Lectures on 2D Gravity and 2D String Theory

P. Ginsparg
ginsparg@xxx.lanl.gov
M S-B 285
Los Alamos National Laboratory
Los Alamos, NM 87545

and

Gregory Moore
moores@castalia.physics.yale.edu
Dept. of Physics
Yale University
New Haven, CT 06511

These notes are based on lectures delivered at the 1992 Tasi summer school. They constitute the preliminary version of a book which will include many corrections and much more useful information. Constructive comments are welcome.

Lectures given June 11{19, 1992 at TASI summer school, Boulder, CO

1992/1993
Contents

0. Introduction, Overview, and Purpose .. 3
 0.1. Philosophy and Diatribe .. 3
 0.2. 2D Gravity and 2D String theory .. 5
 0.3. Review of reviews ... 7
1. Loops and States in Conformal Field Theory ... 8
 1.1. Lagrangian formalism ... 8
 1.2. Hamiltonian formalism ... 9
 1.3. Equivalence of states and operators ... 10
 1.4. Gaussian Field with a Background Charge 12
2. 2D Euclidean Quantum Gravity I: Path Integral Approach 13
 2.1. 2D Gravity and Liouville Theory ... 13
 2.2. Path integral approach to 2D Euclidean Quantum Gravity 14
3. Brief Review of the Liouville Theory .. 22
 3.1. Classical Liouville Theory ... 22
 3.2. Classical Uniformization .. 24
 3.3. Quantum Liouville Theory .. 26
 3.4. Spectrum of Liouville Theory ... 28
 3.5. Semiclassical States ... 31
 3.6. Seiberg bound ... 33
 3.7. Semiclassical Amplitudes .. 35
 3.8. Operator Products in Liouville Theory ... 39
 3.9. Liouville Correlators from Analytic Continuation 40
 3.10. Quantum Uniformization ... 41
 3.11. Surfaces with boundaries .. 48
4. 2D Euclidean Quantum Gravity II: Canonical Approach 50
 4.1. Canonical Quantization of Gravitational Theories 50
 4.2. Canonical Quantization of 2D Euclidean Quantum Gravity 51
 4.3. KPZ states in 2D Quantum Gravity .. 52
 4.4. LZ states in 2D Quantum Gravity ... 53
 4.5. States in 2D Gravity Coupled to a Gaussian Field: more BRST 54
5. 2D Critical String Theory ... 61
 5.1. Particles in D Dimensions: QFT as 1D Euclidean Quantum Gravity 62
 5.2. Strings in D Dimensions: String Theory as 2D Euclidean Quantum Gravity 64
 5.3. 2D String Theory: Euclidean Signature ... 66
 5.4. 2D String Theory: Minkowskian Signature 68
 5.5. Heterodox remarks regarding the special states\" 69
 5.6. Bosonic String Amplitudes and the \"c > 1 problem " 72
6. Discretized surfaces, matrix models, and the continuum limit 75
 6.1. Discretized surfaces ... 75
 6.2. Matrix models ... 77
 6.3. The continuum limit ... 81
 6.4. A first look at the double scaling limit .. 83
7. Matrix Model Technology I: Method of Orthogonal Polynomials 84
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.9. Tachyon recursion relations</td>
<td>169</td>
</tr>
<tr>
<td>13.10. The many faces of $c = 1$</td>
<td>171</td>
</tr>
<tr>
<td>14. Vertex Operator Calculations and Continuum Methods</td>
<td>172</td>
</tr>
<tr>
<td>14.1. Review of the Shapiro-Virasoro Amplitude</td>
<td>172</td>
</tr>
<tr>
<td>14.2. Resonant Amplitudes and the "Bulk S-Matrix"</td>
<td>174</td>
</tr>
<tr>
<td>14.3. Wall vs. Bulk Scattering</td>
<td>177</td>
</tr>
<tr>
<td>14.4. Algebraic Structures of the 2D String: Chiral Cohomology</td>
<td>179</td>
</tr>
<tr>
<td>14.5. Algebraic Structures of the 2D String: Closed String Cohomology</td>
<td>183</td>
</tr>
<tr>
<td>15. Achievements, Disappointments, Future Prospects</td>
<td>184</td>
</tr>
<tr>
<td>15.1. Lessons</td>
<td>185</td>
</tr>
<tr>
<td>15.2. Disappointments</td>
<td>186</td>
</tr>
<tr>
<td>15.3. Future prospects and Open Problems</td>
<td>187</td>
</tr>
<tr>
<td>Appendix A. Special functions</td>
<td>188</td>
</tr>
<tr>
<td>A.1. Parabolic cylinder functions</td>
<td>188</td>
</tr>
<tr>
<td>A.2. Asymptotics</td>
<td>189</td>
</tr>
</tbody>
</table>

0. Introduction, Overview, and Purpose

0.1. Philosophy and Diatribe

Following the discovery of spacetime anomaly cancellation in 1984 [1], string theory has undergone rapid development in several directions. The early hope of making direct contact with conventional particle physics phenomenology has however long since dissipated, and there is as yet no experimental program for finding even indirect manifestations of underlying string degrees of freedom in nature. The question of whether string theory is "correct" in the physical sense thus remains impossible to answer for the foreseeable future. Particle/string theorists nonetheless continue to be tantalized by the richness of the theory and by its natural ability to provide a consistent microscopic underpinning for both gauge theory and gravity.

A prime obstacle to our understanding of string theory has been an inability to penetrate beyond its perturbative expansion. Our understanding of gauge theory is enormously enhanced by having a fundamental formulation based on the principle of local gauge invariance from which the perturbative expansion can be derived. Symmetry breaking and nonperturbative effects such as instantons admit a clean and intuitive presentation. In string theory, our lack of a fundamental formulation is compounded by our ignorance of the true ground state of the theory. Beginning in 1989, there was some progress towards extracting such nonperturbative information from string theory, at least in some simple
The aim of these lectures is to provide the conceptual background for this work, and to describe some of its immediate consequences.

In string theory we wish to perform an integral over two dimensional geometries and a sum over two dimensional topologies,

$$
Z \int_{\mathcal{D}} \, d^2 \mathcal{G} \, g^{ab} \mathcal{G}_a \mathcal{G}_b \, \mathcal{G}(\mathcal{X})
$$

where the spacetime physics (in the case of the bosonic string) resides in the conformally invariant action

$$
S / d^2 \int g^{ab} \mathcal{G}_a \mathcal{G}_b \, \mathcal{G}(\mathcal{X})
$$

Here \(d\) runs from 1;:::;\(D\) where \(D\) is the number of spacetime dimensions, \(G(\mathcal{X})\) is the spacetime metric, and the integral \(D\) \(g\) is over worldsheet metrics. Typically we \(g\)" the worldsheet metric to \(g_{ab} = \mathcal{G}_{ab}\), where \(\mathcal{G}\) is known as the Liouville field. Following the formulation of string theory in this form (and in particular following the appearance of the work of Polyakov [2]), there was much work to develop the quantum Liouville theory (some of which is reviewed in chap. 2 here), and conformal field theory itself has been characterized as an unsuccessful attempt to solve the Liouville theory" [3]. It has been recognized that evaluation of the partition function \(Z\) in (0.2) without taking into account the integral over geometry does not solve the problem of interest, and moreover does not provide a systematic basis for a perturbation series in any known parameter.

The program initiated in [4][6] relies on a discretization of the string worldsheet to provide a method of taking the continuum limit which incorporates simultaneously the contribution of 2d surfaces with any number of handles. In one seemingly giant step, it is thus possible not only to integrate over all possible deformations of a given genus surface (the analog of the integral over Feynman parameters for a given loop diagram), but also to sum over all genus (the analog of the sum over all loop diagrams). This would in principle free us from the mathematically fascinating but physically irrelevant problem of calculating conformal field theory correlation functions on surfaces of fixed genus with fixed moduli (objects which we never knew how to integrate over moduli or sum over genus anyway). The progress, however, is limited in the sense that these methods only apply currently for non-critical strings embedded in dimensions \(D = 1\) (or critical strings embedded in \(D = 2\)), and the nonperturbative information even in this restricted context has proven incomplete. Due to familiar problems with lattice realizations of supersymmetry and chiral fermions, these methods have also resisted extension to the supersymmetric case.
The developments we shall describe here nonetheless provide at least a half-step in the correct direction, if only to organize the perturbative expansion in a most concise way. They have also prompted much useful evolution of related continuum methods. Our point of view here is that string theories embedded in $D = 1$ dimensions provide a simple context for testing ideas and methods of calculation. Just as we would encounter much difficulty calculating in finite dimensional functional integrals without some prior experience with their finite dimensional analogs, progress in string theory should be aided by experimentation with systems possessing a restricted number of degrees of freedom.

While it is occasionally stated that exactly solvable models are too special to provide useful lessons for physics, at least one striking historical example suggests the opposite: Onsager's exact solution of the Ising model led to many fundamental ideas in quantum field theory. In particular, ideas associated with the renormalization group, phase transitions, non-mean field exponents, and the operator product expansion all had their origin in the solution of the Ising model. We hope that this historical example will serve as well as the paradigm for applications of exactly soluble spacetime solutions in string theory.

0.2. 2D Gravity and 2D String theory

We begin with a quick tour and overview of 2D gravity and 2D string theory, emphasizing the main physical ideas and lessons we have learned from recent progress in the subject, so that they are not lost in the lengthy discussion that follows. See also chap. 15 for another appraisal when we are done.

We have learned distinct lessons for 2D gravity and 2D string theory due to the two-fold interpretation of the models we discuss:

![Diagram](image.png)

Fig. 1: Correlation functions $W(')$, $W(')W(')$, and $W(')W(')W(')$.
1) As Quantum Gravity

In this guise, we study a field theory of universes. We will introduce an operator (the macroscopic loop operator) \(W ('; :::) \) that creates universes of size \(' (1D and circular, in the case of a 2D target space). The matrix model allows us to compute correlation functions \(W ('), W (')W ('), W (')W (')W (');:::; \) associated respectively with the Hartle-Hawking wavefunction, with universe propagation, and with topology change (processes depicted in Fig. 1). The matrix model even allows both calculation of the effect of more drastic topology changes and summation over topology (changing amplitudes.

2) As Critical String Theory

We will consider in detail the case for which \((0,2)\) denotes a at Euclidean two dimensional target spacetime with coordinates \(X\). Physical interpretations of the spacetime theory require an analytic continuation to a spacetime of Minkowskian signature. There are two choices for this continuation, but we shall argue that the clearest lessons for string theory come from the \(c = 1\) model that we will construct, with \(t\) taken as the Liouville coordinate, and \(t = iX\) as the Minkowskian time coordinate.

![Diagram](image)

Fig. 2: Free, strong, and wall regions of the tachyon potential. At left, particles are produced as tachyons scatter.
This exactly solvable spacetime background is a strange world. Since there are only two spacetime dimensions, there are no transverse degrees of freedom. The only on-shell\footnote{The graviton and dilaton in 2 spacetime target dimensions have no on-shell degrees of freedom, i.e. are not physical propagating particles.} eld theoretic degree of freedom in the theory is that of a massless bosonic eld $T(t)$, called the \textit{massless tachyon} (because the eld T is mathematically analogous to a eld which is tachyonic for any string propagating in more than 2 spacetime dimensions, in particular for the 26-dim ensional bosonic string). Moreover, the world is spatially inhomogeneous. We shall nd (see eq. (5.14)) that the spacetime dilaton eld has expectation value $\mathcal{D}_d = Q = 2$, so that the string coupling varies with the spatial coordinate as $e = e^{-\frac{Q}{2}}$. At $t = 1$, strings are free while at $t = +1$ strings are in nitely strongly coupled. Finally, there is a cosmological constant term Λ in the Liouville path integral formulation of this theory that strongly suppresses contributions to path integrals from large positive values of Λ (we are assuming throughout these notes that the cosmological constant satisfies $\Lambda > 0$, unless speci ed otherwise). Since the interaction turns on exponentially there is effectively a wall located at $t = \log 1 = \frac{1}{2}$, often called \textit{the Liouville wall}, and the world looks as depicted in fig. 2. The most obvious physical experiment we can perform in this world is to bounce our massless bosons off the wall. In chapt.13, we will show how to compute exactly the S-matrix for such scattering processes. We are also able to compute the \textit{nows} that relate physics in di erent (tim e-dependent) backgrounds.

0.3. Review of reviews

Several reviews overlap di erent portions of the subject matter covered here. The Liouville theory is reviewed in\footnote{The graviton and dilaton in 2 spacetime target dimensions have no on-shell degrees of freedom, i.e. are not physical propagating particles.} and references therein. The matrix model technology is reviewed in\footnote{The graviton and dilaton in 2 spacetime target dimensions have no on-shell degrees of freedom, i.e. are not physical propagating particles.} (note that some sections here are adapted directly from\footnote{The graviton and dilaton in 2 spacetime target dimensions have no on-shell degrees of freedom, i.e. are not physical propagating particles.}), the $c = 1$ matrix model is reviewed in\footnote{The graviton and dilaton in 2 spacetime target dimensions have no on-shell degrees of freedom, i.e. are not physical propagating particles.}, and spacetime properties are emphasized in\footnote{The graviton and dilaton in 2 spacetime target dimensions have no on-shell degrees of freedom, i.e. are not physical propagating particles.}. Other recent reviews are\footnote{The graviton and dilaton in 2 spacetime target dimensions have no on-shell degrees of freedom, i.e. are not physical propagating particles.}.

After treating the necessary preliminaries, our viewpoint here is largely complementary to the other treatments, placing an emphasis on the properties of macroscopic loops, the W heeler(D eWitt equation), and the scattering theory in $D = 2$ target space dimensions. In chapters 1\{5, we give an overview of the continuum ideas and formalism we shall use for treating loops and states in conformal eld theory, for understanding the classical,
semiclassical, and quantum Liouville theories, and for implementing the path integral and canonical treatments of 2D Euclidean quantum gravity. In chapters 6–9, we focus on the discretized approach to 2d quantum gravity and 2d string theory, and explain various features of the matrix model approach. In chapters 10–14, we employ the techniques provided by the discretized approach to calculate many of the continuum quantities introduced earlier. In chapter 15, we assess our prospects for the future. Appendix A contains some useful definitions and facts about some of the special functions used in these lectures.

Due to lack of space, we will not be reviewing many other important works on the subject of 2D gravity. These notes are a preliminary version of a book [19] that will contain much interesting material omitted from these lecture notes. We welcome constructive comments concerning typos, inconsistent conventions, inconsistent references, sign errors and conceptual errors in these notes.

1. Loops and States in Conformal Field Theory

We begin here with a review of how a loop in the context of conformal field theory can be replaced by a sum of local operators. For simplicity we will restrict attention to the Gaussian model. The intuition from this example will be essential to our later extraction of correlation functions from macroscopic loop amplitudes.

1.1. Lagrangian formalism

For simplicity, consider the standard \(c = 1 \) Gaussian model,

\[
Z_S = \int X \bar{X} ;
\]

where \(X \) is a surface perhaps with handles and boundaries. The objects of interest are the path integrals

\[
Z_{DX} (z; \bar{z}) \int Y_i O_i (p_i) ;
\]

where we integrate over maps \(X : \nexists \rightarrow \mathbb{R} \).

The space of local operators is spanned by expressions of the form

\[
O \int P (X; \bar{X}; \ldots; X; \bar{X}; \ldots) e^{ikX(z, \bar{z})} ;
\]

\[^2 \text{the modest expenditure for which we will be amply rewarded by the substantial further enlightenment contained therein.} \]
where P is a polynomial and the expression is suitably normal-ordered. When X is a periodic variable, i.e. a map $X : \mathbb{S}^1 \to \mathbb{S}^1$, then additional considerations apply: k is quantized and there are winding modes which allow the definition of a more subtle theory with an extra zero mode, leading to "magnetic" and "electric" quantum numbers. See [20] for more details.

1.2. Hamiltonian formalism

In the radial Hamiltonian formalism (for a review, see e.g. [20]) we decompose the fields into modes,

$$
\begin{align*}
\hat{X} &= X + \sum_{n=0}^\infty \hat{a}_n a_n^\dagger e^{i\nu_n}, \\
\hat{\bar{X}} &= X + \sum_{n=0}^\infty \hat{\bar{a}}_n \bar{a}_n^\dagger e^{i\nu_n},
\end{align*}
$$

(1.4)

The stress-energy tensor $T = \frac{1}{2} (\hat{\bar{X}} X)^2$ defines a Virasoro algebra and radial propagation is generated by the Hamiltonian $L_0 + L_0$.

In terms of the Fock space

$$
F_\mathbb{P} = \text{Span} \left\{ n \right\}_{n \geq 0}^{\infty} \quad (n)^{m \; n} \pi_n \quad (n > 0; \; m_n = 0)
$$

(1.5)

we see that the states of the theory lie in a Hilbert Space of the form

$$
H = \mathbb{P} = \text{Span} \mathbb{P} F_\mathbb{P} F_\mathbb{P}.
$$

(1.6)

Alternatively, we can think of the Hilbert space as the space of wavefunctionals $\langle X(\cdot) \rangle$. (More precisely, we may introduce the loop space \mathbb{L} and, with an appropriate measure, the Hilbert space is simply the space $H = L^2(\mathbb{L})$ of square integrable maps of loops into \mathbb{R}.)

Exercise. Coherent states

If we decompose

$$
X(\cdot) = \sum_{n=0}^\infty e^{i\nu_n} X_n + \sum_{n<0} e^{i\nu_n} X_n,
$$

(1.7)

we may regard $X(\cdot)$ as a function of infinitely many variables x_0, x_n, x_n. Using the coherent state representation for the harmonic oscillators, $x_0 \in \mathbb{R}, x_n, \text{ for } n > 0; \; x_n \in \mathbb{R}^d = \mathbb{R}^d$, for $n < 0$; and similarly for X_n, translate the Fock space states (1.4) into wavefunctionals $\langle X(\cdot) \rangle$.

9
The Lagrangian and Hamiltonian formalisms are related by the so-called "operator formalism". The basic idea is that the neighborhood of any point on the surface locally looks like the complex plane and information about the rest of the surface may be summarized in a state at infinity.

1.3. Equivalence of states and operators

One of the basic properties of conformal field theory is the one-to-one correspondence between operators \(\mathcal{O} \) and states \(\mathcal{D} \).

To map operators \(\mathcal{D} \) states, we associate the state \(\mathcal{D} \) to the operator \(\mathcal{O} (z; \bar{z}) \) according to

\[
\lim_{z \to 0} \mathcal{O}(z; \bar{z}) \mathcal{D}:
\]

Equivalently, we can create a state by performing a path integral on a hemisphere \(D \). To evaluate such a path integral, the boundary conditions for the field \(X(z; \bar{z}) \) must be specified on the equator, parameterized here by \(\rho \), and the value of the path integral depends on the wavefunction \(X(\rho) \) (i.e., the wavefunction for the identity operator). Insertion of an operator \(\mathcal{O} \) on the hemisphere \(D \) gives the wavefunction \(\mathcal{O} \) for the operator \(\mathcal{O} \),

\[
\mathcal{O} X(\rho) = \begin{cases} \mathcal{O} & \text{if } \mathcal{O} \in \mathcal{F} \\ X(\rho) & \text{else} \end{cases}
\]

Using the equivalence between the Fock space and wavefunctional descriptions of the states, the two descriptions \((1.8) \) and \((1.9) \) of the operator \(\mathcal{O} \) state maps are easily seen to be equivalent: namely \(X(\rho) \mathcal{O} = \mathcal{O} X(\rho) \) (where \(X(\rho) \) is a basis of eigenstates of the operator \(\mathcal{O} \) in the Fock space representation).

Exercise. Wavefunctions from path integrals

Consider a disk of radius \(r \) in the complex plane, centered at \(z = 0 \), and consider the path integral \((1.9) \) with boundary condition

\[
X(\rho) = x_0 + \sum_{n > 0} e^{in} x_n + \sum_{n < 0} e^{in} x_n
\]

a) Solve for the classical configuration \(X_{cl} \) satisfying these boundary conditions. Then shift the field \(X \) ! \(X_{cl} \) in the path integral, where \(X \) satisfies Dirichlet boundary conditions, and show by substituting into \((1.9) \) that the wavefunction is

\[
X(\rho) = C (2 \pi n) e^{2 \pi n y \rho \bar{\rho}};
\]
where the constant \(C \) is determined by imposing some normalization condition.

b) Why can this be identified with the state \(\psi_0 \)?

c) Repeat this exercise to calculate the wavefunction for some other simple operators.

d) Describe the wavefunction associated to states created by local operators of the form \(\mathcal{L} \).

Expansion of loops in terms of local operators

Having described the operator \(\mathcal{Y} \) state mapping, now we wish to consider the inverse state \(\mathcal{Y} \) operator mapping. To "insert a state" into the path integral, we cut a hole of radius \(r \) out of the surface, and insert a state with some wavefunction \(X(\) \) on the boundary of the hole (i.e. use \(X(\) \) as the weight factor in the functional integral over \(X(\) \)). We shall see that the new path integral is equivalent to that obtained by inserting a local operator into \((1.2) \), thus providing a states! operators mapping. The mapping \(\circ \mathcal{Y} \circ \mathcal{O} \) is clearly linear and one-to-one, but to show that there is moreover an isomorphism between states and operators, we need to show that every state is equivalently represented by an operator insertion. The basic idea, physically, is to take a state inserted on a hole and by conformal invariance shrink the hole to arbitrarily small size. Since an infinitesimally small hole has the same effect as a local operator, the insertion of a state on the boundary of a hole in the path integral is equivalent to the insertion of some operator.

In formulae, the states \(\mathcal{Y} \) operators mapping equates the insertion of a little hole of radius \(r \) on any surface in state \(\psi_0 \) with the insertion of a sum of operators at the center of the hole,

\[
W(r) \mathcal{O} \lambda_{ij} \mathcal{r} \mathcal{i}^{+} \mathcal{O}_{\mathcal{i}} : \\
\mathcal{L}^{1} \mathcal{L}^{2} (1:12)
\]

Here \(\mathcal{O}_{\mathcal{i}}(z; \bar{z}) \) is a basis of local operators diagonalizing \(\mathcal{L}_0 + \mathcal{L}_0 \), and \(W(r) \) is an operator that inserts a macroscopic loop of size \(r \) with wavefunction \(X(\) \).

