper is to suggest a procedure for comparing four well-known sum rules of chiral symmetry with data from the real world of experiment. In addition, we have phenomenologically constructed the vector and axial-vector spectral functions to the extent possible by using the full collection of available tau decay and e^+e^- cross section data. To be specific, the data which constrains the spectral functions includes the $e^+e^-\gamma\gy
behavior of QCD) that leads to the sum rules.

The research described in this paper was supported in part by the National Science Foundation. We wish to thank K. K. Gan, J. J. Gomez, F. Le Diberder, and B. Spaan for helpful correspondence and/or discussions regarding experimental aspects of spectral function determinations. We also thank A. Perez and A. Pich for useful observations.

References

[3] There turns out to be another sum rule of physical interest, related to the chiral limit of K-to-Λ matrix elements of a $S = 1$ nonleptonic operator. This will be described in a separate publication.

[9] Y. S. Tsen, Phys. Rev. D 4 (1971) 2821. One should take care to distinguish between two commonly defined sets of spectral functions, $V = 4$ and $A = 4$. In this paper, we work exclusively with V_A. 22

[39] For completeness, the tau lepton branching ratio for all n modes with $n > 4$ is also included. Although the simplicity of our description precludes taking such values too literally, the results are seen to be reassuringly small.
<table>
<thead>
<tr>
<th>Trial</th>
<th># 1</th>
<th># 2</th>
<th># 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M_1</td>
<td>f_1</td>
<td>s_1</td>
</tr>
<tr>
<td>Two-pion Inputs</td>
<td>0.763</td>
<td>0.157</td>
<td>0.123</td>
</tr>
<tr>
<td></td>
<td>f_1</td>
<td>0.157</td>
<td>0.123</td>
</tr>
<tr>
<td></td>
<td>s_1</td>
<td>4m^2</td>
<td>4m^2</td>
</tr>
<tr>
<td></td>
<td>B_2</td>
<td>0.243</td>
<td>0.243</td>
</tr>
<tr>
<td></td>
<td>M_2</td>
<td>f_2</td>
<td>s_2</td>
</tr>
<tr>
<td>Three-pion Inputs</td>
<td>1.17</td>
<td>0.244</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>f_2</td>
<td>0.234</td>
<td>0.510</td>
</tr>
<tr>
<td></td>
<td>s_2</td>
<td>0.470</td>
<td>0.550</td>
</tr>
<tr>
<td></td>
<td>B_3</td>
<td>0.470</td>
<td>0.550</td>
</tr>
<tr>
<td></td>
<td>M_3</td>
<td>f_3</td>
<td>s_3</td>
</tr>
<tr>
<td>Four-pion Inputs</td>
<td>1.500</td>
<td>0.192</td>
<td>0.700</td>
</tr>
<tr>
<td></td>
<td>f_3</td>
<td>0.188</td>
<td>0.710</td>
</tr>
<tr>
<td></td>
<td>s_3</td>
<td>0.765</td>
<td>0.765</td>
</tr>
<tr>
<td></td>
<td>B_4</td>
<td>0.765</td>
<td>0.765</td>
</tr>
<tr>
<td></td>
<td>M_4</td>
<td>f_4</td>
<td>B_n>4</td>
</tr>
<tr>
<td>Output Values</td>
<td>2.288</td>
<td>0.068</td>
<td>0.0001</td>
</tr>
<tr>
<td></td>
<td>f_4</td>
<td>0.083</td>
<td>0.0015</td>
</tr>
<tr>
<td></td>
<td>B_n>4</td>
<td>0.873</td>
<td>0.0046</td>
</tr>
<tr>
<td></td>
<td>W 0</td>
<td>0.16</td>
<td>0.0046</td>
</tr>
<tr>
<td></td>
<td>W 3</td>
<td>-0.0062</td>
<td>-0.0062</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>0.10</td>
<td>3.8 10^5</td>
</tr>
</tbody>
</table>

Table I: Asymmetric Breit-Wigner Representation.
The energy unit is GeV.
Figure Captions

Fig. 1 Time like pion form factor
Fig. 2 2 vector spectral function
Fig. 3 3 axial vector spectral function
Fig. 4 Cross section for $e^+ e^- \rightarrow 2^+ 2^-$
Fig. 5 v^{000} inferred from $e^+ e^-$ scattering
Fig. 6 Predicted mass spectrum in $1^+ 3^+$
Fig. 7 4_3^- from tau decay and $e^+ e^-$ scattering
Fig. 8 Cross section for $e^+ e^- \rightarrow 2^+ 0^0$
Fig. 9 Numerical t to v
Fig. 10 Numerical t to A
Fig. 11 Numerical t to $v A$
Fig. 12 Fit of asymmetric Breit-Wigner solution to 3^- spectral function
Fig. 13 Fit of asymmetric Breit-Wigner solution #3 to $v A$