Example: Annular path integral

Consider the path integral on a sphere with two holes, or, after a conformal transfor-
motion, on an annulus. This is given in the operator formalism by

\[r = 1 \]

where \(W_1(r) \) is the state associated to the local operator \(W_0(r) \). For more details on the operator formalism, see e.g. [22](23).

Our goal is to calculate macroscopic loop amplitudes in 2D gravity. Current matrix model technology will allow this only for some specific states \(j \), but these states will have overlaps with sufficiently many interesting operators that much useful information can be extracted. To provide a physical framework for interpreting the matrix model results, we shall first investigate in the next two chapters the spectrum of Liouville theory and of 2D gravity.

1.4. Gaussian Field with a Background Charge

For later comparison with the Liouville results, we give here a brief overview of gaussian conformal field theory in the presence of a background charge, also known as Chodos/Thorn/Feigin (CTFF) theory. We consider the action

\[S_{CTFF} = \frac{Z}{d^2z} \frac{P}{\hat{g}} \left(\frac{1}{8} (\hat{r}^2) + \frac{i}{4} \Gamma (g) \right) \quad (1.14) \]

The additional term leads to the modified stress-energy

\[T = \frac{1}{2} \hat{g} \hat{G} + i_0 \hat{G}^2 \quad (1.15) \]

which generates a Virasoro algebra with central charge

\[c = 1 + 12 \frac{2}{6} \]

We see that the effect of the extra term in (1.15) is to shift \(c < 1 \) for \(\rho \) real. Since the stress-energy tensor in (1.15) has an imaginary part, the theory it defines is not unitary.
for arbitrary . For particular values of , it turns out to contain a consistent unitary subspace.

Taking the operator product with the modified \(T \) of (1.15), we find that the conformal weight of \(e \) is shifted to \(\frac{1}{2} \) \((0, 0) \). The same conformal weights would be inferred from two-point functions calculated in the presence of a 'background charge' \(p - 2 \) at infinity, so the modification of \(T(z) \) in (1.15) is interpreted as the presence of such a background charge. This formalism was originally used by Chodos and Thorn in [24], and was more recently revived by Feigen and Fucks in a formalism used in [25] to calculate correlation functions of the \(c < 1 \) conformal field theories.

Exercise. Momentum Shift from Background Charge

Consider a Gaussian field with background charge \(Q = 2i_0 \). Derive the relation

\[
\text{ip} = -\frac{Q}{2};
\]

for the momentum \(p \) of the state created by the vertex operator \(\exp(\) \) by considering the state created by the path integral on the disk, analogous to the example of the Gaussian model in (1.3).

2.2D Euclidean Quantum Gravity I: Path Integral Approach

In this chapter, we shall consider the implementation of quantum gravity as a theory which makes precise and well-defined sense out of a path integral over metrics on some spacetime.

2.1.2D Gravity and Liouville Theory

Using the principle of general covariance, any quantum field theory \(S_{\text{matter}}[X^i] \) in any number of dimensions may be coupled to gravity, resulting in an action \(S[g;X^i] \), where \(X^i \) refer to \(\text{matter} \) fields in the theory and \(g \) is the metric.

Classically, the theory \(S[g;X^i] \) with gravity coupling in two dimensions is always a conformal field theory. To see this, recall that the stress energy tensor of the theory is \(S = T \). Defining the Liouville mode as the overall scale of the metric, \(g = e^\varphi \), we see that the Liouville equation of motion is \(T = 0 \). This defines a classical conformal field theory. In two dimensions, we may pass to local complex coordinates and write this equation as \(T_{zz} = 0 \). Conservation of energy-momentum then shows that the theory has a holomorphic energy-momentum tensor \(T_{zz} = T(z) \).
Quantum mechanically, we try to understand the (Euclidean) quantum gravitational path integrals

$$hO_1:::O_n = \frac{1}{Z} \int_{\text{vol}(D)} Dg D^X e^{R_{\chi} A_s[X]} O_1:::O_n ;$$

(2.1)

where O_i are generally covariant operators. By fixing a conformal gauge $g_{ab} = e_{ab}$, Polyakov [2] observed that the matter/gravity theory could be written as a coupled tensor product of Liouville theory and the "matter" theory S_{matter}. The passage to conformal gauge necessarily introduces the Faddeev-Popov reparametrization ghosts. At a formal level, the gauge invariance of the theory, expressed as the independence of the integral (2.1) to Weyl transformations of the gauge slice, implies that the coupling of Liouville and matter theories is itself a conformal field theory. If the original matter theory was not conformal, however, then the resulting theory will not be a simple tensor product.

Example 1: Coupling the massive Ising model

$$S = \frac{Z}{Z} (\partial \phi + \phi) + m$$

(2.2)

to gravity results in the lagrangian

$$S = \int \frac{Z}{Z} (D \phi + \phi) + m + \int \frac{Z}{Z} (\phi^2 + \frac{1}{2} e) + \frac{Q}{8} R(\phi) ;$$

(2.3)

where D is the covariant derivative (i.e., includes the spin connection).

Example 2: Coupling the massive sine-Gordon model

$$S = \int \frac{Z}{Z} (\phi^2 + \frac{1}{2} e) + m \cos(p \phi = \frac{\phi}{2})$$

(2.4)

to gravity results in the lagrangian

$$S = \int \frac{Z}{Z} (\phi^2 + \frac{1}{2} e) + m \cos(p \phi = \frac{\phi}{2}) + \int \frac{Z}{Z} (\phi^2 + \frac{1}{2} e) + \frac{Q}{8} R(\phi) ;$$

(2.5)

In both examples, we will see that Q and are fixed by general covariance. The remarkable property of Liouville theory that allows it to associate an arbitrary quantum field theory with some conformal field theory deserves to be better understood.

14
2.2. Path integral approach to 2D Euclidean Quantum Gravity

The first success of the discretized (matrix model) approach, the focus of our later chapters here, was to reproduce the critical exponents predicted from continuum (Liouville) methods. (In fact the coincidence of results served to give post-facto verification of both methods.) In this section we review the latter continuum methods from a fairly formal point of view. A more physical point of view will appear in the next chapter.

String susceptibility

We consider the continuum partition function

$$Z = \frac{\int Dg D\mathbf{X} \, e^{\frac{i}{8} \int d^2 \mathbf{g}^2 \mathbf{g} \mathbf{g}} \, S_M (X, g)}{\text{vol} (Di)}$$

(2.6)

where S_M is some conformally invariant action for matter fields coupled to a two dimensional surface with metric g, ϱ is a bare cosmological constant, and we have symbolically divided the measure by the volume $\text{vol}(\mathbf{g})$ of the di emorphism group (which acts as a local symmetry) of X. For the free bosonic string, we take $S_M = \frac{1}{8} \int d^2 \mathbf{g} \mathbf{g} \mathbf{g} \mathbf{g} \mathbf{g} \mathbf{g}$, where the $X^i(\mathbf{g})$ specify the embedding of into a D-dimensional spacetime.

To define (2.6), we need to specify the measures for the integrations over X and g (see, e.g., [26]). The measure $D\mathbf{X}$ is determined by requiring that $D\mathbf{X} e^{k \mathbf{X}^2} = 1$, where the norm in the gaussian functional integral is given by $k \mathbf{X}^2 = \int d^2 \mathbf{g} \mathbf{g} \mathbf{g} \mathbf{g} \mathbf{g} \mathbf{g}$. Similarly, the measure Dg is determined by normalizing $\int Dg \, e^{\frac{i}{8} \int d^2 \mathbf{g} \mathbf{g} \mathbf{g} \mathbf{g} \mathbf{g} \mathbf{g}} = 1$, where $k \mathbf{g}^2 = \int d^2 \mathbf{g} \mathbf{g} \mathbf{g} \mathbf{g} + 2g^{ab}g^{cd} q_{ab} q_{cd}$, and g represents a metric fluctuation at some point g_{ij} in the space of metrics on a genus h surface.

The measures $D\mathbf{X}$ and Dg are invariant under the group of diffeomorphisms of the surface, but not necessarily under conformal transformations $g_{ab} \to g_{ab}$. Indeed due to the metric dependence in the norm $k \mathbf{X}^2$, it turns out that

$$D_{\mathbf{g}} \mathbf{X} = e^{\frac{D}{8} S_L (\mathbf{g})} D\mathbf{g} \mathbf{X}$$

(2.7)

where

$$S_L (\mathbf{g}) = \int d^2 \mathbf{g} \mathbf{g} \mathbf{g} \mathbf{g} \mathbf{g} \mathbf{g} + R + e$$

(2.8)

is known as the Liouville action. (This result may be derived diagrammatically, via the Fujikawa method, or via an index theorem; for a review see [24].)

The metric measure Dg as well has an anomalous variation under conformal transformations. To express it in a form analogous to (2.7), we first need to recall some basic facts
about the domain of integration. The space of metrics on a compact topological surface
modulo di eomorphisms and Weyl transformations is a finite dimensional compact space
\(M_h \), known as moduli space. (It is 0-dimensional for genus \(h = 0 \); 2-dimensional for \(h = 1 \);
and \((6h-6)\)-dimensional for \(h \geq 2 \). If for each point \(2 M_h \), we choose a representative
metric \(g_{ij} \), then the orbits generated by the di eomorphism and Weyl groups acting on
\(g_{ij} \) generate the full space of metrics on \(M_h \). Thus given the slice \(g(\cdot) \), any metric can be
represented in the form
\[
fg = e' g(\cdot);
\]
where \(f \) represents the action of the di eomorphism \(f : ! \).

Since the integrand of (2.3) is di eomorphism invariant, the functional integral would
be finite unless we formally divide out by the volume of orbit of the di eomorphism
group. This is accomplished by gauge fixing to the slice \(g(\cdot) \); the Jacobian that enters can
be represented in terms of Fadeev-Popov ghosts, as familiar from the analogous procedure
in gauge theory. We parametrize an infinitesimal change in the metric as
\[
q_{zz} = r_{zz} z; \quad q_{zz} = r_{zz} z;
\]
(where for convenience we employ complex coordinates, and recall that the components
\(q_{zz} = g^{zz} \) are parametrized by \(e' \)). The measure \(Dg \) at \(g(\cdot) \) splits into an integration
\([d] \) over moduli, an integration \(D' \) over the conformal factor, and an integration
\(D \) over di eomorphisms. The change of integration variables \(D q_{zz} D q_{zz} =
(\det r_{zz} \det r_{zz}) D D \) introduces the Jacobian \(\det r_{zz} \det r_{zz} \) for the change from \(g \) to \(! \).

The determinants in turn can be represented as
\[
\det r_{zz} \det r_{zz} = \sum_{D bD cD bD c} Z D bD cD bD c e^{R d^2 R d^2 P g_{zz} r_{zz} c^2 P g_{zz} r_{zz} c^2}
\]
(2.9
\[
= D (gh) e^{-S_{gh} (b; c; b; c)}
\]
where \(D (gh) \) is an abbreviation for the measures associated to the ghosts
\(b; c; b; c \); \(r_{zz} \) is a holomorphic quadratic differential, and \(c^2 (c^2) \) is a holomorphic (anti-
holomorphic) vector.

Finally, the ghost measure \(D (gh) \) is not invariant under the conformal transformation
\(g \rightarrow g, \) instead we have (2.9.4)
\[
D_{e} g (gh) = e^{\frac{26}{48} S_{L} (\mathcal{J}g) D g (gh)} ;
\]
(2.10)
where \(S_L \) is again the Liouville action \((2.3)\). (In units in which the contribution of a single scalar field to the conformal anomaly is \(c = 1 \), and hence \(c = 1 = 2 \) for a single Majorana field. If we symmetrize the conformal anomaly due to a spin \(j \) reparametrization ghost is given by \(c = (1 + 6j - 1) \). The contribution from a spin \(j = 2 \) reparametrization ghost is thus \(c = 26 \).

We have thus far succeeded to reexpress the partition function \((2.2)\) as

\[
Z = \int \mathcal{D}_{g} \mathcal{D}_{gh} \mathcal{D}_{X} e^{S_{M} - S_{gh} R \int d^2 \mathbf{q} \frac{1}{2} P \mathbf{q}^{2}};
\]

Choosing a metric slice \(g = e' \mathbf{g} \) gives

\[
\mathcal{D}_{e'} \mathcal{D}_{e'} \mathcal{D}_{gh} \mathcal{D}_{e'} \mathcal{D}_{X} = \mathcal{J}(e \mathbf{g}) \mathcal{D}_{g} \mathcal{D}_{g} \mathcal{D}_{g} \mathcal{D}_{g} \mathcal{D}_{g} \mathcal{D}_{X} ;
\]

where the Jacobian \(\mathcal{J}(e \mathbf{g}) \) is easily calculated for the matter and ghost sectors \((2.2)\) and \((2.11)\) but not for the Liouville mode \(' \). The functional integral over \(' \) is complicated by the implicit metric dependence in the norm

\[
k_e = \int d^2 \mathbf{q} \frac{1}{2} P \mathbf{q}^{2} = \int d^2 \mathbf{q} e' \frac{1}{2} P \mathbf{q}^{2} ;
\]

since only if the \(e' \) factor were absent above would the \(\mathcal{D}_{g} \) measure reduce to that of a free field.

In \((2.9)\), it is simply assumed that the overall Jacobian \(\mathcal{J}(e \mathbf{g}) \) takes the form of an exponential of a local Liouville-like action \(\int d^2 \mathbf{q} (a \mathbf{g}^{ab} \mathbf{a}_a \mathbf{a}_b + B \mathbf{a} + e \mathbf{e}) \), where \(a, B, \) and \(e \) are constants that will be determined by requiring overall conformal invariance (\(e \) is inserted in anticipation of rescaling of \(' \).) With this assumption, the partition function \((2.4)\) takes the form

\[
Z = \int \mathcal{D}_{g} \mathcal{D}_{gh} \mathcal{D}_{X} e^{S_{M}(X; \mathbf{g}) - S_{gh}(b; c; b; c; \mathbf{g})} \int d^2 \mathbf{q} (a \mathbf{g}^{ab} \mathbf{a}_a \mathbf{a}_b + B \mathbf{a} + e \mathbf{e}) \quad (2.11)
\]

where the measure is now that of a free field.

The path integral \((2.11)\) was defined to be reparametrization invariant, and should depend only on \(e' \mathbf{g} = \mathbf{g} \) (up to di eomorphism), not on the specific slice \(\mathbf{g} \). Due to

3 Some attempts to justify this assumption may be found in \((2.9)\). In the next two chapters, we shall see why this result should be expected from the canonical Hamiltonian point of view of \((3.0)\).
Diffeomorphism invariance, (2.11) should thus be invariant under the infinitesimal transformation
\[\mathcal{g} = \mathcal{g} \delta \mathcal{g} + \mathcal{g} \delta' \mathcal{g} ; \quad' = \mathcal{g} \delta' \mathcal{g} ; \quad (2.12) \]
and we can use the known conformal anomalies (2.2) and (2.10) for \(\mathcal{g} \), \(X \), and the ghosts to determine the constants \(\mathcal{a}, \mathcal{b}, \mathcal{c} \). Substituting the variations (2.12) in (2.11), we find terms of the form
\[\frac{D}{48} \mathcal{g}^{ab} \mathcal{g}^{ab} + \frac{D}{6} \mathcal{g}^{ab} \mathcal{g}^{ab} + \frac{D}{6} \mathcal{g}^{ab} \mathcal{g}^{ab} ; \quad (2.13) \]
where the \(D = 26 \) on the left is the contribution from the matter and ghost measures \(D \mathcal{g} \), \(D \mathcal{g} \), and the additional comes from the \(D \mathcal{g} \) measure. Invariance under (2.12) thus determines
\[\mathcal{b} = \frac{25}{48} \frac{D}{6} ; \quad \mathcal{a} = \frac{1}{2} \mathcal{b} ; \quad (2.13) \]
(In general we would substitute here \(D = 26 \) \(\mathcal{c}_{\text{matter}} \), where \(\mathcal{c}_{\text{matter}} \) is the contribution to the central charge from the \(\mathcal{m} \text{atter} \) sector of the theory.)
Substituting the values of \(\mathcal{a}, \mathcal{b} \) into the Liouville action in (2.11) gives
\[\frac{1}{8} \mathcal{g}^{ab} \mathcal{g}^{ab} + \frac{25}{12} \mathcal{g}^{ab} \mathcal{g}^{ab} + \frac{25}{6} \mathcal{g}^{ab} \mathcal{g}^{ab} + \frac{12}{25} \mathcal{g}^{ab} \mathcal{g}^{ab} ; \quad (2.14) \]
To obtain a conventionally normalized kinetic term \(\frac{1}{8} \mathcal{g}^{ab} \mathcal{g}^{ab} \), we rescale \(\mathcal{g} \). This normalization leads to the leading short distance expansion \(\mathcal{g}^{ab} \mathcal{g}^{ab} \). In terms of the rescaled \(\mathcal{g} \), we write the Liouville action as
\[\frac{1}{8} \mathcal{g}^{ab} \mathcal{g}^{ab} + \frac{12}{25} \mathcal{g}^{ab} \mathcal{g}^{ab} + \frac{12}{25} \mathcal{g}^{ab} \mathcal{g}^{ab} ; \quad (2.15) \]
where
\[\mathcal{Q} = \frac{25}{3} \mathcal{D} ; \quad (2.16) \]
The energy-momentum tensor \(T = \frac{1}{2} \mathcal{g}^{ab} \mathcal{g}^{ab} + \frac{2}{2} \mathcal{g}^{ab} \mathcal{g}^{ab} \) derived from (2.15) has leading short distance expansion \(T(z)T(w) = \frac{1}{2} \mathcal{C}_{\text{Liouville}}(z) \mathcal{W} \) \(+ \cdots \), where \(\mathcal{C}_{\text{Liouville}} = 1 + 3 \mathcal{Q} \). Note that if we substitute (2.15) into \(\mathcal{C}_{\text{Liouville}} \) and add an additional \(\mathcal{c}_{\text{matter}} \) and ghost sectors, we find that the total conformal anomaly vanishes,
\[\mathcal{C}_{\text{matter}} + \mathcal{C}_{\text{Liouville}} + \mathcal{C}_{\text{ghost}} = \mathcal{D} + (26 - \mathcal{D}) 26 = 0 \]
(consistent with the required overall conformal invariance).

It remains to determine the coefficient c in (2.11). We have since rescaled ϕ, so we write instead e^\prime and determine by the requirement that the physical metric be $g = \phi e^\prime$. Geometrically, this means that the area of the surface is represented by $R e \frac{e^\prime}{e}$. is thereby determined by the requirement that e^\prime behave as a $(1,1)$ conformal field (so that the combination $d^2 e^\prime$ is conformally invariant). For the energy-momentum tensor mentioned after (2.11), the conformal weight of e^\prime is

$$
(e^\prime) = - (e^\prime) = \frac{1}{2} (Q): \tag{2.17}
$$

Requiring that $(e^\prime) = (e^\prime) = 1$ determines that

$$
Q = 2e^\prime + : \tag{2.18}
$$

Using (2.16) and solving for ϕ then gives

$$
\frac{1}{12} \frac{P}{25} \frac{D}{p} \frac{P}{1} \frac{D}{p} = \frac{Q}{2} \frac{1P}{2} \frac{Q^2}{8}: \tag{2.19}
$$

For spacetime embedding dimension $d = 1$, we find from (2.14) and (2.19) that Q and are both real (with $Q = 2$). The domain is thus where the Liouville theory is well-defined and most easily interpreted. For $d = 25$, on the other hand, both ϕ and Q are imaginary. To define a real physical metric $g = e^\prime g$, we need to Wick rotate e^\prime. (This changes the sign of the kinetic term for ϕ. Precisely at $d = 25$ we can interpret $X^0 = i$ as a free time coordinate. In other words, for a string naively embedded in 25 at euclidean dimensions, the Liouville mode turns out to provide automatically a single timelike dimension, dynamically realizing a string embedded in 26 dimensional Minkowski spacetime. In general for $d = 25$, we must have $\zeta_{\text{Liouville}} < 1$ and the kinetic term of the Liouville field changes sign. The conformal mode of the metric in Euclidean space is a "wrong sign" scalar field analogous to the conformal mode in four-dimensional Euclidean space.

4 Recall that e^\prime is given by the leading term in the operator product expansion $T(z)e^\prime$.

5 One method for choosing the root for is to make contact with the classical limit of the Liouville action. Note that the effective coupling in (2.14) goes as $(25 - D)^\frac{1}{2}$ so the classical limit is given by $D = 1$. In this limit the above choice of root has the classical behavior. We shall discuss this issue further in the next chapter.
quantum gravity \cite{31}, so it would be useful to make sense of this case (if possible). Finally, in the regime \(1 < D < 25\), is complex, and \(Q\) is imaginary. As we shall see later in lurid detail, this problem is equivalent to the cosmological constant becoming a macroscopic state operator. Sadly, it is not yet known how to make sense of the Liouville approach for the regime of most physical interest.

A useful critical exponent that can be calculated in this formalism is the string susceptibility \(\chi_{\text{str}}\). We write the partition function for xed area \(A\) as

\[
Z(A) = \text{D'} \text{D} X e^S \int d^2 P \frac{e^P}{Q} A ;
\]

where for convenience we now group the ghost determinant and integration over moduli into \(\text{D} X\). We define a string susceptibility \(\chi_{\text{str}}\) by

\[
Z(A) = A^{\chi_{\text{str}} (2)} = 2^{1} \; ; \; A ! 1 ;
\]

and determine \(\chi_{\text{str}}\) by a simple scaling argument. (Note that for genus zero, we have \(Z(A) = A^{\chi_{\text{str}} 3}\). Under the shift \(\chi = \chi + 1\) for constant, the measure in (2.20) does not change. The change in the action (2.15) comes from the term

\[
\frac{Q}{8} \int d^2 \frac{P}{Q} R^\dagger + \frac{Q}{8} \int d^2 \frac{P}{Q} R^\dagger + \frac{Q}{8} \int d^2 \frac{P}{Q} R^\dagger ;
\]

Substituting into (2.20) and using the Gauss-Bonnet formula \(\frac{1}{4} \int d^2 \frac{P}{Q} R = \) together with the identity \((x) = (x) \cdot j j\) gives \(Z(A) = e^{Q} = 2^{1} Z(e \cdot A)\). We may now choose \(e = A\), which results in

\[
Z(A) = A^{Q = 2} 1 Z(1) = A^{\chi_{\text{str}} (2) = 2} 1 Z(1) ;
\]

and we con rm from (2.16) and (2.19) that

\[
\chi_{\text{str}} = 2 \frac{Q}{12} = \frac{1}{25} \frac{P}{D} (D(25) - D(1)) ;
\]

In the nomenclature of \cite{23}, so-called \"minimally conformal\" theories (those with a finite number of primary fields) are speci ed by a pair of relatively prime integers \((p,q)\) and have central charge \(D = \frac{p q}{p + q} = 1\). The unitary discrete series, for example, is the subset speci ed by \((p,q) = (m + 1, m)\). After coupling to gravity, the general \((p,q)\) model has critical exponent \(\chi_{\text{str}} = 2 = (p + q - 1)\). Notice that \(\chi_{\text{str}} = 1 = m\) for the values \(D = 1\) \(\text{mod}\ m = m(m + 1))\) of central charge in the unitary discrete series. (In general, the \(m^{th}\)
order multicritical point of the one-matrix model will turn out to describe the \((2m - 1; 2)\) model (in general non-unitary) coupled to gravity, so its critical exponent \(\gamma_{\text{str}} = 1 = m\) happens to coincide with that of the \(m\) member of the unitary discrete series coupled to gravity.) Notice also that \((2.22)\) ceases to be sensible for \(D > 1\), an indication of a \"barrier\" at \(D = 1\) that has already appeared and will reappear in various guises in what follows.

Dressed operators / dimensions of fields

Now we wish to determine the effective dimension of fields after coupling to gravity. Suppose that \(0\) is some spinless primary field in a conformal field theory with conformal weight \(\omega = (0) = \langle 0 \rangle\) before coupling to gravity. The gravitational \"dressing\" can be viewed as a form of wave function renormalization that allows \(0\) to couple to gravity. The dressed operator \(e' \omega\) is required to have dimension \((1, 1)\) so that it can be integrated over the surface without breaking conformal invariance. (This is the same argument used prior to \((2.19)\) to determine \(\gamma\).) Recalling the formula \((2.17)\) for the conformal weight of \(e'\), we find that \(\gamma\) is determined by the condition

\[\frac{1}{2} (\omega Q) = 1: \tag{2.23}\]

We may now associate a critical exponent \(\gamma\) to the behavior of the one-point function of at fixed area \(A\),

\[F(A) \frac{1}{Z(A)} \int_0^\infty \frac{dR}{R^2} e^{-\frac{2}{R}} e' A^{-\gamma} \int_0^A : A^{1}: \tag{2.24}\]

This definition conforms to the standard convention that \(\gamma < 1\) corresponds to a relevant operator, \(\gamma = 1\) to a marginal operator, and \(\gamma > 1\) to an irrelevant operator (and in particular that relevant operators tend to dominate in the infrared, i.e. large area limit).

\(^6\) The \"barrier\" occurs when coupling gravity to \(D = 1\) matter in the language of non-critical string theory, or equivalently in the case of \(d = 2\) target space dimensions in the language of critical string theory. So-called non-critical strings (i.e. whose conformal anomaly is compensated by a Liouville mode) in \(d\) dimensions can always be reinterpreted as critical strings in \(d = D + 1\) dimensions, where the Liouville mode provides the additional (interacting) dimension. (The converse, however, is not true since it is not always possible to gauge- x a critical string and artificially disentangle the Liouville mode (see e.g. \([32]\)).)
To determine, we employ the same scaling argument that led to (2.22). We shift
\(+ = \) with \(e = A \) on the right hand side of (2.24), to nd

\[
F(A) = A^{Q = 2} = A^{1+} F(1) = A^{Q = 2} = A^{1+} F(1);
\]

where the additional factor of \(e = A = \) comes from the gravitational dressing of
\(0 \). The gravitational scaling dimension defined in (2.24) thus satis es

\[
= 1 = : \quad (2.25)
\]

Solving (2.23) for with the same branch used in (2.19),

\[
q = \frac{1}{2} Q \quad \frac{q}{4 Q^2} = 2 + 2 \quad \frac{1}{12} \quad \frac{25}{2} \quad \frac{D}{0} \quad \frac{1}{1 + D + 24} \quad (2.26)
\]

(for which \(Q = 2, \) and \(! 0 as D ! 1 \)). Finally we substitute the above result for
and the value (2.19) for into (2.24), and nd

\[
= \frac{1}{P} \frac{D + 24}{25} \quad \frac{1}{D} \quad \frac{1}{1 + D} : \quad (2.27)
\]

We can apply these results to the \((p;q)\) minima models [21] mentioned after (2.22).
These have a set of operators labelled by two integers \(r,s \) (satisfying \(1 \leq r, q, l \leq s, p \leq 1 \)) with bare conformal weights \(0 = (pr \quad qs) \quad (p \quad q^2) = 4pq \) (we take \(p > q \)).
Coupled to gravity, these operators have dressed Liouville exponents

\[
1 \quad \frac{r}{r} = \frac{p + q}{2q} \quad \frac{pr}{2q} \quad (2.28)
\]

note also that \(c = 1 \quad \frac{(p \quad q^2)}{pq} = \quad \frac{r}{p} = \quad \frac{2q}{p} \quad \frac{r}{q} = \quad \frac{2p}{q} \quad \frac{r}{p} ; \quad Q = \frac{2p}{q} + \frac{2q}{p} ;
\]

in agreement with the weights determined from the \((p;q)\) form alism (to be discussed in
sections 7.4 and 7.7) for the generalized KdV hierarchy (see e.g. [34, 35]).

7 We can also substitute \(= \) (1) from (2.25) into (2.23) and use \(\frac{1}{2} (Q) = 1 \) (from
before (2.13)) to redere the result \(0 = (1) \quad 7 = 2 \) for the difference between the \(\text{dressed weight} \quad \text{and the bare weight} \quad 0 \quad [33]. \)
3. Brief Review of the Liouville Theory

In this chapter, we touch brieﬂy on some of the highlights of Liouville theory from the viewpoint advocated in [7, 17, 33]. For other points of view on the Liouville theory, see [37, 38], and the sequence of works [39]. The classical Liouville theory was extensively studied at the end of the nineteenth century in connection with the uniformization problem for Riemann surfaces. We will sketch some of this in sections 3.2, 3.10.

3.1. Classical Liouville Theory

We choose some reference metric \mathcal{g} on a surface. The Liouville theory is the theory of metrics \mathcal{g} on, and the Liouville field is deﬁned by

$$\mathcal{g} = e^z \mathcal{g} : \quad \text{(3.1)}$$

The action is

$$S_{\text{Liouville}} = \int d^2z \left(\frac{1}{8} \left(\mathcal{r} \right)^2 + \frac{Q}{8} R(\mathcal{g}) + \frac{1}{2} d^2z \frac{p - \mathcal{g}e}{8} \right) ; \quad \text{(3.2)}$$

very similar to the background (charge theory (1.14)) with a purely imaginary background charge $Q = 2i0$. The interaction given by (the \textit{cosmological constant}" term), while soft, will be seen to have profound effects on the theory. For the particular choice

$$Q = 2 = ; \quad \text{(3.3)}$$

the action (3.2) defines a classical conformal field theory, invariant under the Weyl transformations

$$\mathcal{g} \mapsto e^z \mathcal{g} \mapsto 2 : \quad \text{(3.4)}$$

Remark: The linear shift in under a conformal transformation shows that can be interpreted as a Goldstone boson for broken Weyl invariance (broken by the choice of \mathcal{g}).

Exercise. Classical Liouville theory

a) Using the transformation properties of the Ricci scalar in two dimensions,

$$R[\mathcal{e}^z \mathcal{g}] = e^2 R[\mathcal{g}] \mathcal{r}^2 \mathcal{z} ; \quad \text{(3.5)}$$

compute the change in the action (3.2) under (3.4), and show that for $Q = 2 = $ the change is independent of (so doesn’t affect the classical equations of motion).

b) Show that the classical equations of motion for (3.2) may be expressed as

$$R[\mathcal{g}] = \frac{1}{2} ; \quad \text{(3.6)}$$

i.e. they describe a surface with constant negative curvature. (We take positive.)

Using again (3.4) (in the form $R[\mathcal{g}] = e^2 R[\mathcal{g}] \mathcal{r}^2$, with as in (3.2)), note that (3.4) is explicitly invariant under (3.4).
The stress-energy tensor following from \((3.2)\), \(T = 2 \frac{g}{s}\), takes the familiar Feigin-Fuks form

\[
\begin{align*}
T_{zz} &= 0 \\
T_{zz} &= \frac{1}{2} (\dot{z})^2 + \frac{1}{2} \dot{Q} \dot{Q} \\
T_{zz} &= \frac{1}{2} (\ddot{z})^2 + \frac{1}{2} \ddot{Q} \ddot{Q}
\end{align*}
\]

(3.7)

where we have used the equations of motion in the first line.

Since \(z\) is a component of a metric, its transformation law under conformal transformations \(z \rightarrow w = f(z)\),

\[
\theta_z = \frac{1}{2} \frac{dw}{dz} \frac{d}{dz} \log \frac{dw}{dz} + \ldots
\]

(3.8)

is more complicated than that of an ordinary scalar field. In particular, the \(U(1)\) current \(\theta_z\) measuring the Liouville momentum transforms as

\[
\theta_z = \frac{1}{2} \frac{d}{dz} \frac{d}{dz} \log \frac{dw}{dz}
\]

(3.9)

and the stress tensor \(T_{zz}\) transforms as

\[
T_{zz} = \frac{1}{2} \frac{d}{dz} T_{ww} + \frac{1}{2} S[w;z]
\]

(3.10)

The object \(S[w;z]\) is called the "Schwartzian derivative" and has many equivalent definitions. Combining (3.7) and (3.8), we see that

\[
S[w;z] = \frac{1}{2} \theta_z \log \frac{dw}{dz} + \frac{d^2}{dz^2} \log \frac{dw}{dz}
\]

(3.11)

The unusual transformation laws (3.9) and (3.10) have counterparts in the quantum theory, where they result in shifted formulae for conformal charges and weights in Liouville theory.

8 It may be considered, for example, as the integrated version of the conformal anomaly, or it may be defined in terms of projective connections." For a discussion of the latter concept see [40].
3.2. Classical Uniformization

The central theorem in classical Liouville theory is the uniformization theorem that characterizes Riemann surfaces.

Uniformization Theorem: Every Riemann surface is conformally equivalent to
1) \mathbb{CP}^1, the Riemann sphere, or
2) \mathbb{H}, the Poincare upper half plane, or
3) A quotient of \mathbb{H} by a discrete subgroup $\text{SL}(2; \mathbb{R})$ acting as Möbius transformations.

The first proofs of the uniformization theorem were based on the existence of solutions to the classical eik equations (3.6); the standard proofs use potential theory and are nonconstructive (see [41]).

The upper half-plane supports the standard solution of the Liouville equation, namely the Poincare metric:

$$ds^2 = e^{\frac{1}{2}\text{Im} z} \frac{dz}{\sqrt{z}}; \quad (3.12)$$

a constant negative curvature solution to (3.8). This metric is invariant under the Möbius transformations

$$z \mapsto \frac{az + b}{cz + d}; \quad a; b; c; d \in \mathbb{R}; \quad ad - bc = 1 \quad (3.13)$$

(i.e. the group $\text{PSL}(2; \mathbb{R}) = \text{SL}(2; \mathbb{R})/\mathbb{Z}_2$), and thus descends to a metric

$$ds^2 = e^{\frac{1}{2}A(z)B(z)} \frac{dz}{\sqrt{z}}; \quad (3.14)$$

on the Riemann surface $X = \mathbb{H}$ for some locally defined (anti-)holomorphic functions $A(z), B(z)$. In general, when we quotient \mathbb{H} by the action of a discrete group to define a space $X = \mathbb{H}$, there is a natural projection $: \mathbb{H} \mapsto X$ and an "inverse" map

$$f: \mathbb{H} \mapsto X; \quad (3.15)$$

known as the "uniformizing map".

Exercise. Classical energy-momentum

a) Evaluate the energy-momentum tensor for the Poincare metric and show that $T_{xx} = 0$.

b) Let $f: \mathbb{H} \mapsto X$ be the uniformizing map as in (3.15). Show that the solution (3.14) to the eik equations has energy-momentum

$$T_{xx} = \frac{1}{2} S[f; z]; \quad (3.16)$$

with $S[f; z]$ as in (3.11).
Note that the uniformizing map (3.15) is not well-defined. If we continue the values of \(f \) from some coordinate patch around a nontrivial cycle, then \(f \) will change by the action of \(T^2 \). The nature of the surface near such a nontrivial curve depends on the nature of the conjugacy class of \(T \), in turn classified by the value of the trace. There are three types of conjugacy classes in \(SL(2;R) \):

1) elliptic: \(\text{Tr} T j < 2 \) (\(T \) conjugate to \(\begin{pmatrix} \cos & \sin \\ \sin & \cos \end{pmatrix} \)),
2) parabolic: \(\text{Tr} T j = 2 \) (\(T \) conjugate to \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)), and
3) hyperbolic: \(\text{Tr} T j > 2 \) (\(T \) conjugate to \(\begin{pmatrix} \cosh & \sinh \\ \sinh & \cosh \end{pmatrix} \)).

In cases 1,2), the nontrivial curve surrounds a puncture on the surface. In case 3), the curve surrounds a handle. See [17] for further discussion.

Exercise.

a) Show that the Schwartzian derivative is invariant under independent M obius transformation of either \(z \) or \(f \).

b) Show that although the uniformizing map is not globally defined, the energy-momentum (3.16) is nonetheless well-defined.

3.3. Quantum Liouville Theory

It is more subtle that the theory (3.4) is also a quantum conformal \(\text{eld} \) theory.

If we were zero and were a free \(\text{eld} \), we would immediately conclude that \(T \) defines a \(\text{Virasoro} \) algebra with central charge \(c = 1 + 3Q^2 \), that exponentials \(e^z \) have conformal weight \(\frac{1}{2}(\begin{pmatrix} \text{Q} \end{pmatrix}) \), and that these operators create states \(j \) on which we could construct \(\text{Feigin} \text{(Fuks modules)} \). Since \(\text{is not a free \(\text{eld} \)) we must be more careful.

We proceed via canonical quantization, rst passing from the complex \(z \)-plane to cylindrical coordinates \((t; \tau) \) via \(z = e^{\tau + i} \), and expanding

\[
\begin{align*}
\hat{a}_n(t) & = \frac{i}{n} a_n(t) e^{in} + b_n(t) e^{in} \\
\hat{b}_n(t) & = \frac{1}{4} a_n(t) e^{in} + b_n(t) e^{in}
\end{align*}
\]

(3.17)

\footnote{A \text{Feigin}(\text{Fuks module}) is a Fock space in which the \text{Virasoro} algebra is represented by an energy-momentum tensor such as (3.7).}

\footnote{We will see that the operator product of two exponentials is not given by the free \(\text{eld} \) expression.}
Here \(a_n^\alpha = a_n \) and \(b_n^\beta = b_n \), and we have the equal-time canonical commutation relations

\[
a_n(t); b_m(t) = \delta_{n,m}.
\]

(3.18)

The energy-momentum tensor in canonical variables takes the form (again using the equations of motion)

\[
\begin{align*}
T_+ &= 0 \\
T &= \frac{1}{8} (4 Q^0 - 4 Q^0 + 1 + 3 Q^2.
\end{align*}
\]

(3.19)

The additive factor of \(Q^2 = 8 \) in the above arises from the Schwartzian derivative in the transformation properties (3.10) of \(T \) when mapping from the plane to the cylinder \(z \rightarrow (t; \). In [30], it was shown that the operators (3.19) satisfy a Virasoro algebra if

\[
Q = 2 + \frac{1}{2} (Q = 2 + Q^2 = 8.
\]

(3.20)

(as we derived from another point of view in (2.18)). Calculating the \([T;T] \) commutator, one finds indeed a central charge

\[
c = 1 + 3 Q^2.
\]

(3.21)

and calculating commutators with \(T \) shows that exponentials \(e^Q \) have conformal weight

\[
(e^Q) = \frac{1}{2} (Q = 2 + Q^2 = 8.
\]

(3.22)

Note that if we impose the condition \((e^Q) = 0 \), we derive the KPZ equation (2.26).

It is useful to have an intuitive understanding of eqns. (3.20-3.22). Note that by rescaling \(\gamma = \frac{1}{\gamma} \) in (3.2), we identify \(\gamma \) with the coupling constant of the theory. The semiclassical theory is thus defined by asymptotic expansion as \(\gamma \to 0 \). We see that (3.20) is the quantum version of the classical condition (3.3) for conformal invariance. Similarly, (3.21) consists of a classical part \((\gamma / Q^2 = 0) \) already visible in the classical transformation law (3.10), plus a quantum conformal anomaly \((c = 1) \), familiar for a single scalar field. Finally, to understand (3.22) we note that the analog of (3.3) in the full quantum theory is

\[
\partial z \cdot \frac{d w}{d z} + \frac{d Q}{d z} \log \frac{d w}{d z}.
\]

(3.23)
In particular, passing from the plane to the cylinder via the conformal transformation \(w = \log z \) we have \(\Theta_2 = 1 \) \((\Theta_w, Q=2)=z \), so the momentum "shifts" by \(Q=2 \). The vertex operators \(\Omega \), inserted on the \(z \)-plane, create states with Liouville momentum \(p \) given by

\[
\hat{p} = \frac{Q}{2}; \tag{3.24}
\]

(Note that "states" refer to quantization on the cylinder, and "Liouville momentum" refers to the zero mode \(p_0 \) of in (3.17).) We see that the first term in (3.22) is simply \(\frac{1}{2} p^2 \), and the second term is the shift in the energy (relative to the Gaussian case) due to the "extra" central charge.

The above formulae are valid for cosmological constant \(\lambda > 0 \). It may seem curious that the quantum formulae for \(\lambda > 0 \) are identical to those obtained for a free field, i.e. with cosmological constant \(\lambda = 0 \) in (3.2). (N.B.: a translation of cannot transform one case into the other.) Heuristically, we can understand this by noting that in the worldsheet ultraviolet, \(\lambda = 1 \), the interaction term disappears: Quantities such as \(c \) and \(\lambda \), determined by the singular terms in operator product expansion, depend only on the ultraviolet behavior of the theory.

3.4. Spectrum of Liouville Theory

We now proceed to study the Hilbert space of the theory, all of whose subtleties lie in the zero modes \(\Theta_0(t), p_0(t) \). We can understand the physics of these degrees of freedom by studying the action (3.2) for field configurations independent of \(t \), i.e., we study the Liouville quantum mechanics

\[
S = \int dt \left(\frac{\Theta^2}{2} + \frac{1}{2} e \right); \tag{3.25}
\]

The Hamiltonian \(H_0 = \frac{1}{2} \left(T_{\varphi} + T_{\varphi}^\dagger \right) \), after substituting (3.19), takes the form

\[
H_0 = \frac{1}{2} \frac{\Theta_0^2}{\Theta_0} + \frac{1}{8} e^0 + \frac{1}{8} Q^2; \tag{3.26}
\]
The spectrum of H_0 is easily understood. In the worksheet ultraviolet, $\epsilon_0 = 1$ (i.e. at short physical distances), the potential disappears so that normalizable states behave like plane waves, $\psi = \sin E \phi_0$, with energy $\frac{1}{2} E^2 + \frac{1}{8} Q^2$. The exponential growth of the potential prevents the \textit{particle} at $\phi = 0$ from penetrating too far to the right, and hence gives total reflection of any incoming wave. Because of the total reflection property there is no distinction between states with $+E$ and $-E$ and we can therefore take $E > 0$. The wavefunctions look as in Fig. 3.

Fig. 3: Particle wavefunctions in the exponential potential.

The circumference of the 1D \textit{universe} in physical units is measured by the quantity

$$' = e^{1/2} 0 :$$

Using $'$, it is moreover possible to give an exact description of the eigenstates of H_0 in terms of Bessel functions. Changing variables to $'$, the eigenvalue equation $H_0 \psi = \frac{1}{2} E^2 + \frac{1}{8} Q^2 \psi$ becomes

$$\left(\frac{\partial}{\partial \phi'}\right)^2 + 4 \psi'^2 + \frac{Q^2}{2} \psi (') = \frac{Q^2}{2} + \frac{E^2}{2} \psi ;$$

where $' = (4^4)$ and $E' = \frac{p}{8E}$. We recognize [3.28] as the Bessel differential equation. Imposing the boundary condition that \textit{decays for large universes,}' 1, gives the eigenfunction

$$\psi = \frac{1}{E' \sinh E' K_{\phi E} (2 \phi')} ;$$

where K is the modified Bessel function. We have chosen a -function normalization for the states,

$$Z_1 \int_0^1 \psi (') \psi (') = (E \ E') ;$$

29
Exercise. The wall analogy

Show that the solutions E behave asymptotically for $\theta \to 0$ as $\sin \frac{1}{2} E_0 + (E), \text{ where}$

$$(E) = \arg (1 + iE) = \frac{1}{2} \log \frac{(1 + iE)}{(1 - iE)};$$

For intuitive purposes, it is useful to replace the exponentially growing Liouville potential by an infinite hard wall. Where should this wall be located for energies of order E?

Now we proceed from the zero mode structure of the theory to construct the full field theory. Combining the above discussion on zero modes with canonical quantization, one expects [30] the Hilbert space (as a Vir \ V ir representation space) of the Liouville conformal field theory to take the form

$$H = \int_0^Z dE \ F(E) \ \overline{F}(E); \quad (3.31)$$

Here F is a Feigin (Fuks module with weight $E = \frac{1}{2}E^2 + \frac{1}{8}Q^2$ and central charge $c = 1 + 3Q^2$. Our notation on the r.h.s. of (3.31) is meant to indicate a direct integral of Hilbert spaces [42]. Each Feigin (Fuks module is generated by adding oscillator excitations to some primary state. As usual, this structure may be understood heuristically since in the worldsheet ultraviolet ($\theta \to 1$) the theory becomes free.

In a conventional conformal field theory we are able to associate each state in the Hilbert space to an operator, and then determine the operator algebra of the theory. How do we construct the vertex operators that create states in the space (3.31)? According to (3.24), we might expect the primary fields of Liouville from momentum $p = E$ to have quantum vertex operators

$$V_E(z; \bar{z}) = e^{- p \overline{z}}; \quad (3.32)$$

At this point, however, we begin to encounter some of the confusing subtleties of Liouville theory cum quantum gravity, as first emphasized in [43]: the operators (3.32) by no means encompass all of the quantities of interest in the theory. For example, a natural quantity in quantum gravity is the "volume of the universe,"

$$A = e^{\frac{p}{\tilde{g}}}; \quad (3.33)$$

given by integrating the area operator $e^{\frac{p}{\tilde{g}}}$. But comparing with (3.32), we see that this operator has imaginary momentum and cannot correspond to a normalizable state (in the sense of (3.30)). To obtain some insight into this puzzling observation, we return to examine the semiclassical theory.
3.5. Semiclassical States

The semiclassical approximation is an important source of intuition for understanding Liouville theory. Classical Liouville theory describes the geometry of negatively curved surfaces (eq. (3.6)). Earlier, we identified with the coupling constant of the theory (by rescaling $! = $), so the semiclassical limit is described by $! = 0$ asymptotics. In this limit, we expect the above quantum states to correspond to specific constant curvature surfaces, and this has been verified in detail [7, 17]. Briefly, the $-\text{independent}$ metric

$$ e^{(t)}(dt^2 + d^2) = \frac{4n^2}{\sin^2(n't)} (dt^2 + d^2) \quad \frac{n'}{n'} < t < \frac{(n' + 1)}{n'} \quad \text{(3.34a)} $$

(where $z = e^{it}$ and n' is a real number), is a solution to the Liouville equation (3.6) that looks something like

hyperbolic:

(3.34b)

Exercise. Classical eld energy

Use the energy momentum tensor (3.7) to show that the Liouville eld configuration (3.34) has classical energy $\frac{1}{2}(n'^2 - 2) + \frac{4}{3}Q^2$.

Recalling that the quantum state ε of (3.28) has energy $\frac{1}{2}E^2 + \frac{4}{3}Q^2$, this classical eld energy allows us to identify (3.34) as the semiclassical picture of the quantum state ε for $E = \varepsilon$.

As noted in sec. 3.2, there are three kinds of local behavior of a solution to the classical Liouville equation, classi ed by the monodromy properties of $A; B$ in (3.14). In the solution (3.34) above, we have $A = z'^n = B$, thus giving an example of a hyperbolic class. From the semiclassical point of view, we are naturally led to ask what quantum states correspond to the other two classes, namely the elliptic and parabolic solutions. These are given respectively by

$$ e^{(t)}(dt^2 + d^2) = \frac{4n^2}{\sinh^2 (t)} (dt^2 + d^2) \quad t < 0 \quad \text{(3.35a)} $$

and

$$ e^{(t)}(dt^2 + d^2) = \frac{4}{t^2} (dt^2 + d^2) \quad t < 0 \quad \text{(3.35b)} $$

31
Here is a real number. An important feature of the solutions (3.35a) is their equivalence for both . These solutions look something like

\[\text{elliptic, parabolic:} \]

and have energy \(\frac{1}{2} \left(^2 - 2 \right) + \frac{i}{8} Q^2 \). Quantum mechanically, according to (3.28, 3.29) they therefore correspond to states with imaginary momentum \(E = i = \) . The corresponding wavefunctions are of type \(K(') \), real. These wavefunctions blow up (as \('j \)) at short distances ' 0 and consequently might appear unphysical. On the contrary, as we saw at the end of the previous section, operators corresponding to imaginary momentum states, including for example the volume of the universe, appear quite naturally in 2D quantum gravity and play an important role.

The distinction between normalizable and non-normalizable states in Liouville theory, and the necessity to include the non-normalizable states in the theory, was first emphasized by Seiberg in [7]. Motivated by the geometries illustrated above, the normalizable states were labelled "macroscopic states," and the non-normalizable states were labelled "microscopic states." Semi-classically, the macroscopic states do not have a well-defined insertion point in the intrinsic geometry of the surface. The microscopic states, on the other hand, correspond semi-classically to the elliptic geometry pictured in (3.35b), and thus to local operators \(\) the operator insertion in this case is localized at the tip of the \(\)funnel." We discuss these issues further in sec. 4.3 below.

Exercise. Curvature Sources

a) Use the exponential map \(z = e^{r-i} \) to transform the solutions (3.35) to the \(z \)-plane:

\[e \ dz dz = \frac{16}{(1 - (zz))} \ dz dz : \]

\[(3.36) \]

b) Show that the \(e^z \) solves the Liouville equation with source,

\[\frac{1}{4} - \frac{1}{8} e + \frac{1}{(z)} = 0 ; \]

\[(3.37) \]

i.e., such solutions have a source of curvature at \(z = 0 \).
c) Show that the solution corresponds to the choice of functions (in (3.14)):
\[A(z) = \frac{iz + 1}{z} \quad B(z) = \frac{iz + 1}{z} : \] (3.38)

d) Show that the monodrom y when \(z \) circles around the puncture is the real elliptic
M obius transformation
\[A(z) \rightarrow \cos A(z) \sin A(z) \quad \sin A(z) + \cos : \] (3.39)

e) Show that a straight line through \(z = 0 \) is conformally mapped into an angle
, and hence we must have 0 on geometric grounds.

f) Repeat the above for the hyperbolic and parabolic cases.

3.6. Seiberg bound

Classically, the metrics (3.34, 3.35) are invariant under \(D \) ! E ! E. Quantum
mechanically, the wavefunctions \(K \) !K share this invariance, due to the total reflection
property of the Liouville \(\text{wall}.\) Turning on the wall by setting \(\Lambda > 0 \) e ectively halves
the states that exist in the \((= 0) \) free spectrum.

In the DDK/KPZ formalism described in chapt. 4, on the other hand, the choice of
root in the KPZ formula (2.27) affects the scaling properties of the operator \(\mathcal{Q} \). Since
the Liouville interaction truncates the spectrum by half, we must choose a root. In [7,8],
it is argued that only those operators with
\[\frac{1}{2} \mathcal{Q} \] (3.40)
can exist. This choice of root has many distinguishing properties, some of which will be
noted in later sections:

1) This root gives a smooth classical limit in quantum gravity, as we saw in sec. 2.2.
2) The area element is integrable only for sources satisfying (3.40). A related fact in terms
of de cile angles has appeared in part (e) in the exercise above (following (3.39)).
3) As we will see in the penultimate paragraph of sec. 4.3, the W heeler-DeW itt wave-
funtion for a local operator in quantum gravity, related to the vertex operator \(V(\))
by \((\) = e^{i\mathcal{Q}} V(\)), must be concentrated on \(\Lambda \) 0, that is, where \(\Lambda = 1 .
4) A closely related question is the nature of gravitational dressing (see sec. 2.2). Only
with the choice of root (3.40) do gravitationally dressed relevant/irrelevant operators
grow/decay in the worksheet infrared.
5) As will be seen in sec. 5.4 below, the bound \((3.40)\) has the following spacetime interpretation: When scattering in a left half-space, incommers must be rightm overs and outgoers must be leftm overs.

In addition, there is circumstantial evidence that \((3.40)\) is correct:

1) In the matrix model, we will see that only scaling operators with scaling corresponding to \(Q = 2\) appear.

2) In the semiclassical calculations of \([30]\), there are difficulties constructing correlation functions of "wrong branch" operators.

3) In the \(SL(2; \mathbb{R})\) quantum group approach pursued by Gervais and others, inverse powers of the metric \(e^j 2j 2 \mathbb{Z}_+\) are easily constructed, while the positive powers have thus far eluded construction.

The above reasoning is qualitative. While the Seiberg bound \((3.40)\) is undoubtedly correct, a precise mathematical understanding of the statement would be useful.

A common confusion

There are two distinct novelties in the description of the Hilbert space of Liouville theory: (1) Vertex operators with \(> \frac{1}{2}Q\) do not exist. (2) States with real momenta \(p = E\), which formally correspond to vertex operators with \(= \frac{1}{2}Q + iE\), do not have a correspondence with local operators. These two distinct points are often confused in the literature. There is no (obvious) connection between the Seiberg bound, which specifies the operators that exist, and the difficulty of localizing operators that correspond to states \(E\) of energy \(\frac{1}{2}E^2 + \frac{1}{8}Q^2\).

An unresolved confusion

There is some confusion in the literature as to whether the states \(E\) have a correspondence with vertex operators \(V_E = e^{ie \frac{1}{2}Q}\). Although the semiclassical pictures of states (e.g., \([334]\)) makes any correspondence with local operators seem unlikely \([4]\), we shall need these operators necessary to formulate our scattering theory in two Minkowski dimensions. This problem is closely linked to the problem of time in string theory.

Exercise. Seiberg bound and semiclassical limits

Consider the minimal conformal field theories labelled by \((2; 2m - 1)\) in the BPZ classification, as mentioned after \((2.22)\). Show that \(2 = 2m - 1\) so that as \(m \rightarrow 1\) the semiclassical approximation becomes valid. Note that the root chosen in sec. 2.2 on the basis of the semiclassical limit coincides with that dictated by the bound \((3.40)\).
3.7. Semi-classical Amplitudes

In the semi-classical approximation, we evaluate the amplitudes via the saddle point approximation by first solving the classical equation

\[
\frac{1}{4} e^{\frac{1}{8} X_i^{(2)}} e^{i} (z_i) = 0 ;
\]

Integrating (3.42) over the surface, since \(s > 0 \), that a necessary condition for the existence of a solution is

\[
\frac{1}{4} \frac{1}{2} (2 \ 2h) X_i < 0 ;
\]

Exercise.

Derive (3.43) using the Gauss-Bonnet theorem, \(R \frac{1}{4} R \bar{g} = 2 \ 2h \).

The particular combination

\[
s \frac{Q}{2} \ X_i ;
\]

known as the KPZ exponent \([33]\), plays an important role in the theory. Equation (3.43) says that the semi-classical KPZ exponent \((Q ! 2=)\) is negative.

When \(s < 0 \), there is indeed a solution to (3.42), and we can expand around it to evaluate (3.41). Near \(z = z_i \), it follows from (3.44) that

\[
\log z \quad \log z_i ;
\]

for \(i < 1 \). For \(i = 1 \), we have instead

\[
\log z \quad \log z_i + 2 \log \log \frac{1}{z_i} ;
\]

In either case, to write the semi-classical amplitudes we must excise disks \(B (r; z_i) \) around \(z_i \) of radius \(r \) (in the \(g \) metric), and define the regularized action

\[
\lim_{r \to 0} Z \sum_{i \in B (r; z_i)} \ X_i (i + 1) \log r
\]

\(\text{[35]} \) The need for these subtractions reflects the need for renormalization of the vertex operators \([7]\).
where i is the conformal weight of e^i. In terms of S, the leading \bigO 0 asymptotics of the correlator are given by
\[
\text{DY} \left. e^{i \left(z_i \right)} \right|_{\text{asy:}} e^{-S \left(z_i \right)}:
\]
(3.48)

There are also cases of interest with $s = 0$, notably, for genus zero correlators of vertex operators with all total \Liouville charge P_i. In these cases, as described in \cite{7}, we can still perform \semiclasseical calculations by xing the total area of the surface: we insert $R \left(e \ A \right)$ into the path integral to ensure that (3.44) has a solution. We obtain the A dependence of \xed area correlators by a scaling argument (similar to that used before (2.22) and (2.23)): shifting $! + \frac{i}{\text{log} A}$ gives
\[
\text{DY} \left. e^{i \left(z_i \right)} \right|_{\text{asy:}} e^{-S \left(z_i \right)}:\n\]
(3.49)
with s as in (3.44). To Laplace transform to \xed cosmological constant, we integrate
\[
\int_{0}^{A} \frac{dA}{A} \ A^s e^{A} = s \left(s\right):\n\]
(3.50)
The UV divergence as $A \rightarrow 0$ for $s \rightarrow 0$ (re ecting the absence of a classical solution without the area constraint) plays an important role in speculative plans on the relation of free \eld theory to the \Liouville theory described in sections 3.9, 14.2, 14.3 below.

Using (3.49), the problem of calculating correlators is reduced to the case $A = 1$. The \semiclasseical formulæ for genus zero correlators are obtained by averaging over the space of classical solutions. These solutions are obtained for $s \rightarrow 0$ by applying complex \Mobius transformations from the standard round-sphere metric
\[
ds^2 = e^{\frac{i}{2} \left(z_j \right)} = \frac{16 \ jz_j^2}{1 + \left(z_j \right)^2}:
\]
(3.51)
(which, unlike (3.3), has positive curvature $R = +\frac{1}{2}$). The result is
\[
\text{DY} \left. e^{i \left(z_i \right)} \right|_{\text{asy:}} \ Z \left(\ A = 1 \right) = \ Y \left(\ Y^{(2)} \left(\ ad \ bc \right) = 1 \right) \ e^{i \left(z_i \right)}:\n\]
(3.52)
where in the second line we have parametrized \SL \left(2; \mathbb{C}\right) elements by a unitary matrix times an upper triangular matrix, and we have dropped the volume of $\SU \left(2\right)$. See \cite{7} for more details.
The semi-classical approach provides a key insight into the Seiberg bound (3.40). Consider the classical equation (3.42) in the neighborhood of a vertex operator insertion. If we neglect the cosmological constant term, the solution must behave as in (3.45). To check if this is self-consistent, we insert (3.45) back into (3.42) and note that the neglected term behaves as

\[e^{1} \frac{1}{q} e^{2} : \quad (3.53) \]

If \(i > 1 \), the cosmological constant operator is not integrable at \(z = 0 \) and we expect trouble. Indeed, the careful considerations leading to the classification of solutions in sec. 3.2 (following eq. (3.16)) show that there is no solution for \(i > 1 = Q = 2 \). The essential point is that too much curvature cannot be localized at a single point.

Here are two examples of semi-classical correlators:

Example 1: Consider the three-point function on the sphere,

\[e^{1} = (z_{1} ; z_{1}) e^{2} = (z_{2} ; z_{2}) e^{3} = (z_{3} ; z_{3}) ; \quad (3.54) \]

where \(i < 1 \) are considered to be 0 (1) as \(i > 1 \), and \(i > 1 \). The classical solution is known in this case and is M obius invariant. It follows immediately from (3.47) and the transformation properties of circles under M obius transformations that

\[e^{1} = (z_{1} ; z_{1}) e^{2} = (z_{2} ; z_{2}) e^{3} = (z_{3} ; z_{3}) \quad \frac{C[1]}{z_{12}^{13} z_{13}^{12} z_{23}^{13} z_{23}^{12}} ; (3.55) \]

where \(123 = 1 + \ldots 3 \), etc. The coefficient function \(C \) is generically non-zero. Sadly, this example cannot be extended to higher point functions because the classical solutions to Liouville theory are not known in explicit form, except in special cases which have the punctures symmetrically located [43].

Example 2: Consider now the three-point function on the sphere, but with \(s = 0 \) so we must x the area. Using the M obius invariance of (3.52) gives

\[C[1] = \frac{4}{Z} \int_{0}^{2\pi} \frac{d^{2}w}{\Phi} \frac{1}{(j_{1} j_{1} j_{2} j_{2} j_{3} j_{3})} \frac{C[1]}{z_{12}^{13} z_{13}^{12} z_{23}^{13} z_{23}^{12}} ; (3.56) \]

\[C[1] = \frac{4}{Z} \int_{0}^{2\pi} \frac{d^{2}w}{\Phi} \frac{1}{(j_{1} j_{1} j_{2} j_{2} j_{3} j_{3})} \frac{C[1]}{z_{12}^{13} z_{13}^{12} z_{23}^{13} z_{23}^{12}} ; (3.56) \]
where \(j, k = \cdot \) Strictly speaking, the integrals above converge only for ranges of \(j \) for which the arguments of all the functions in (3.56) are positive. As in ordinary string theory, we define the amplitude at other values of \(j \) by analytic continuation.

Remarks:
1) The formula (3.54) has an interesting group-theoretical meaning. Defining \(j = k \), the field transforms under \(SL(2; \mathbb{C}) \) in the \((j; j)\) representation of \(SL(2; \mathbb{C}) \), hence the suggestive notation. Group theoretically, the integral (3.55) computes the overlap between a product of vectors in infinite-dimensional highest weight representations and the trivial representation.

2) Analytically continuing \(j \) to pure imaginary values, and taking the limit \(j \to 0 \), gives the two-point function

\[
\text{he}^j (z_1; z_1) e^{-j} (z_2; z_2) = \frac{i^2}{4} \frac{1}{2j + 1} (j; j) \frac{1}{j_{12}^2} \quad ; \quad (3.57)
\]

obtained in [7] by analytic continuation of the integration over the dilation subgroup \(R_+ \), \(SL(2; \mathbb{C}) \). For a further discussion of the subtleties of one- and two-point functions, and their relations to the regularized volumes of \(R_+ \) and \(SL(2; \mathbb{C}) \), see [1][2]

3) Note that fields with \(j \in \frac{1}{2} \mathbb{Z}_+ \) generically decouple. If all three fields satisfy \(j \in \frac{1}{2} \mathbb{Z}_+ \), then we recover the \(SU(2) \) fusion rules.

4) The two above examples make it clear that the Liouville correlators are entirely different from the correlators of a Coulomb gas with a charge at infinity. In particular, there is no Liouville charge conservation.

5) It is very unusual to have short distance singularities in the correlators of the classical theory as we do in (3.56) and (3.57). This is due to the average over the noncompact group \(SL(2; \mathbb{C}) \), so we see again that the geometrical origin of the Liouville field distinguishes it from an ordinary scalar field. Note that for the \(n = 4 \) point functions, the operator products are typically smooth in the semiclassical correlator.

\[12\] That Liouville two-point functions are diagonal in Liouville charges might have important implications for the implementation of string field theory identities [14].
3.8. Operator Products in Liouville Theory

The existence of the Seiberg bound (3.40) dictates that the operator product expansion in Liouville theory will be rather different from that in free field theory. Indeed it is not clear that the notion of the operator product expansion is the correct language to use when discussing Liouville correlators. Already in the semi-classical theory, we shall see that the putative short distance behavior of correlators depends on global properties of the surface and the "operator product expansion" appears to be non-local [2, 8].

Fig. 4: Left: Insertion of operators e^- and e^+ in a surface with boundary. Right: the same operation on a higher genus surface.

Consider the state arising from the insertion of two vertex operators e^- and e^+ on a surface with boundary C as in the l.h.s. diagram of g. 4 or, more generally, on a higher genus surface as in the r.h.s. diagram of g. 4. In the semi-classical approximation, the state created by the surface on the boundary C has a wavefunction that depends on the zero-mode 0 of as

$$ (0) e^{z_0} e^{0^+} e^{\frac{1}{2} Q} e^{z_0};
$$

where $\chi = 1 - 2 \delta$ is the Euler character for the surface (with a single boundary). If $+ > \frac{1}{2} Q$, then the wavefunction (3.58) is a real exponential diverging at 0! 1 (short distance). Then we may expect to replace the holes in the diagrams in g. 4 each by a sum of local ("microscopic") operators, as in ordinary conformal field theory. Note that since the three-point functions are generically nonzero, we would naively expect a disastrous sum over operators with conformal dimensions unbounded from below.

If $+ < \frac{1}{2} Q$, on the other hand, then the state is normalizable and we certainly cannot expand it in an operator product expansion of local operators. Instead the state must be expanded in the normalizable macroscopic state operators. Thus, by sewing, the surface amplitude must have the form

$$ e^{(z_0)} e^{(z_0)} Z_1 dE c \int_{E^2 + Q^2 = 8} \omega^2 E^2 = 2 + Q^2 = 8 e^{HE_1};
$$

39
where \(j \) is a state created by the rest of the surface (as is standard in discussions of the \(\text{operator formalism} \) \(^{[24]}(23)\)). If we interpret the integral in (3.55) as an OPE over macroscopic vertex operators \(V_E \), then since we sum over operators with weights \(Q^2 = 8 \), we see that the OPE is much softer than in ordinary CFT. This discussion can be generalized.

The essential message is that while we may insert microscopic operators on a surface we should only do so \(\text{externally} \). We must factorize on macroscopic states. The factorization on macroscopic states also ameliorates the disastrous sum noted above for \(\frac{1}{2} \leq Q \).

The essentially non-free field nature of the operator product expansion in Liouville theory accounts for some unusual properties of the theory. As one example, note that since the Liouville theory is conformal for all \(\Delta > 0 \), the cosmological constant \(\epsilon \) is an exactly marginal operator. This appears to conflict with the fact that its \(n \)-point correlation functions are nonvanishing, since the standard obstruction to exact marginality is the existence of a \(\text{potential} \) for such couplings. However, the standard discussion of the obstruction to exact marginality does not apply because of the strange nature of the operator product expansion. In later sections on string theory (sec. 5.6) we will see that the unusual OPE of Liouville also has important consequences for the finiteness of the theory and for the existence of an infinite dimensional space of background deformations.

3.9. Liouville Correlators from Analytic Continuation

In the past two years there has been very interesting progress in understanding Liouville correlation functions via analytical continuation in the number of operators. The first step in the calculation of continuum correlators was provided in \(^{[45]}\), where the free field formulation by zero mode integration of the Liouville field was established. The essential idea is to treat the Liouville path integral as a free field measure and separate out a zero-mode via \(\phi = \phi^0 + \hat{\phi} \), so that \(|\phi\rangle = |\phi^0\rangle |\phi^\hat{\phi}\rangle \). The integral over the zero mode is

\[
Z \phi^0 e^{-\frac{1}{2} \sigma^0 Q \sigma^0} = \int d\phi^0 e^{-\frac{1}{2} \phi^0 \cdot \phi^0} = Z \sigma^0 (s) B^s \quad \text{for} \quad s \leq \frac{1}{2} Q \quad \text{and} \quad B^s = \frac{1}{Z^s} \quad \text{for} \quad s \geq \frac{1}{2} Q \quad \text{and} \quad B^s = \frac{1}{Z^s} \quad \text{for} \quad s \geq \frac{1}{2} Q.
\]

In references \(^{[48]}(49)\), it is proposed that when \(s \leq \frac{Z}{2} \) (so there is no negative curvature solution) the \(\hat{\phi} \) integral can be done using free field techniques. One then obtains a class...
of amplitudes as "functions of s," manipulates the s-dependence to reside solely in the argument of -functions (through factorials) and then "analytically continues" to all values of s using \((x + 1)\) as an analytic continuation of \(x!\).

This curious procedure has scored many impressive successes. In particular [46], the incorporation of the Liouville mode was shown to cancel the ghastly assemblage of -functions familiar from the conformal field theory result and reproduce the relatively simple matrix model result for many continuum correlation functions. Additional genus zero correlation functions for \(D = 1\) were computed in [48]. The genus one partition function for the AD series was calculated via KdV methods in [50], and was confirmed from the continuum Liouville approach in [51].

Attempts to justify the technique on physical grounds are based on arguments that for \(s \geq 0\), the coefficient of \(\log s\) in the correlation function is dominated by the regions where \(s = 1\) (short distance). In these regions the Liouville interaction is small and the theory can be treated as free field theory. See [48] for more detailed discussion. Another justification, using the quantum group approach to Liouville theory, has been proposed in [52].

Nevertheless, these results remain to be better understood. The proper and complete calculation of correlation functions in Liouville theory remains the most important open problem in the subject.

3.10. Quantum Uniformization

The most ambitious approach to the evaluation of Liouville correlators proceeds by attempting to generalize the original uniformization program of Klein and Poincare (described in sec. 3.2) to quantum field theory. This program was one of the central motivations that led Belavin, Polyakov, and Zamolodchikov to the study of the minimal models of conformal field theory [21]. This program has also been pursued in a series of papers by Gervais and collaborators [39, 52] using the operator formalism. In this section we shall try to clarify the relation of the original uniformization program to the quantum Liouville theory, and in particular elucidate the role played by what we now interpret as quantum Liouville correlators.

We begin by recalling the classical theory of Poincare [53]. We restrict attention to the n-punctured sphere \(X = \hat{C} + q_1 + \ldots + q_n\). Let us try to solve the classical Liouville
equation with sources, W_{i}. We set $P_{i} < 0$. The metric jd^{2} on X will be obtained as a pullback of the Poincare metric on the unit disk D

$$ds^2 = \frac{16}{(1 - jw f)^2} ;$$

via a uniformization map $w = f(z)$, where $f: X \to D$. (The metric W_{i} is related to the metric W_{j} on the upper half plane via the Cayley map $w = (z + i) = (z + i)$ from the upper half plane to the disk.)

The main observation is that $f(z)$ can be obtained as a ratio of solutions of a linear differential equation of Fuchsian type (i.e. having only regular singular points). To see this, recall the result (3.14),

$$T(z)(dz)^2 = \frac{1}{2} S f(z); z (dz)^2 ;$$

where S is the Schwartzian derivative. $T(z)$ is analytic and has second order poles at the sources of curvature so we may write a partial fraction decomposition,

$$\frac{2}{T(z)} = X \frac{h_{i}}{(z - q)^2} + \frac{c_{i}}{z - q} ;$$

where

$$h_{i} = \frac{1}{4} \frac{1}{(1 - 1)^2} ;$$

and the c_{i} are constants known as accessory parameters.

In order to find the map f, one might first turn to solve the nonlinear differential equation

$$S[f; z] = 2 !_{X} (z) :$$

This problem may be linearized by considering the Fuchsian differential equation

$$\frac{d^2y}{dz^2} + !_{X} y = 0$$

since, if y_{1}, y_{2} are any two linearly independent solutions of (3.66) then $f(z) = y_{1} = y_{2}$ satisfies (3.65).

Exercise.

Check (3.64) for $f = y_{1} = y_{2}$. Note that the transformation properties of $S[f; z]$ under the Mobius group ensure that we can take any two solutions y_{1}, y_{2}.
The differential equation (3.66) has regular singular points at \(z = z_i \), so if \(z \) is continued around \(z_i \) the solutions \(y_1, y_2 \) will have monodromy

\[
\begin{align*}
Y_1 &= M_{11} Y_1 + M_{12} Y_2 \\
Y_2 &= M_{21} Y_1 + M_{22} Y_2 ;
\end{align*}
\]

inducing a Möbius transformation on \(f \). Thus, if \(X = D = \) where \(D \) is the Poincaré disk and \(SU(1;1) = \mathbb{Z}_2 = \text{PSL}(2;\mathbb{R}) \), then there exist \(y_1, y_2 \) such that \(f : X \to D \) is a multivalued mapping, inverting locally the projection \(D \to X \). The different values of \(f(z) \) are obtained by applying Möbius transformations in \(D \). Thus the \(n \)-punctured sphere \(X \) and its accompanying uniformization map \(f \) have led to a Fuchsian differential equation (3.66) with the property that the monodromy around regular singular points forms a discrete subgroup \(SU(1;1) = \mathbb{Z}_2 \).

Klein and Poincaré tried to show the converse of the above chain of logic. Namely, if the parameters \(c_i \) in (3.63) are appropriately chosen, then the monodromy group of the differential equation (3.66) would be a discrete subgroup of \(SU(1;1) \), and \(f = y_1 = y_2 \) could be normalized so that the images of \(f(X) \) under tessellate \(D \). (In general the \(c_i \) have to be highly non-trivial functions of the \(z_i \) and \(h_i \) to result in discrete monodromy and hence in reasonable surfaces \(X = D = \).) By suitable choice of the \(c_i \), in principle any surface \(X \) could be obtained. This original approach to uniformization founded on the inability to calculate, or even show existence of, appropriate parameters \(c_i \). As we shall see, Klein and Poincaré got stuck on the problem of computing Liouville correlators.

In the cases where \(f \) is a uniformizing map, we may obtain a solution to the Liouville equation simply by pulling back the Poincaré metric,

\[
e^{\frac{1}{4}i j z f} = f \frac{16}{(1 - \frac{1}{j y^2} z f^2)^2} = \frac{16}{y^2 f^2} \frac{i j z f}{y^2 f^2} ;
\]

which yields

\[
e^{\frac{1}{4}} = \frac{p}{4 i f} y_2 f y_1 f ;
\]

where the constant \(C \) is the Wronskian of \(y_1, y_2 \). Note that although \(y_1, y_2 \) have monodromy (3.67), \(e^{\frac{1}{4}} \) is single-valued. Finally, we combine (3.62, 3.63, 3.66, 3.69) to obtain the important result

\[
\Theta^2 e^{\frac{1}{4}} + \frac{2}{2} T(z) e^{\frac{1}{4}} = 0 ;
\]
Exercise.

Show that (3.70) is an identity by working out the second derivative of the exponential and using the formula for T in terms of τ.

Example: The triangle functions.

The uniformization of the three-punctured sphere is explicitly known [54]. In this case, (3.66) has three regular singular points and can therefore be transformed to the Gauss hypergeometric equation. The mapping is given by

$$f(z) = N \frac{F_2(x)}{F_1(x)}; \quad (3.71a)$$

where

$$F_2(x) = x^1 {\frac{1}{2}} F_1 \frac{1}{2} (1 + 2 + 3); 1 + \frac{1}{2} (1 + 2 + 3); 2 \;
$$

$$F_1(x) = 2F_1 1 + \frac{1}{2} (1 + 2 + 3); \frac{1}{2} (1 + 2 + 3); 1 \;
$$

$$N^2 = (1 \; 1)^2 (1 \; 1)^2 \frac{2}{\frac{1}{2} (1 + 2 + 3)} \frac{1}{\frac{1}{2} (1 + 2 + 3)} ; \quad (3.71b)$$

$$x = \frac{z}{z_2} \frac{z_2}{z_3} \frac{z_3}{z_1} \quad \quad (y) = \frac{(y)}{(1 \; y)} ;$$

Fig. 5: A tessellation of the Poincare disk: A copy of an adjacent white and black triangle maps to the three-punctured sphere. The images of the triangles under the monodromy group of the associated Fuchsian differential equation tessellate the Poincare disk.
The mapping (3.71) carries a circle through the points \(z_1; z_2; z_3 \) to a curvilinear triangle in \(D \) with opening angles \(1; \). Note the geometrical conditions

\[
i \quad 1; \quad (3.72)
\]
since the opening angles are \(0 \) (recall eqs. (3.31), (3.39)), and

\[
i + 1, 2 + 3, 2, 0 \quad (3.73)
\]
since a hyperbolic triangle must have its sum of interior angles less than or equal to \(\pi \). If the \(i \) are reciprocals of integers, then the triangles tessellate the disk \(D \) as in Fig. 5.

Finally we write the classical answer for the monodromy-invariant solution to (3.70). Combining (3.69) and (3.71) we obtain

\[
e^\frac{i}{2} = \frac{p}{2} - \frac{1}{(1, j)N} \left[\frac{z}{z_1} \frac{z_2}{z_{31}} \frac{z_3}{z_2} \frac{z_4}{z_{32}} \frac{z_5}{z_3} \frac{(z, z)^2 z_{21}}{z_{31} z_{23}} \right] \]

Using the transformation properties of hypergeometric functions and identities on \(\{ \) functions, it can be shown that (3.74) is fully symmetric in \((z_1; i), (z_2; j), \) and \((z_3; k) \).

We now interpret the above equations in terms of conformal field theory. The vertex operator \(e^\frac{i}{2} \) has conformal weight \(\frac{1}{2} (\frac{3}{8} + 2) \). The central charge is \(c = 1 + 3Q^2 \) and therefore we have

\[
= \frac{1}{16} c \quad 5 + p \frac{(c, 1)(c, 25)}{(c, 1)(c, 25)} : (3.75)
\]

It immediately follows, as discussed in [21] (see also [20]), that \(L^2 \frac{2}{1, i} L^2 \frac{2}{1, i} \) is a singular vector in the Verma module built on \(j \), and therefore

\[
\theta^2 e^\frac{i}{2} + \frac{2}{2} : T(z) e^\frac{i}{2} : (3.76)
\]
is a null \(\mathcal{E} \) (where we use conformal normalization in the second term). Now, if the null \(\mathcal{E} \) decouples in correlation functions\footnote{The Liouville theory is sufficiently subtle that this is an open question.}, we may put

\[
D \theta^2 e^\frac{i}{2} + \frac{2}{2} T(z) e^\frac{i}{2} Y e^{i (z, 1; z_1)} E_i = 0 \quad (3.77)
\]
In view of these observations, the classical uniformization theory takes on new meaning: the classical solution in the presence of sources $e^{\frac{i}{2}} \rightarrow e^{\frac{i}{2}}$ corresponds to the semiclassical correlator $e^{\frac{i}{2}} Q^1 e^{\frac{i}{2}}$. The classical equation (3.70) is the null-vector decoupling equation, while (3.69) becomes the decomposition of the correlation function into \"conformal blocks\" $y_1 y_2$. These blocks are assembled into monodromy (invariant combinations. The geometrical conditions (3.72) and (3.73) become respectively the Seiberg bound and the condition for the existence of a classical solution. Finally, the partial fraction decomposition (3.53) is the familiar Ward identity for the insertion of an energy-momentum tensor in a correlator of primary fields:

$$!_x = \frac{1}{2} \sum_{a=1}^{N} Y \frac{\partial}{\partial z_a} \log \left(1 + \sum_{a=1}^{N} \frac{1}{z_a} \right)$$

$$c_i = \frac{1}{2} \sum_{a=1}^{N} \frac{1}{z_a}$$

When combined with (3.48), this last formula for the accessory parameters makes sense independently of the existence of a quantum Liouville theory and has been rigorously proven recently by Takhtajan and Zograf \[38\].

Some four-point functions.

Let us assume that the null-field decouples as in (3.77). Then, it follows directly from the $SL(2,\mathbb{C})$ Ward identities that (3.77) reduces to an ODE related to Riemann’s differential equation (as in [21]). A straightforward calculation shows that

$$D e^{\frac{i}{2}} (z; z) \frac{Y}{z} \frac{e^{-i}}{(z_i; z_1)} = \frac{1}{4} P \sum_{i=1}^{N} \frac{1}{(1 + \frac{i}{1})} \frac{z_1 z_2 z_3 z_4}{z_1 z_2 z_3 z_4}$$

$$F_1(x) = \sum_{i=1}^{N} \frac{1}{2} \left(\frac{z_1}{z_2} \frac{z_3}{z_4} \right)$$

$$F_2(x) = x \sum_{i=1}^{N} \frac{1}{2} \left(\frac{z_1}{z_2} \frac{z_3}{z_4} \right)$$

where the quantum and classical expressions are related by the simple shift $\frac{\hat{z}}{2} = \frac{z}{2}$. Of course, conformal invariance only determines the correlator up to an overall function $n(1; 2; 3)$ which is totally symmetric in the 1. The prefactor $(1 + \frac{1}{1}) \frac{z}{j}$
in (3.80) is obtained by comparing with the semiclassical answer (3.74), where the overall normalization is determined. Since the rest of the terms in the expression satisfy the substitution rule \(t^r \) relating classical and quantum expressions, it is a fair guess that the prefactor \((1^r)^n j^i \) in (3.80) is exact.

The fully quantum correlator (3.80) is a new result. As opposed to the matrix model results we will describe in later chapters, (3.80) gives the Liouville correlator as a function of the moduli of the 4-punctured sphere | if properly understood, (3.80) could be integrated over the positions of the punctures to derive the (already automatically integrated) matrix model results for pure gravity. The correlator (3.80) has many strange properties possibly illustrating the strange nature of the OPE in Liouville theory. Of particular note is the case where some of the operators saturate the Seiberg bound \(= Q=2 \), which, classically, corresponds to sources producing triangles with corner angle \(= 0 \). For example, if all three \(i=Q=2 \) then the prefactor in (3.80) develops a pole and the difference of hypergeometric functions vanishes. A short calculation shows that the limit \(i=Q=2 \) is smooth and

\[
D e^\frac{1}{2} e^{-Q} (z_1 z_2) \frac{E}{z_1 z_2} z_1 z_2 = \left(\begin{array}{c} 3Q=2 \\ p_{12} z_{12}^{p_{12}} z_{13}^{p_{13}} z_{23}^{p_{23}} \end{array} \right) j^2 (z_1 z_2) (z_3 z_4) \]

where \(F(x) = F(1/2,1/2,1;\ldots) \) is an elliptic integral of the first kind. In particular, \(F \) has logarithmic singularities \(F(x) \sim \frac{1}{x} \log(\frac{1}{x}) \) as \(x \to 0 \), resulting in logarithmic short-distance singularities in the correlator (3.80).\(^{15}\)

Remarks:

1) The formula (3.80) probably only applies when \(s = 0 \), otherwise there are paradoxes.

2) The operator \(e^\frac{1}{2} \) is by no means the only null vector in the Liouville theory. Using the Kac determinant formula, one may ask for the set of all operators \(e^\frac{1}{p} \) which weights \(p_{12} \) where \(p_{12} \) are integer. The result is

\[
j_{p_{12}} = \frac{1}{2} (p - 1) + \frac{1}{2} (q - 1) \:
\]

In principle this allows one to extend the above example to an infinite set of correlators.

\(^{15}\) It is sometimes suggested in the literature that the subleading logarithms indicate that the correct vertex operator is \(e^{(Q=2)} = \frac{1}{Q} e^{(Q=2)} \), with the derivative corresponding to the limiting procedure needed above.
3.11. Surfaces with boundaries

The final method for extracting Liouville correlators, and the one which is most closely connected to matrix model methods, is the computation of macroscopic loop amplitudes. These amplitudes in Liouville theory form manifolds with boundary, for which the Liouville action picks up the extra boundary contribution

$$S_{\text{Bulk}} + \frac{Q}{8} \int_{y} d\xi \hat{k} + \frac{\sqrt{2}}{2} \int_{y} d\xi e^{\hat{k}'} = 0; \quad (3.82)$$

where \hat{k} is the extrinsic curvature of the boundary, $d\xi$ is the reference line element, and is the boundary cosmological constant.

We have a well-defined variational principle if we choose Dirichlet boundary conditions ($\theta = 0$), or Neumann boundary conditions:

$$\frac{\partial}{\partial n} \theta + \hat{k} + \frac{\sqrt{2}}{2} e^{\hat{k}'} = 0; \quad (3.83)$$

where the first term is the normal derivative.

Just as we can introduce amplitudes at fixed area using the operator (3.33), when using Neumann boundary conditions we can introduce amplitudes at fixed length by introducing the length operator of a boundary loop C, given by

$$' = \int_{C} d\xi e^{\hat{k}'} \quad (3.84)$$

While this is obvious in the classical theory, surprisingly it continues to hold exactly in the quantum theory [55].

Exercise. Boundary operators

a) Assuming has free, e.g. Neumann short distance singularities near the boundary,

$$(z) \quad (w) \quad \log z \quad w \quad \log w \quad w$$

(wherew we think of the boundary as the x-axis for the upper half plane), show that the vertex operator e^z, when inserted on the boundary has boundary conformal weight $b = 2^2 + Q$ and thus (3.84) is well-defined. A discussion of boundary operators in conformal field theory may be found in [56].

b) Show that the argument analogous to (3.55) suggests the bound

$$\frac{Q}{4} \quad (3.85)$$

for boundary operators.

16 In the dense phase of the O(n) model coupled to gravity, Kostov and Staudacher [57] have given examples of loop operator exponents which appear to give counterexamples to the bound (3.85).
From our experience with conformal field theories in Chapter 1, we may expect that if we insert a \(\text{macroscopic loop operator} \)
\[
W_c (') = \int_c d\sigma e^{\frac{1}{2} \sigma}
\]
in the Liouville path integral and then shrink the circumference to zero, then \(W_c (') \) may be replaced by an infinite sum
\[
W (') = \sum_{j} x_j j ;
\]
where \(j \) are local operators which can couple to the boundary state created by \(3.86 \).

Exercise. Exponents in Loop Expansion

Suppose that there is an expansion like \(3.87 \) in which the operators \(j \) have Liouville charge \(j \), i.e.
\[
j P (\theta; \theta) e^{j} ;
\]
where \(P \) is a polynomial. Show that the exponents \(x_j \) of \(3.87 \) can then be found by a variant of the simple scaling argument we have used in \(3.49 \) and earlier. Consider a Liouville path integral with the operator \(W (') \) inserted, and shrink the hole. Show that the path integral scales as
\[
e^{\frac{1}{2} Q + j + \frac{1}{2} x_j} ;
\]
from which follows
\[
x_j = Q = 2 j = 2 \left(\frac{1}{2} Q \right) ;
\]
\(j \neq 0 \).

Note that \(x_j = 0 \).

It turns out that, because of the geometrical nature of Liouville theory, the expansion \(3.87 \) is only valid under certain circumstances. This may be seen by a semi-classical study of amplitudes with loops \[36\], analogous to the semi-classical considerations above. The main results of this study are the following:

1) Let \(s = \sum_{i} \frac{1}{2} Q \), where \(= 2 \) \(2h \) \(B \) on a surface with \(h \) handles and \(B \) boundaries. If \(s > 0 \), the \('! 0 \) behavior of \(W (') \) is equivalent to a sum of local operators. In particular, this is always the case if there are two or more loops on the surface (including the one that shrinks).

2) As noted in the above exercise, \(x_j = 0 \) for local operators. Coefficients of negative powers of \('! 0 \) arise from small area divergences and are analytic in \((\text{and other coupling constants, in the context of 2D gravity}) \). Therefore they are interpreted as arising from small area size surfaces, and such terms are classified as non-universal contributions when comparing with matrix model answers.
4. 2D Euclidean Quantum Gravity II: Canonical Approach

It will be useful to work with the canonical approach to two dimensional gravity. In this chapter, we are led to introduce in particular some of the details of the algebraic (BRST) point of view (to be pursued further in secs. 14.4, 14.5). We hope that providing a common language will help bridge the schism between the algebraicists and the matrix model theorists, who are after all em playing two complementary approaches to study the same subject.

4.1. Canonical Quantization of Gravitational Theories

For a review of the canonical approach to Einsteinian general relativity, see [58, 59]. Since gravitational theories are gauge theories, we are immediately led to study constrained dynamics.

The canonical approach applies to spacetime M which admit a space-time foliation: we assume there is a diffeomorphism $\mathbb{R}! M$, where \mathbb{R} is a D-dimensional spacelike manifold. Choosing a unit normal to the surface, we may project the metric onto components parallel and perpendicular to the surface. The restriction $(^{D^1})g$ of the metric g to the spatial surface defines the canonical coordinates, while the time (time and time, space components of the metric are expressed in terms of Lagrange multipliers for constraints of the theory (the "lapse" and "shift"). In Einsteinian general relativity, the constraints associated with the lapse and shift are the time (time and time, space components of the Einstein equations: $G_{00} = 0; G_{01} = 0$. In the canonical theory, these are the generators of time and space diffeomorphisms.

In the canonical quantization of gravity, wavefunctions are functions of the spatial metric (and other fields in the theory): $\Psi = [^{(D^1)}g; m]$ atter]. The requirement of gauge invariance states that wavefunctions are required to obey operator versions of the space and time diffeomorphisms. The Wheeler-DeWitt equation is the equation expressing the invariance under the generator of time-diffeomorphisms [60, 62] and plays a fundamental role in the theory.

In non-Einsteinian metric theories of gravity, including for example gravity in one and two spacetime dimensions, a completely analogous formulation may still be obtained by performing constrained quantization of a theory with diffeomorphism invariance.
4.2. Canonical Quantization of 2D Euclidean Quantum Gravity

Di eomorphisms are generated by the energy-momentum tensor T. In the canonical approach, the di eomorphism constraints of quantum gravity become the statements that the tensor product theory Liouville matter is a conformal field theory of central charge $c = 0$ (including the ghosts) with a BRST complex, and moreover the states in the theory lie in the BRST cohomology of the theory.

If massive matter is coupled to gravity, then the realization of the Virasoro algebra on the full Hilbert space is far from obvious. In the special case where the Hilbert space is a tensor product $L \otimes M$ of Liouville and matter M conformal field theories (e.g., $M = M_{p;q}$ minimal conformal field theory, is frequently considered), however, the situation simplifies dramatically. Naively the wavefunctions are now functions of the spatial metric, parametrized by $()$ and the matter degrees of freedom. When formulating 2D quantum gravity in the context of conformal field theory, however, the di eomorphism constraints are properly enforced through the calculation of BRST cohomology with respect to the Virasoro algebra. The condition that nontrivial cohomology exists immediately implies that the total central charge is zero (see comment after (2.16)) so that

$$c + 1 + 3Q^2 = 26 = 0 \quad \Rightarrow \quad Q^2 = \frac{25}{3}$$

where c is the central charge of M.

Remarks:

1) There are three kinds of cohomology problems we can study, depending on how we treat the zero modes of $b(z); b'(z)$. In relative cohomology" we require $b(z) = b'(z) = 0$ on states and gauge parameters. In semi-relative cohomology" we impose the condition $b(z) = b'(z) = 0$ on states and gauge parameters. In absolute cohomology" we impose no conditions pertaining to the b, b' zero modes.

2) In 2D gravity (and string theory) there is an important duality on the cohomology spaces. If a form a basis for the semi-relative cohomology then there will be a dual basis defined such that the BPZ inner product $h^b_{a(i)} h_{j(0)}$ is diagonalized. If a is in the semi-relative cohomology then ah will not be in the semi-relative cohomology. One can define $\sim^b h^b_{a(i)} h_{j(0)}$ which will be in the semi-relative cohomology. This conjugation $^b h_{a(i)} \sim^b h^b_{a(i)}$ which exchanges states of ghost number G and $5 - G$ plays a crucial role in string field theory, and will be important in the considerations of chapt. 14.

3) In the literature, not much attention is devoted to defining precisely the boundary conditions on field space (i.e., space-time) for the cohomology problem. However, such boundary conditions are very important physically, as we shall see.
4.3. KPZ states in 2D Quantum Gravity

KPZ states refer to a special class of BRST cohomology classes associated to the primary fields of the \((p;q)\) minimal models which result when these theories are coupled to gravity.

For states with a trivial ghost structure the W heeler(DeWitt constraint, implementing invariance under time d eformation s, becomes

\[
L_0 + \overline{L}_0 \; 2 = 0 \tag{4.2}
\]

where \(L_n\) are the modes of the total stress energy tensor for \(L \; M\), and the \(2^2\) is the ghost contribution. For \(M = M\) \((p;q)\), the KPZ operators \(0 = e_0\), where \(0\) is a primary in \(M\) \((p;q)\) (as described in sec. 2.2), the wavefunction \(0\) further factorizes

\[
0 = m \text{ matter } _0 ^{\text{gravity}} ; \tag{4.3}
\]

and is separately an eigenstate of \((L_0 + \overline{L}_0)\text{ matter}\). In this case the W dW equation becomes

\[
(L_0 + \overline{L}_0)^{\text{Liouv}} + x + \overline{x} \; 2 \; \text{gravity} = 0 \tag{4.4}
\]

![Diagram](image)

Fig. 6: Solution to minisuperspace W heeler(DeWitt equation decaying at large lengths.

If matter boundary conditions are separately di eomorphism invariant, we expect to depend on only the d eformation invariant information in \(H\), namely, on the length \(\ell = e^{-\frac{H}{k}}\). In any case, in the minisuperspace approximation we replace

\[
\frac{1}{2}(L_0 + \overline{L}_0)^{\text{Liouv}} = \frac{2}{4} \left(\frac{\Theta}{\Theta^2}\right)^2 + 4 \; r^2 + \frac{1}{8} Q^2 ; \tag{4.5}
\]
Using the KPZ formula (2.26) written as

\[x + \frac{1}{8}Q^2 = \frac{1}{2} \left(\frac{1}{2}Q \right)^2 \]

(4.6)

(as suggested after 3.22), we obtain the minimal superspace W heeler-Dewitt equation

\[\left(\frac{\theta}{\theta'} \right)^2 + 4 \left(\frac{\theta}{\theta'} \right)^2 + 2 \left(\frac{\theta}{\theta'} \right) = 0 ; \quad = \frac{2}{\theta} \left(\frac{1}{2}Q \right) ; \]

(4.7)

The solution decaying at large lengths is the non-normalizable wavefunction

\[\phi (\theta') / K \left(\frac{1}{2} - \epsilon \right) ; \]

(4.8)

illustrated in fig. 6.

As promised in sec. 3.5, the wavefunctions corresponding to geometries (3.33) appear naturally in the theory. From the geometrical picture of chap. 3, it is natural to associate this geometry with the insertion of a local operator at \(t = 1 \). In [1], Seiberg has further interpreted the blowup of the wavefunction at short distances as being physically appropriate. The idea is that the wavefunctions associated to local operators in quantum gravity should have support on metrics which are infinitesimally small in the physical metric \(g \) (because they are local).

Remark: In (4.5) we appear to have made an approximation. Astonishingly, matrix model calculations (for example eq. 10.19 below) confirm that (4.8) is exact. It is not understood why this should be so.

4.4. LZ states in 2D Quantum Gravity

So far we have discussed only the KPZ states in which the ghost modes are not excited. These form only part of the full spectrum of the theory, as demonstrated in the continuum formulation in the work of Lian-Zucker [63, 64]. Treating the Liouville field as free, they calculated the semi-infinite (BRST) cohomology of \(L = M (p,q) \), and found that the cohomology is spanned by operators of the form

\[O_n e^n ; \quad n = \frac{p + q}{2q} n \quad 1; \quad 0 \text{ mod } p; \quad 0 \text{ mod } q ; \]

(4.9)

and is determined as in (2.13). The operator \(O_n \) is made of ghosts, matter, and derivatives of \(\epsilon \). The ghost number of \(O_n \) depends linearly on \(n \).

53
In the KP formalism of the matrix model to be described in sec. 7.7, on the other hand, scaling operators formed from fractional powers of Lax operators (which have known lattice analogs) will be constructed and scale like Liouville operators of the form

\[O_n e^n ; \quad n = \frac{p+q}{2q} n \quad 1; \quad 6 \mod q; \quad (4.10) \]

where \(q < p \) (but the \(n \neq 0 \mod p \) restriction is lifted). In sec. 7.7, we will see how these operators arise in the matrix model formulation.

Let us now consider the discrepancies between the calculations. First, in the LZ computation there is no reason to restrict attention to states satisfying \(Q = 2 \). This is quite appropriate, since the computation applies equally well when \(n = 0 \), in which case there is no wall to induce total reflection of the wavefunctions and hence identify states with \(E \) or \(\bar{E} \). There is a further discrepancy of operators with \(n = 0 \mod p \). This has been partially explained with boundary operators [55]. A part from this, the two calculations are in remarkable agreement. Nevertheless it is an important open problem to understand better the physical meaning of the Lian-Zuckerman states and their relationship, if any, to the infinite tower of scaling operators in the matrix model.

In the case of the one-matrix model, the infinite tower of operators corresponding to \(K^j \bar{1} \bar{j} \) (in the notation of sec. 7.7) are denoted by \(j \), and will be studied in more detail in sec. 10.2 below.

4.5. States in 2D Gravity Coupled to a Gaussian Field; more BRST

Consider now the coupling of Euclidean gravity to a massless Euclidean scalar field in two dimensions:

\[S = \int d^2z \left(\frac{1}{2} (\nabla \phi)^2 + \frac{Q}{8} R(\phi) + \frac{1}{8} e^{\phi} + \frac{1}{2} (\nabla X)^2 \right); \quad (4.11) \]

where \(X \) is the real massless boson. The KPZ equations (2.16) and (2.19) for \(D = 1 \) imply that \(Q = p \frac{1}{8} \) and \(\bar{P} = \frac{1}{2} \).

Cosmological constant operator at \(c = 1 \)

According to some authors, the correct quantum effective action must have a cosmological constant term given by \(e \). Many confusing issues related to this point are not well understood (as of Sep. 92). The argument in favor of this identification is that the usual relation between the wavefunction and vertex operator, together with the wavefunction behavior \(K_0(\tau) \propto \log' \), suggests an extra factor of \(e \). A second argument is based on
the $p = 0$ behavior of amplitudes studied in sec. 13.6 below, and a third is based on the relation between bare and renormalized cosmological constants at $c = 1$ given in sec. 11.6. We end note none of these arguments entirely convincing.

Spectrum of $= 0$ versus > 0

The BRST cohomology of the theory \((4.11) \) was calculated in the $= 0$ theory by Lian and Zuckerman. Their results were simplified and extended in [65, 66, 67]. In this section we describe some of these results. The following argument, based on the string-theoretic/spacetime interpretation of these theories described in chapt. 5, suggests that, except for the imposition of the Seiberg bound, the physical states should be the same: the Liouville interaction disappears for $! 1$. Thus, states that have wavefunctions concentrated in this region must behave like states in the free theory, in particular, the interaction is arbitrarily weak in this region and "ought not" create or destroy extra states. This is not true of states concentrated at $! + 1$, which is why we must impose the Seiberg bound. This argument is surely correct for the tachyon cohomology classes, but is not obviously correct for the global modes associated to the discrete states.

The nature of the cohomology depends strongly on the value of q, the $X \equiv$ eik m momentum as measured by $\frac{p}{2} X$. For generic $q \not\in \mathbb{Z}$ there are states in the BRST cohomology of ghost number $G = 2$ and dimension zero. These are the gravitationally dressed vertex operators

$$V_q = \alpha e^{i q X} \frac{p}{2} e^{p \frac{1}{2} \xi \gamma}$$

$$\overline{V}_q = \alpha e^{i q X} \frac{p}{2} e^{p \frac{1}{2} \xi \gamma} : (4.12)$$

The operators \overline{V}_q violate the condition $Q = 2$ discussed in sec. 3.4. We will comment below that they do not appear in the matrix model computations. As in sec. 4.3, we expect 2D gravity wavefunctions associated to the operators V_q to be $\frac{\pi}{2} K_q (2^{P_t})$. We will comment this in chapt. 11. As discussed in sec. 4.2 above we should distinguish between absolute, relative, and semi-relative cohomology. If we are working with the absolute cohomology, we must introduce the operator \([66] \)

$$a = [Q ;] = c \alpha + \frac{p}{2} \alpha c ; (4.13)$$

and its holomorphic conjugate. Then we have extra states: $aV_q, aV_q, a \alpha V_q$. In the semi-relative cohomology, we must include the extra state $(a + a) V_q$.

17 Ghost number G always refers to the total left-right moving ghost number in the closed string case.
In fact, the $c=1$ model has much more cohomology. First of all, there are many more primary fields in the theory which may be gravitationally dressed by Liouville exponentials. This is most elegantly seen by considering the chiral $SU(2)$ current algebra that arises when a Gaussian field X is compacted on a self-dual radius [20]. The currents are given by

$$J^{(1)}(z) = e^{p_{-}X}, \quad J^{(3)}(z) = \frac{i}{2} \Theta X :$$

(4.14)

Then, for $s = 0;1=2;1;\cdots$, we have highest weight fields $s_{p} = e^{i s_{p} X}$ for the global $SU(2)$. We can thus make chiral weight $(1;0)$ Virasoro highest weight fields from

$$j_{m}(z) = \frac{s}{(j + m)!} \frac{i}{2} \int dz e^{i p_{-}X} j^{m} j_{j} :$$

(4.15)

where $m \geq j; j + 1; \cdots; j + 1;jg$.

Exercise. Characters of Fock modules

When $q \in Z$, the Fock module has a highest weight vector with Virasoro weight $q^{2}=4$. In this case it is known from Virasoro representation theory that the Fock space F_{q} becomes in nitely reducible, i.e., that F_{q} contains in nitely many Virasoro primaries.

The characters of the irreducible $c=1$ representations of the Virasoro algebra with weight are [40,45]:

$$= q^{p \in Z} q^{n^{2}=4} q^{(n+2)^{2}=4} = q^{n^{2}=4} n \in Z :$$

(4.16)

a) Using these characters and the fact that F_{q} contains no singular vectors, show that when $q \in Z$, the Fock module can be written as

$$F_{n=\frac{p_{-}X}{2}} = \frac{1}{r=0} L \ c = 1; \quad = \frac{(n + 2r)^{2}}{4} ;$$

(4.17)

where L is the irreducible representation with highest weight.

b) Show that the state $J_{-1}J_{1}i$ corresponding to $\Theta X \Theta X$ is an example of a nontrivial Virasoro primary in the Fock module with $q = 0$.

56
Therefore the chiral cohomology contains the fields
\[Y_{jm}^+(z) = c_{jm}(z) e^{\frac{p}{\sqrt{2}} (1,j)} \]
\[= c_{P_{nm}}(\Theta X) e^{\frac{p}{\sqrt{2}} nX} e^{\frac{p}{\sqrt{2}} (2(n+2r))} \]
with ghost number \(G = 1 \) and dimension zero. In the second line of (4.18), we set \(n = 2m \) and we have emphasized the description of the exercise: the highest weight in the \(r \)th term of (4.17) is generated by the highest weight state \(P_{nm}(\Theta X) e^{\frac{p}{\sqrt{2}} nX} \), where \(P_{nm}(\Theta X) \) is a polynomial in derivatives of \(X \) of dimension \(nr + r^2 \), and \(s = r + n = 2 \). This state has Liouville momentum \(ip = \frac{p}{2} = 2 + Q = 2 = (n+2r) = 2 = s \).

Although we have constructed these states by appealing to the symmetry structure at the self-dual radius, they will give rise to BRST cohomology classes at other radii by combining left- and right-moving. In particular, at infinite radius we may form the states
\[S_{jm} = Y_{jm}^+ \overline{Y}_{jm}^+ \]
with ghost number \(G = 2 \) and dimension zero. In the absolute cohomology we must include the states \(a Y_{jm}^+ \), and so on.

Fig. 7: A plot of the quantum numbers of the special states in the \((p_x; ip) = \frac{p}{\sqrt{2}} \) plane. The special states intersecting the tachyon dispersion line at \(jm = j \) are called "special tachyons." Note that if one works at \(\epsilon = 0 \), the Seiberg bound does not hold and one should include the other states \(Y_{jm} \). These constitute an identical plot obtained by reflecting \(p \) ! \(p \).

57
We may plot the quantum numbers of these states as in g. 7. The big surprise, discovered by Lian and Zuckerman, is that at the points in g. 7 interior to the wedge there are extra cohomology classes. The above-mentioned classes only account for half of the BRST cohomology. For every class Y_{jm}^+ with $j = 1, 2, \ldots$, and $j < j$ there is a corresponding class O_{jm}^+ with the same X momenta but with ghost number zero. The first three examples are

$$O_{0,0} = 1$$

$$O_{1,2; 1,2} = \text{bc } \frac{1}{2} (\Theta + i\Theta x) e^{(ix) = \frac{p \cdot x}{2}}$$

(4.20)

$$O_{1,2; 1,2} = \text{bc } \frac{1}{2} (\Theta + i\Theta x) e^{(ix) = \frac{p \cdot x}{2}}$$

Fig. 8: The wedge of g. 7, with the chiral ground ring states enumerated.

A plot of these "ground ring" states is shown in g. 8. Lian and Zuckerman show that there are no other chiral cohomology classes. The full closed string cohomology is formed by combining the above classes subject to constraints on left- and right-moving momenta. Since we do not compactify the Liouville field, we must impose $p^L = p^R$. The conditions on p_X depend on the radius of compactification [20]. For the $X - \text{eik}$ with finite radius $R = 1$ (our usual case), we have $p^R_X = p^L_X$. When X is compactified at special radii, e.g. the self-dual radius, this condition may be relaxed and there will be more BRST cohomology classes.
Remark: In general there will be "special states" when the X-field is compacted on a circle of radius $r = \frac{1}{2} \frac{P}{q}$ where $p; q$ are relatively prime integers. The special states must have the $(\frac{p}{Q}, \frac{k}{P}) \frac{Z}{Z} = (kq + lp; kq + lp)$ where $k; l$ are arbitrary integers. Note that the zero momentum special states are present at every radius.

The appearance and disappearance of special states as the radius is varied is a puzzling phenomenon. It has been discussed in [63].

Thus we may finally summarize the relative closed string cohomology at $R = 1$: In addition to the tachyon states (4.12) we have four states at ghost numbers $G = 0; 1; 2$ in the relative cohomology:

$$G = 0: \quad R_{jm} = O_{jm} O_{jm}, \quad j = 0; 1 = 2; \cdots; j_n \ j$$

$$G = 1: \quad J_{jm} = Y_{jm}^+ O_{j 1m}, \quad J_{jm} = O_{j 1m} Y_{jm}, \quad j = 1; 3 = 2; \cdots; j_n < j \quad (4.21)$$

$$G = 2: \quad S_{jm} = Y_{jm}^+ Y_{jm}, \quad j = 1; 3 = 2; \cdots; j_n < j.$$

As pointed out in [64], the semi-relative cohomology is more appropriate for comparison with closed string field theory (see [44]). The semi-relative cohomology has 4 more states at ghost numbers 1, 2, 3 obtained by multiplying the above operators by $a + a$. Explicit formulæ for special state representatives, as well as an alternative proof of the Lian-Zuckerman theorem has been given in [65].

Remark: Conjugate States

The tilde conjugation \tilde{s}^{\dagger} described in sec. 4.2 above is important for understanding the factorization properties of amplitudes. The behavior of this conjugation is rather different at $a = 0$ and $a > 0$. At $a = 0$ we have standard free-field formulæ. In particular \tilde{s}^{\dagger} exchanges states with ghost number G and $G + 1$. It also exchanges (\pm) states with (\mp) states. At $a > 0$, there are no (\mp) states and it might appear that a fundamental axiom for constructing string field theory has broken down. This is not the case, since the Liouville 2-point function has a geometrical divergence coming from the volume of the dilation group R_+. (See sec. 3.7.) This divergent numerator is precisely what is needed to cancel the division by the volume of the conformal killing group that results if we only insert 4 out of 6 c; c (zero modes. Thus we can have a nonzero 2-point function:

$$D_{\omega c} e^{ip_1 X} = \int_{\omega c} e^{ip_1 X} = \int_{\omega c} e^{ip_1 X(1 \frac{1}{2} \frac{p_1}{p_2})}$$

$$(p + p_2) : \quad (4.22)$$

\tilde{s}^{\dagger} We thank N. Seiberg for clarifying this point.
On the RHS we have one, rather than two, \{functions in the momenta of the problem\}. In general, we see that the conjugation \(s \mapsto \sim s \) at \(> 0 \) exchanges ghost numbers \(G \) and \(4 - G \), and preserves the (+)\{states satisfying the Seiberg bound\}.

As emphasized in [67], the existence of the ghost number one BRST classes implies the existence of a large symmetry algebra. Indeed, quite generally, given a dimension zero BRST class \(^{(0)} \) we may associate with it a descent multiplet \(^{(0)}; ^{(1)}; ^{(2)} \) consisting of \(0; 1; 2 \) forms defined by the descent equations:

\[
\begin{align*}
0 &= fQ; ^{(0)}g \\
d^{(0)} &= fQ; ^{(1)}g \\
d^{(1)} &= fQ; ^{(2)}g
\end{align*}
\]

Exercise. Descent Equations

a) Using \(fQ; b \) \(g = L \), show that in terms of states associated to the operators the descent equations read:

\[
\begin{align*}
j_{z}^{(1)}i &= b; j_{z}^{(0)}i \\
j_{z}^{(1)}i &= b; j_{z}^{(0)}i \\
j_{zz}^{(2)}i &= b; j_{z}^{(0)}i
\end{align*}
\]

The significance of the descent multiplet is that to any BRST invariant dimension zero operator \(^{(0)} \), we may associate 1) a corresponding charge

\[
A \left(^{(0)} \right) ^{(1)};
\]

conserved up to BRST exact operators, and 2) a corresponding modulus, by which we can deform the action,

\[
S = \left(^{(2)} \right);
\]

while preserving BRST symmetry.

Exercise. Tachyon descent multiplet

Show that the descent multiplet for the tachyon vertex operator is

\[
\begin{align*}
G = 2: \quad &V_{p}^{(0)} = c^{\text{c}}e^{ipx} = e^{(P \tau_{1}(1 \frac{1}{P}))} \\
G = 1: \quad &V_{p}^{(1)} = (dz \bar{c} - d\bar{z} c) e^{ipx} = e^{(P \tau_{1}(1 \frac{1}{P})} \\
G = 0: \quad &V_{p}^{(2)} = dz \wedge d\bar{z} e^{ipx} = e^{(P \tau_{1}(1 \frac{1}{P})}
\end{align*}
\]
The descent multiplet turns out to be nontrivial for the ghost number $G = 1$ states in \([4, 23]\): $J_{jm}^{(0)} = Y_{jm}^+ \circ_{jm}^1$ and its holomorphic conjugate. Therefore, there are corresponding currents $A_{jm}^{(1)}$, conserved up to BRST exact operators, which produce \"discrete charges\"

$$A_{jm} \int dz_{jm}^{(1)};$$ \hspace{1cm} (4.28)

and their holomorphic conjugates A_{jm}, which are conserved up to BRST exact operators. As described in \([60]\) and in chap. 14 below, the existence of these charges have nontrivial consequences for correlation functions computed in the $\varphi = 0$ theory. The quantum numbers of the charges are plotted in fig.9.

As at $c < 1$, an important open problem is to understand better the role of these states in quantum gravity. Moreover, an important open problem is to find matrix model techniques for investigating the $O_{u,n}$.

5. 2D Critical String Theory

Further insight into the spectrum of 2D gravity is obtained when we consider the string\{theory/target space point of view, in which we regard as a spacetime coordinate. The KPZ formula is now interpreted as the on-shell condition for Euclidean target space.
5.1. Particles in D Dimensions: QFT as 1D Euclidean Quantum Gravity.

In chapters 3 and 4, we have discussed 2D Euclidean quantum gravity. In this section, we apply the same techniques to 1D Euclidean Quantum Gravity. While the theory is trivial as a theory of quantum gravity, it has an important and obvious reinterpretation in terms of target space Euclidean quantum field theory.

Path Integral Approach

An example which will illuminate our later considerations is that of a particle moving through Euclidean spacetime. This may be thought of as 1D quantum gravity since the system is described by the action

\[S = \frac{1}{2} \int d^2 \mathbf{p} \frac{g(\mathbf{p})}{g(\mathbf{p})} \int dx \frac{dx^2}{m^2} \]

We consider the path integral

\[A(X;X_f) = \frac{Z}{\Delta} \int d^D x e^S; \]

with boundary conditions \(X;X_f \) on \(X \). We can gauge by transforming the einbein to a constant, \(e = s \), where \(s \) is the single coordinate invariant quantity (i.e. modulus), namely the length. The path integral becomes

\[A(X;X_f) = \frac{Z}{\Delta} \int ds^{D-2} e^{S_2} e^{S_4} / \int e^{S_2} e^{S_4}; \]

since the determinant is proportional to \(s \).

Canonical Approach

Turning to the canonical approach, the action (5.1) has a gauge invariance:

\[X = (\mathbf{X}) \mathbf{0}; \quad \mathbf{e}(\mathbf{X}) = \mathbf{0}; \quad \mathbf{e}(\mathbf{X}) + (\mathbf{\dot{X}}); \]

We can gauge by putting \(e = 1 \) at the price of imposing a constraint. The Wheeler-Dewitt operator, which generates diffeomorphism, is simply \(H = \mathbf{p}^2 + m^2 \), where \(\mathbf{p} \) is the field canonically conjugate to \(\mathbf{X} \). The Wheeler-Dewitt equation is the Euclidean Klein-Gordon equation:

\[H(X) = \frac{\partial^2}{\partial X^2} + m^2 = 0; \]
If we isolate one Euclidean coordinate, call it \(\bar{p} \), as a special coordinate, then we can write the Euclidean on-shell wavefunctions as \(\exp p \bar{p} e^{i\bar{p} \cdot \bar{p} + m^2} \). As long as there are no tachyons in the theory, these wavefunctions have exponential growth and are not normalizable. Conversely, the existence of Euclidean on-shell normalizable wavefunctions is a signal of tachyons in the theory.

In order to describe o-shell physics, we introduce the normalizable states which diagonalize the Wheeler-DeWitt operator: \(\exp p \bar{p} + iE \), with eigenvalue \(E^2 + p^2 + m^2 \). For example, in a mixed position-space/momentum-space representation where we Fourier transform with respect to all other coordinates, we may describe the propagator as

\[
G(p', p''; p) = \frac{1}{Z} \int dE \frac{e^{iE'p'} e^{iE''p''}}{E^2 + p^2 + m^2} \quad (5.6)
\]

\[
= \left(\frac{1}{2}\right) \frac{1}{p^2 + m^2} e^{iE'p} \prod \left[1 \right]
\]

Exercise. Back to the wall

What happens if \(\bar{p} \) \(\) is restricted to be semi-infinite? Put a boundary condition that the wavefunctions vanish at \(\bar{p} = \log \) and calculate the analog of (5.6).

Interactions and Topology-Change

One-dimensional quantum gravity from the target space viewpoint provides a useful insight into the origin of the violation of the Wheeler-DeWitt constraint in topology-changing processes. In this case, a topology-changing process corresponds to one 0-dimensional space splitting into two as in

\[
p_1 \quad p_3 = p_1 + p_2
\]

\[
p_2
\]

The violation of the Wheeler-DeWitt constraint is simply the familiar fact that if \(p_2^2 = m^2 \) are on-shell, then in general \(p_3^2 = (p_1 + p_2)^2 \neq m^2 \) will not be on-shell.

This above basic phenomenon can also be realized as the result of a contact term arising from a singularity at the boundary of \(\text{moduli space} \). Consider the wavefunction of a particle that interacts with an external potential \(V \) so that the wavefunction becomes

\[
\tilde{\psi}(\bar{p}) = \frac{1}{Z} \int d\bar{p} e^{i\bar{p} \cdot \bar{p} + m^2} e^{i\bar{p} \cdot V} \quad (5.8)
\]
where H is the Wheeler-DeWitt operator. Note that

$$H = \int \frac{Z}{1} d^0 \frac{\theta}{\theta} e^{-\theta (0)^{\nu}} V = V \neq 0; \quad (5.9)$$

so the condition $H = 0$ is not preserved under time evolution.

5.2. Strings in D Dimensions: String Theory as 2D Euclidean Quantum Gravity

Nonlinear $-$ Model Approach. The particle Lagrangian can be generalized to a string Lagrangian, which we recognize as a 2D nonlinear model, and the quantum theory involves a path integral over surfaces. To describe strings propagating in general manifolds we should in principle consider arbitrary 2d quantum field theories:

$$S = \frac{1}{4} \int d^2 z \cdot \frac{P}{g} T(\chi) + R^{(2)} D(\chi) + g^{ab} \theta_a \partial \chi \theta_b \xi G(\chi) + \cdots; \quad (5.10)$$

where $X = \chi^{0,1,\ldots,\eta}$ parametrize a D-dimensional spacetime target space and the ellipsis indicates a sum over a possibly infinite set of irrelevant operators.

Pertinent operators?

We are expanding here around the Gaussian fixed point, since we think of each coordinate X as a Gaussian field. Including arbitrary interactions is a very formal procedure which must be made well-defined. An infinite sum of irrelevant operators might not be irrelevant at all, but might be the effect of expanding around the wrong fixed point.

In standard treatments of string theory, it is shown that a consistent string theory can be formulated from models of the above type when they are conformally invariant (more precisely, BRST invariant). The model is conformally invariant when the functions vanish, that is, when the spacetime equations of motion,

$$G = R + 2r \partial_r \partial D \partial_r T + \cdots = 0$$

$$D = \frac{26}{3} \partial_r R + 4(r D) \partial_r D + (r T)^2 \partial_r D + (r T)^2 + 2T^2 + \cdots = 0 \quad (5.11)$$

$$T = 2r^2 T + 4r D \partial_r T + 4T^2 + \cdots = 0;$$

are satisfied. The dots indicate higher order (in the string tension α') corrections, including tachyon interactions. These (function equations themselves follow from an action[72])

$$S = \frac{1}{2} \int d^4 x \frac{P}{G} e^{2D} R + 4(r D)^2 + \frac{26}{3} \partial_r \partial_r D \partial_r T + 2T^2 + \cdots; \quad (5.12)$$

19 The nonderivative dependence on T follows from very general considerations [73].
Consider the case when the matter conformal field theory S_{CFT} is a product of Gaussian models,

$$S_{\text{CFT}} = \frac{Z}{g} \frac{1}{8} \left(\phi^2 \right)^2 ;$$

(5.13)

together with one CTFF field (the Chodos-Thorn/Feigen-Fuks field described in sec. 1.4).

Identifying ϕ with a spacetime coordinate in (5.10), we read off from comparison of (3.2) with (5.10):

$$hT i = 0 ; \quad hD i = \frac{Q}{2} ; \quad hG i = : \quad (5.14)$$

Substituting (5.14) into (5.11) and working to lowest order in $hT i$ shows that $= 0$ is satisfied provided the KPZ formulae described in chap. 2 are satisfied, so in particular

$$Q = \frac{1}{2} + \frac{P}{(26 - d)} = 3 \text{ (where } d = c + 1 \text{ in the critical string interpretation).}$$

Now let us replace the CTFF field by a Liouville field, i.e. instead of a free field we now have the Liouville interaction term. Comparing actions (3.2) with (5.11), we find the same dilaton and metric expectation values as in (5.14), but a new tachyon expectation value:

$$hT i = \frac{2}{2} e ; \quad hD i = \frac{Q}{2} ; \quad hG i = : \quad (5.15)$$

Conformal background?

The background (5.14) no longer solves the lowest order function equations (5.11). This has been blamed either on the possibility of field redefinitions, or on the fact that the above equations are only the lowest order terms in the function. We nevertheless continue with this review, since the Liouville theory is conformal.

More subtleties

There are many other subtleties and caveats associated with these assertions. For example, due to the difficulties of treating theories with matter central charge $c > 1$ for > 0, we can really understand only the case of a single gaussian model in (5.13).

The construction of a consistent string theory can be carried out for any conformal field theory with total central charge $c = 26$. In the case of a tensor product of Gaussian models, we identify each Gaussian model field with a macroscopic spacetime dimension. An arbitrary CFT is an abstract version of target spaces made from products of Gaussian models. The minimal models with $c < 1$, for example, can be thought of as generalized...
Euclidean signature spacetimes. They can be augmented to $c = 26$ and converted to consistent target spaces for string propagation by coupling to a Liouville theory since the Liouville mode has a tunable central charge.\footnote{But it always has the same number of field theoretic degrees of freedom. This remarkable aspect of Liouville theory has been explored in detail in \cite{77,73}.} For example, by introducing a free \textit{CTFF} field we can tune to lower dimensional critical string theories \cite{74}. We have already discussed some aspects of tensor products of Liouville and matter sectors in sec. 2.1, and pointed out the relation between critical strings in $d = D + 1$ dimensions and "non-critical strings" in D dimensions (when the latter interpretation exists, see footnote after (2.22)).

5.3.2D String Theory: Euclidean Signature

It is useful to recall at this point the dual interpretations of the theories we consider:

i) matter coupled to 2D quantum gravity.

ii) critical strings moving through specific background geometries.

In particular, as described in the previous section, gravity coupled to a $c = 1$ Gaussian model can be interpreted as a $d = 2$ critical string theory. The critical string interpretation of the $c = 1$ matrix model is subtle and still changing.\footnote{June 1992} Our specific action (4.11) describes strings moving in two Euclidean spacetime dimensions (X_1), and in the next section we shall consider its Minkowski continuations.

In general, the KPZ formula (2.26, 4.2) that determines the gravitational dressing for an operator coupled to 2D gravity has a dual interpretation as the Euclidean on-shell condition for string propagation in the critical string target space picture. Recall that for $c = 1$, we have $Q = 2p^\mathbb{Z}$. Thus the operators in (4.12),

$$e^{ipX} = \sum_{\mathbb{Z}^D} e^{p^\mathbb{Z}(1 - \gamma)} = e^{ipX} + e^{iE}$$

create states that satisfy the Euclidean on-shell condition

$$E^2 + p^2_X = 0$$

for a massless particle (where $p = E$ and $p_X = q = p^\mathbb{Z}$ are the and X momenta). We recognize that the KPZ formula (written in the form (4.3)) is the dispersion relation for massless propagation.
It should come as no surprise to find massless propagation in $d = 2$ critical string theory. In the light cone gauge approach to string theory, there are physical excitations associated with the motion of the string center of mass and with the transverse oscillations of the string. In two spacetime dimensions, there are no transverse oscillations so we expect to find a single field theoretic degree of freedom. The center of mass degree of freedom, which is identified with the tachyon field $T(X_d)$ of the 26-dimensional critical string, has mass-squared $m^2 = (2 - d)^2 = 12$ in d dimensions. Thus, in two-dimensional string theory we expect to find one massless field theoretic excitation.

One way to confirm the light cone statement is to consider the function derived spacetime action (5.13) in a general linear dilaton background in d dimensions, i.e. (5.14) or (5.15) with $Q^2 = (26 - d)^2 = 3$ (again $d = c + 1$ in the critical string interpretation). Changing variables in (5.14) to $T = e^p b(x)$, we find that the tachyon field has action

$$S_T = \frac{1}{2} \int dx \, \mathcal{Z} \left(\frac{1}{2} E^2 + (r^2)^2 + \frac{1}{2} b^2 + \frac{1}{12} b^2 + \text{interactions} \right).$$

In particular for $d = 2$, the field is massless.

Remark: We can view the KPZ formula as the on-shell condition for the Euclidean target space propagator as well for $c \neq 1$. Indeed from (4.3) we have

$$\frac{1}{2} E^2 + \frac{1}{2} p^2 + \frac{1}{2} m^2 = 0;$$

which we read as the Euclidean on-shell condition:

$$\frac{1}{2} E^2 + \frac{1}{2} p^2 + \frac{1}{2} m^2 = 0;$$

In the $c = 1$ model, we have seen just above that the analogy

$$x \rightarrow \frac{1}{2} p^2, \quad \frac{1}{24} c \rightarrow \frac{1}{2} m^2$$

is exact, with $m^2 = 0$.

Following the particle example we can immediately discuss the propagator

$$G(\tau_1; p; \tau_2; p) = \frac{1}{Z} \int_0^1 d\tau \left(\frac{1}{E^2 + p^2 + m^2} \right) \mathcal{E}(\tau_1) \mathcal{E}(\tau_2)$$

$$= \left(\frac{1}{2} \right) \int d\tau_1 \int d\tau_2 \left(\frac{1}{p - \mathcal{P} - \mathcal{E}(\tau_1) \mathcal{E}(\tau_2)} \right) \mathcal{K}_1 \mathcal{K}_2 + [1 \neq 2];$$

where $\mathcal{P} + \frac{1}{2} p^2 + \frac{1}{2} m^2$. This is the 2D gravity analog of (5.8) in the minisuperspace approximation. From the point of view of 2D quantum gravity, this is the universe propagator of third quantization [75,77].
5.4. 2D String Theory: Minkowskian Signature

Now we consider the possible Minkowskian continuations of our Euclidean action (4.11).

A) X is Euclidean time.

The $c = 1$ model has the clearest target space interpretation of the models we have studied. In particular if we rotate $X \rightarrow it$, we can consider t as a Minkowskian time coordinate. Taking account of the tachyon condensate, we have seen how to get the target space wavefunctions (e.g. (4.8)). Then the on-shell wavefunctions are, at tree level,

$$e^{iE t} K_{1 E}^{(1')} = e^{iE t} \frac{iE}{(1 + iE)} + O(t^2) :$$

Physically these wavefunctions describe the reflection scattering of an incoming tachyon by the Liouville wall. Since the Bessel function is a sum of incoming and outgoing waves we may, without further ado, read off the genus zero 1! 1 scattering amplitude in the theory:

$$S(E) = \frac{(iE)}{(iE)} :$$

In sec. 13.5 below, we will calculate the full nonperturbative S-matrix for this theory.

The scattering cohomology classes are

$$V_i = \sum_{\text{wavefunction}} \epsilon_P \left(\frac{\epsilon \cdot \epsilon}{P^2} \right) e^{\frac{\epsilon}{\epsilon}} :$$

where $\epsilon > 0$. Note that

i) In quantum mechanics wavefunctions depend on time as $e^{\frac{iE t}{\epsilon}}$ where $E > 0$ is a positive energy. When calculating scattering matrices in a path integral formalism, we insert out and in respectively for outgoers and incomers. Therefore the vertex operators create scattering states according to:

$$V_i : \text{incoming rightm over}$$

$$V_i^+ : \text{outgoing leftm over} :$$

Since we are effectively discussing scattering theory in a half-space, incomers are rightm overs and outgoers are leftm overs. This is the spacetime version of the Seiberg bound (3.40).
ii) We must work with macroscopic states to have (plane-wave) normalizable wavefunctions in Minkowski space, required to set up a sensible scattering theory.

B) is Euclidean time.

In this case we must rotate \(\phi \) to obtain a Minkowskian interpretation. Unfortunately, the rotation is problematic for \(\theta > 0 \). The reason is evident from the zero-mode part of the Liouville path integral (3.161). If \(\theta > 0 \), then in the complex \(z_0 \) plane (i.e. zero modes of) there is a series of "ridges" along the lines \(\text{Im}(z_0) = (2n + 1) = n \in \mathbb{Z} \), which invalidate any contour rotation: the right answer cannot be obtained by rotating \(\phi \) and expanding in a series of \(\phi \)-functions (except, perhaps, by dumb luck).

These objections disappear if we consider the \"free Liouville theory\" with \(\theta = 0 \). There is no obstruction to rotating \(\phi \) where \(t \) is a time-like coordinate. The natural BRST classes are

\[
T_k = \alpha e^{ik(\chi + pt)} e^{p^2 \bar{z}_t};
\]

which now have the interpretation

\[
\begin{align*}
T_k^+ &: \text{incoming left over } k < 0 \\
T_k^+ &: \text{outgoing left over } k > 0 \\
T_k^- &: \text{outgoing right over } k < 0 \\
T_k^- &: \text{incoming right over } k > 0 ;
\end{align*}
\]

Since there is no wall at \(\theta = 0 \), we can have both left over and right over. Moreover, the string coupling becomes time-dependent, \((t) = e^{p^2 \bar{z}_t} \), and the dilaton field is purely imaginary.\(^{22}\) Clearly, the physics of this model is rather different from case A) and any relation between the models is only mathematical. We will return to this world briefly in sec. 14.2.

5.5. Heterodox remarks regarding the \"special states\"

There are three reasons why the infinite class of special states is exciting and interesting:

1) They correspond to a large unbroken symmetry group of the string gauge group.

\(^{22}\) In conventional closed string field theory, one imposes reality conditions on the string field forcing the dilaton to be real.
2) The only difference in degrees of freedom between strings and fields in 2D is in the special states. The spacetime meaning of the special states is not understood and should be stringy and interesting.

3) They enter non-trivially into the 2d black hole metric.

Let us elaborate on these three points:

1) In the 26-dimensional bosonic string with Minkowski space background, there is an analog of the special states. They are all at zero momentum and their physical interpretation is clear. The linearized gauge symmetry of string field theory is

\[\chi + Q + \left[; ; \right]^+ ; \] \tag{5.26} \]

where the last term is the string product described in \[44\], and the infinitesimal symmetry generator has ghost number \(G = 1\) represents deviations of the fields from background values, so a symmetry of the background should take \(\chi = 0 \quad Q = 0 \) and therefore satisfy \(Q = 0 \), i.e., the symmetry should act linearly on small deviations from the background, as follows from (5.26). Moreover, modifying \(\chi + Q \) doesn't change the linearized action on the on-shell fields. Therefore the nontrivial BRST classes of ghost number \(G = 1\) correspond to on-shell symmetries of the string background \[66\]. In the case of the special states of Minkowski space, they correspond to the unbroken translation symmetries of the vacuum defined by Minkowski space.\(^23\) Reasoning by analogy, it would seem that the infinite number of special states in the 2D string correspond to a much larger symmetry group. It has been suggested in \[69\] that this is also related to the fact that in the 2D string there are far fewer states in the theory.

2) The vertex operators representing small changes in the tachyon background are just those given in \(\ref{4.12}\). The question thus arises as to the spacetime meaning of the special state operators. It has been suggested in \[49\] that these represent global modes of spacetime fields which have no propagating degrees of freedom. The basic idea can be seen by considering 1+1 dimensional gauge theories of electromagnetism and gravity. In 1+1 dimensional (classical) electromagnetism and gravitation, for example, the fields \(A \times (x)\) and \(G \times (x)\) have no propagating modes, yet the background electric holonomy \(\oint A \) and the circumference of the world \(\oint X \) are gauge-invariant observables when \(X \) is compacted.

\(^23\) Together with dual symmetries for the \(B\)-field.
3) There are indications that understanding special state correlators would aid in the search for a model with both the black hole mass and the cosmological constant turned on.

For these reasons the "special states" have been the subject of intense investigation for the past year and a half. Sadly, some of these investigations have been rather misguided.

When we compute BRST cohomology, we must pay proper attention to the boundary conditions of the fields representing BRST cohomology. In electromagnetism in four dimensions, for example, BRST cohomology will be represented by plane-wave states of the gauge field $A \ e^{i k \cdot \vec{x}}, \ k^2 = 0$, representing transverse photons. Of course, k is real because we want only to consider plane-wave normalizable states. In addition there are other BRST invariant field configurations which are not plane-wave normalizable. For example, in 1 + 1 electrodynamics on \mathbb{R}^2 we can work in $A_1 = 0$ gauge, but then $A_0 = E \cdot x$ for E constant is not normalizable. This corresponds to the Coulomb force.

We should therefore distinguish the scattering cohomology representing states for which one can scatter and compute an S-matrix, from the background cohomology which represents gauge-invariant global information which cannot be changed by small wave-like field perturbations.

This discussion applies to the 2D string. As we have seen, when rotating the coordinate X to Minkowski time, the primary matter fields have negative conformal weight. Thus, since λ must be real to provide plane wave normalizable incoming and outgoing wavefunctions, the only BRST cohomology classes in the Minkowski theory with $\lambda > 0$ are those in (5.22). This reasoning breaks down for the case of zero momentum. On the other hand before looking for the effects of special state operators like

$$\alpha \bar{P}_{0,\mu}(\hat{t}) \bar{P}_{0,\mu}(\hat{t}) e^{\frac{P}{\sqrt{\alpha}}(1 - r)};$$

(5.27)

(where the Seiberg bound implies we must take $\lambda \geq 1$), we must require that the wavefunctions in question do not change the asymptotic behavior of the Lagrangian of the theory. In fact this is only the case for the operator $\partial \hat{t} \bar{\partial} \hat{t}$. The other states have non-normalizable wavefunctions and thus belong to the background cohomology groups. We cannot form well-defined wavepackets for them and they will not be changed by scattering processes since such processes involve wavepacket normalizable quanta from the scattering cohomology.

The special states are very interesting for string theory, but they have no place in the wall S-matrix of the 2D string. To paraphrase a warning to previous generations [3]:
Those who look for special states in the singularities of the $c=1$ string matrix are like the man who settled in Casablanca for the waters. They were misinformed.

The situation is rather more confused for the bulk (scattering) matrix described in chapt. 14.

5.6. Bosonic String Amplitudes and the $c>1$ problem

In this section we consider some of the "tachyonic" divergences that occur in bosonic string theories.

First Description

Let us return to the operator formalism description of string amplitudes. In general, the amplitudes $A_{h,n}$ are meaningless because of the singularities of the string density on the boundaries of moduli space. A traditional way of avoiding this problem has been the introduction of supersymmetry. An alternative way around the problem is provided by low dimensional string theory, since in low dimensions the tachyon (which causes the divergences) becomes massless or massive as we have seen in (5.14). We can see how this comes about by considering the one-loop partition function in the example of a general linear dilaton background (i.e. non-zero Q in (5.13)) coupled to some matter conformal field theory C,

$$Z_{\text{Liouville}}(q;q) = \frac{1}{\Gamma(\lambda)} \int_{0}^{\infty} dE f_i(E)(q) \left(e^{-E^2 + \frac{1}{2}Q^2} \right)^{24} ;$$

(5.28)

(Note the leading 2^2 is from the ghosts.) The behavior of the partition function as $q \rightarrow 0$, which accounts for the tachyon divergences of the theory, is obtained by writing the partition function as a sum over eigenstates of $L_0;\overline{L}_0$:

$$Z_{\text{Liouville}}(q;q) = \frac{1}{\Gamma(\lambda)} \int_{0}^{\infty} dE f_i(E)(q) \left(e^{-E^2 + \frac{1}{2}Q^2} \right)^{24} ;$$

(5.29)

where $f_i(E)$ represents the density of Liouville states in (3.31). Including also the leading $(q)^2=24$ from the ghosts in (5.28), we arrive at the condition (5.28) for no tachyonic divergences:

$$\min_{n} \min_{Q} \left(E^2 + \frac{1}{2}Q^2 \right)^{24} ;$$

(5.30)

From this point of view, we see that the problem is not necessarily that $c>1$ per se, but is rather an issue involving the value of c together with the spectrum of the theory.
The condition (5.30) is of course only a necessary condition. We should also worry about the existence of divergences when operators approach each other. In this case the softening of the Liouville operator product expansion discussed above explains the lack of divergences on the boundaries of punctured moduli space. In particular, if we look at the operator product of two dressed matter primaries \(1e\) and \(2e\), then from (3.59) we have

\[
\begin{align*}
1e(z; \bar{z}) & \times Z_1 \int_{x=0}^{z} dE c_{1,2}(x; \bar{x}) \frac{1}{x} w^{2\left(\frac{1}{2}E^2 + \frac{1}{2}Q^2 + x^2\right)} \times V_E(w; \bar{w}) \\
\end{align*}
\] (5.31)

(where \(c_{1,2}(x; \bar{x})\) is the coefficient of the eld and its gravitational dressing \(V_E(w; \bar{w})\) in the operator product expansion of the two above operators). The worst singularity at \(z = w\) comes from the contribution near \(E = 0\),

\[
\frac{1}{x} w^{\frac{1}{2}(1 - c_{\text{eff}}(C))}
\]

and is integrable when the condition (5.30) is satisfied. (The case \(c_{\text{eff}}(C) = 1\) is a borderline case. In the \(c = 1\) model, it turns out that \(c_{1,2; \bar{e}}\) ! 0 as \(E \to 0\).)

Based on these two examples, we may guess that all bosonic string amplitudes in fact do exist when (5.30) is satisfied. The matrix model approach to 2D string theory has the great virtue of containing this, and moreover gives an infinite dimensional space of background perturbations.

Second Description

We can also describe these divergences from the point of view of the space-time theory by interpreting the norm of the plumbing structure coordinate \(q\) as \(j j = e^s\), where \(s\) is a proper time coordinate such as introduced following (5.3) for the eld theory propagator. From this point of view, we see that the divergences are due to on-shell tachyons and massless particles. When (5.30) is satisfied as a strict inequality, we see that the amplitudes are finite because only zero-momentum massless particles cow. As usual, the massless particles present a special case at \(c = 1\), but they are derivatively coupled.
Fig. 10: The case of the exploding worksheet. Since every order in perturbation theory adds a hole to the surface, this is an overly optimistic rendering. Summing up such a perturbation expansion, the worksheet on scales larger than the cut is all holes [7].

Third Description [7]

We may also consider the above phenomenon from the worksheet point of view. We consider the Liouville theory coupled to some conformal field theory \(C \) such that the total central charge is 26. The conformal field theory \(C \) is assumed to have a spectrum bounded from below: that is, we are considering strings in Euclidean space. In general we expect Euclidean propagators in Liouville theory to have the form

\[
Z = \frac{dE}{E^2 + p^2 + m^2} \frac{f(E)}{E(E')E'(E'')};
\]

where as explained in sec. 5.2 we identify

\[
p^2 + m^2 = x + \frac{1}{24} c;
\]

Suppose the unit operator goes through the loop and \(c > 1 \). Then there is a zero in the propagator for \(E \) real. That is, there exists an on-shell, normalizable (macroscopic) state
in Euclidean space. As in 1D, we should suspect that there are tachyons in the theory. Recalling the semi-classical Liouville pictures discussed in chap.3, the troubles caused by these states have a graphical worldsheet illustration. Insertion of an operator dressed by a macroscopic Liouville state is not a local disturbance to the surface: it creates a macroscopic hole and tears the surface apart. In any lattice description of a \(c > 1 \) model, unless we tune there will be nonzero couplings to the operator that creates the on-shell macroscopic state whose existence we have established. In particular, using the KPZ dressing formulae of sec.2.2, we see that the cosmological constant operator itself becomes a macroscopic state. Bringing down any such operators from the exponential in a perturbative expansion of the path integral, we see that the typical resulting "worldsheet" would look as depicted in g.10. Evidently a worldsheet description of the physics is no longer most appropriate. Once more, the condition that would prevent this explosion is (5.30).

6. Discretized surfaces, matrix models, and the continuum limit

Now that we have some idea of the physics we are looking for, we will study the "experimental" results of the matrix model. The next four chapters are devoted to defining the continuum limit for the models of \(c < 1 \) matter coupled to gravity associated with the one matrix model. We mention matrix chains brieﬂy. We will emphasize both the role of macroscopic loops and also the fermionic formulation of the matrix model, which lies at the heart of the exactly solvable nature of these models.

6.1. Discretized surfaces

We begin by considering a \(D = 0 \) dimensional string theory", i.e. a pure theory of surfaces with no coupling to additional "matter" degrees of freedom on the string worldsheet. This is equivalent to the propagation of strings in a non-existent embedding space. For partition function we take

\[
Z = \sum_h \ X^Z \ D \ g \ e \ A + \ ; \tag{6.1}
\]

where the sum over topologies is represented by the summation over \(h \), the number of handles of the surface, and the action consists of couplings to the area \(A = \int_p R \), and to the Euler character \(\chi = \frac{1}{4} \int_p \bar{\Omega} R = 2 \chi h \).
Fig. 11: A piece of a random triangulation of a surface. Each of the triangular faces is dual to a three point vertex of a quantum mechanical matrix model.

The integral $\int Dg$ over the metric on the surface in (6.1) is difficult to calculate in general. The most progress in the continuum has been made via the Liouville approach which we briefly reviewed in chap. 2. If we discretize the surface, on the other hand, it turns out that (6.2) is much easier to calculate, even before removing the finite cut off. We consider in particular a "random triangulation" of the surface [80], in which the surface is constructed from triangles, as in fig. 11. The triangles are designated to be equilateral so that there is negative (positive) curvature at vertices where the number N_i of incident triangles is more (less) than six, and zero curvature when $N_i = 6$. The summation over all such random triangulations is thus the discrete analog to the integral $\int Dg$ over all possible geometries,

$$\sum_{X} \sum_{Z} \frac{1}{Dg} = \sum_{X} $$

$$\sum_{\text{random triangulations}} $$

The discrete counterpart to the infinitesimal volume element P_{ij} is $\delta_{ij} N_i = 3$, so that the total area $\sum_{\delta_{ij}} \delta_{ij}$ just counts the total number of triangles, each designated to have unit area. (The factor of $1=3$ in the definition of δ_{ij} is because each triangle has three

24 We point out that this constitutes a basic difference from the Regge calculus, in which the link lengths are geometric degrees of freedom. Here the geometry is encoded entirely into the coordination numbers of the vertices. This restriction of degrees of freedom roughly corresponds to fixing a coordinate gauge, hence we integrate only over the gauge-invariant moduli of the surfaces.
vertices and is counted three times.) The discrete counterpart to the Ricci scalar R at vertex i is $R_i = 2$ \((6 \quad N_i = N_i, \text{so that})\)

\[
Z \sum_{R_i} \prod_{V_i} X^4 (1 \quad N_i = 6) = 4 \quad (V \quad \frac{3}{2}F) = 4 \quad (V \quad E + F) = 4 :
\]

Here we have used the simplicial definition which gives the Euler character in terms of the total number of vertices, edges, and faces V, E, and F of the triangulation (and we have used the relation $3F = 2E$ obeyed by triangulations of surfaces, since each face has three edges each of which is shared by two faces).

In the above, triangles do not play an essential role and may be replaced by any set of polygons. General random polygonulations of surfaces with appropriate tuning of couplings may, as we shall see, have more general critical behavior, but can in particular always reproduce the pure gravity behavior of triangulations in the continuum limit.

6.2. Matrix models

We now demonstrate how the integral over geometry in (6.1) may be performed in its discretized form as a sum over random triangulations. The trick is to use a certain matrix integral as a generating functional for random triangulations. The essential idea goes back to work [81] on the large N limit of QCD, followed by work on the saddle point approximation [82].

We first recall the (Feynman) diagrammatic expansion of the (0-dimensional) eld theory integral.

\[
Z \sum_{\lambda} = \prod_{V_i} \frac{1}{2} \epsilon_{V_i} c^2 + c^4 4! ;
\]

where c is an ordinary real number. In a form alperturbation series in , we would need to evaluate integrals such as

\[
\frac{n}{n!} \quad c^2 + c^4 \quad \frac{n}{4!} : \quad (6.4)
\]

Up to overall normalization we can write

\[
Z \quad c^2 = 2, \quad 2k = \frac{2^{2k}}{\lambda J} Z \quad c^2 + J^2, \quad (J) = \frac{2^{2k}}{\lambda J} e^{J^2 = 2} \quad J = 0 : \quad (6.5)
\]

\[\text{25 The integral is understood to be defined by analytic continuation to negative } .\]
Since $\frac{8}{3} e^{J^2 = 2} = Je^{J^2 = 2}$, applications of $\theta = \theta J$ in the above need to be paired so that any factors of J are removed before finally setting $J = 0$. Therefore if we represent each "vertex" diagrammatically as a point with four emerging lines (see g. 12b), then (6.4) simply counts the number of ways to group such objects in pairs. Diagrammatically we represent the possible pairings by connecting lines between paired vertices. The connecting line is known as the propagator h^{ij} (see g. 12a) and the diagrammatic rule we have described for connecting vertices in pairs is known in field theory as the Wick expansion.

![Diagrams](a) and (b)

Fig. 12: (a) the scalar propagator. (b) the scalar four-point vertex.

When the number of vertices n becomes large, the allowed diagrams begin to form a mesh reminiscent of a 2-dimensional surface. Such diagrams do not yet have enough structure to specify a Riemann surface. The additional structure is given by widening the propagators to ribbons (to give so-called "fat" graphs). From the standpoint of (6.3), the required extra structure is given by replacing the scalar θ by an $N \times N$ hermitian matrix M^{ij}. The analog of (6.3) is given by adding indices and traces:

$$Z = \frac{\theta^{2}}{\theta^{2} J_{ij}} \frac{\theta^{2}}{\theta^{2} J_{ik}} \frac{\theta^{2}}{\theta^{2} J_{kj}} M = \frac{\theta}{\theta J_{ij}} \frac{\theta}{\theta J_{ik}} \frac{\theta}{\theta J_{kj}} e^{\text{tr} M^{2} = 2 + \text{tr} J M} \frac{\theta}{\theta J_{ij}} \frac{\theta}{\theta J_{ik}} \frac{\theta}{\theta J_{kj}} e^{\text{tr}^{2} = 2} \quad J = 0$$

where the source J^{ij} is as well now a matrix. The measure in (6.4) is the invariant $dM = \frac{Q^{i}}{dM^{i}} \frac{Q^{i}}{dM^{i}} dR e^{M^{ij} M^{ij}}$; and the normalization is such that $\int_{M} e^{\text{tr} M^{2} = 2} = 1$. To calculate a quantity such as

$$\frac{n}{n!} Z M e^{\text{tr} M^{2} = 2 (\text{tr} M^{4})^{n}}$$

we again lay down n vertices (now of the type depicted in g. 13b), and connect the legs with propagators $M^{ij} M^{kl} M^{ij} = \frac{1}{2} \delta^{ij} \delta^{kl}$ (g. 13a). The presence of upper and lower matrix
indices is represented in g. 13 by the double lines and it is understood that the sense of the arrows is to be preserved when linking together vertices. The resulting diagrams are similar to those of the scalar theory, except that each external line has an associated index i, and each internal closed line corresponds to a summation over an index j = 1;:::;N. The "thickened" structure is now sufficient to associate a Riemann surface to each diagram, because the closed internal loops uniquely specify locations and orientations of faces.

\[
\begin{array}{c}
\text{(a)} \\
\text{(b)}
\end{array}
\]

Fig. 13: (a) the hermitian matrix propagator. (b) the hermitian matrix four-point vertex.

To make contact with the random triangulations discussed earlier, we consider the diagrammatic expansion of the matrix integral

\[
Z = \int \prod M e^{\frac{1}{2} \text{tr}M^2 + \frac{e^2}{N} \text{tr}M^3}
\]

(with M an N \times N hermitian matrix, and the integral again understood to be defined by analytic continuation in the coupling g.) The term of order \(g^n\) in a power series expansion counts the number of diagrams constructed with n 3-point vertices. The dual to such a diagram (in which each face, edge, and vertex is associated respectively to a dual vertex, edge, and face) is identically a random triangulation inscribed on some orientable Riemann surface (g. 11). We see that the matrix integral (6.8) automatically generates all such random triangulations.

Since each triangle has unit area, the area of the surface is just n. We can thus make formal identification with (6.1) by setting \(g = e^2\). Actually the matrix integral generates both connected and disconnected surfaces, so we have written \(e^2\) on the left hand side of

26 This is the same notation employed in the large N expansion of QCD [8].
27 Had we used real symmetric matrices rather than the hermitian matrices M, the two indices would be indistinguishable and there would be no arrows in the propagators and vertices of g. 13. Such orientationless vertices and propagators generate an ensemble of both orientable and non-orientable surfaces, and have been studied, e.g., in [84].

As familiar from field theory, the exponential of the connected diagram generates all diagrams, so \(Z \) as defined above represents contributions only from connected surfaces. We see that the free energy from the matrix model point of view is actually the partition function \(Z \) from the 2d gravity point of view.

There is additional information contained in \(N \), the size of the matrix. If we change variables \(M \rightarrow M \frac{P}{N} \) in (6.8), the matrix action becomes \(\text{tr} \left(\frac{1}{2} \text{tr} M^2 + g \text{tr} M^3 \right) \), with an overall factor of \(N^{\frac{P}{2}} \). This normalization makes it easy to count the power of \(N \) associated to any diagram. Each vertex contributes a factor of \(N \), each propagator (edge) contributes a factor of \(N^{-1} \) (because the propagator is the inverse of the quadratic term), and each closed loop (face) contributes a factor of \(N \) due to the associated index summation. Thus, each diagram has an overall factor

\[
N^{V - E + F} = N = N^{2 - 2h}; \tag{6.9}
\]

where \(V \) is the Euler character of the surface associated to the diagram. We observe that the value \(N = e \) makes contact with the coupling in (6.1). In conclusion, if we take \(g = e \) and \(N = e \), we can formally identify the continuum limit of the partition function \(Z \) in (6.8) with the \(Z \) defined in (6.1). The metric for the discretized formulation is not smooth, but one can imagine how an effective metric on larger scales could arise after averaging over local irregularities. In the next section, we shall see explicitly how this works.

(Actually (6.2) automatically calculates (6.1) with the measure factor in (6.2) corrected to \(\frac{1}{P} \frac{1}{G(S)} \), where \(G(S) \) is the order of the (discrete) group of symmetries of the triangulation \(S \). This is familiar from field theory where diagrams with symmetry result in an incomplete cancellation of \(1-n! \)'s such as in (6.4) and (6.7). The symmetry group \(G(S) \) is the discrete analog of the isometry group of a continuum manifold.)

The graphical expansion of (6.3) enumerates graphs as shown in fig. 11, where the triangular faces that constitute the random triangulation are dual to the 3-point vertices. Had we instead used 4-point vertices as in fig. 13b, then the dual surface would have square faces (a random triangulation" of the surface), and higher point vertices (\(g_k = N^{k-1} \)) in the matrix model would result in more general "random polygonizations" of surfaces.

\[28\] Although we could as well rescale \(M \rightarrow M \frac{g^2}{N} \) to pull out an overall factor of \(N = g^2 \), note that \(N \) remains distinguished from the coupling \(g \) in the model since it enters as well into the traces via the \(N \) size of the matrix.
The powers of N associated with the couplings are chosen so that the rescaling M^p/N^q results in an overall factor of N multiplying the action. The argument leading to (6.3) thus remains valid, and the power of N continues to measure the Euler character of a surface constructed from arbitrary polygons.) The different possibilities for generating vertices constitute additional degrees of freedom that can be realized as the coupling of 2d gravity to different varieties of matter in the continuum limit.

6.3. The continuum limit

From (6.3), it follows that we may expand Z in powers of N,

$$Z(g) = N^2 Z_0(g) + N^2 Z_1(g) + N^2 Z_2(g) + \cdots = N^2 \sum_{h=0}^{\infty} 2^h Z_h(g) = N^2 \sum_{h=0}^{\infty} 2^h Z_h(g) ;$$

(6:10)

where Z_h gives the contribution from surfaces of genus h. In the conventional large N limit, we take $N \rightarrow \infty$ and only Z_0, the planar surface (genus zero) contribution, survives. Z_0 itself may be expanded in a perturbation series in the coupling g, and for large order n behaves as (see [34] for a review)

$$Z_0(g) X \sum_{n}^{\infty} \left(g = g_c \right)^n \left(\frac{q}{g} \right)^{\text{str}} ;$$

(6:11)

These series thus have the property that they diverge as g approaches some critical coupling g_c. We can extract the continuum limit of these surfaces by tuning $g \rightarrow g_c$. This is because the expectation value of the area of a surface is given by

$$\mathcal{A} = \ln Z_0(g) \frac{1}{q} :$$

(recall that the area is proportional to the number of vertices n, which appears as the power of the coupling in the factor g^n associated to each graph). As $g \rightarrow g_c$, we see that $A \rightarrow \infty$ so that we may rescale the area of the individual triangles to zero, thus giving a continuum surface with finite area. Intuitively, by tuning the coupling to the point where the perturbation series diverges, the integral becomes dominated by diagrams with finite numbers of vertices, and this is precisely what we need to define continuum surfaces.

There is no direct proof as yet that this procedure for defining continuum surfaces is \textit{correct}, i.e., that it coincides with the continuum definition (6.4). We are able, however, to compare properties of the partition function and correlation functions calculated by matrix model methods with those (few) properties that can be calculated directly in the
continuum, as reviewed in preceding chapters. This gives implication that the matrix model approach is sensible and gives reason to believe other results derivable by matrix model techniques (e.g. for higher genus) that are not obtainable at all by continuum methods. In sec. 8.2, we shall give a more precise formulation of what we mean by the continuum limit.

One of the properties of these models derivable via the continuum Liouville approach is a "critical exponent" σ_{str}, defined in terms of the area dependence of the partition function for surfaces of fixed large area A as

$$Z(A) = A^{(\sigma_{str} - 2)}.$$

(6:12)

Recall that the unitary discrete series of conformal field theories is labelled by an integer m and has central charge $D = 1 - 6m(m + 1)$ (for a review, see e.g. [20]), where the central charge is normalized such that $D = 1$ corresponds to a single free boson. If we couple conformal field theories with these fractional values of D to 2d gravity, we see from (2.22) the continuum Liouville theory prediction for the exponent σ_{str}

$$\sigma_{str} = \frac{1}{12} D \quad \text{and} \quad \frac{1}{(D - 1)(D - 25)} = \frac{1}{m}.$$

(6:13)

The case $m = 2$, for example, corresponds to $D = 0$ and hence $\sigma_{str} = \frac{1}{2}$ for pure gravity. The next case $m = 3$ corresponds to $D = 1 = 2$, i.e. to a $1/2$-boson or fermion. This is the conformal field theory of the critical Ising model, and we learn from (6.13) that the Ising model coupled to 2d gravity has $\sigma_{str} = \frac{1}{3}$.

In chapter 7, we shall present the solution to the matrix model formulation of the problem, and the value of the exponent σ_{str} provides a coarse means of determining which specific continuum model results from taking the continuum limit of a particular matrix model. Indeed the coincidence of σ_{str} and other scaling exponents (defined in chapter 3) calculated from the two points of view were originally the only evidence that the continuum limit of matrix models was a suitable definition for the continuum problem of interest. Subsequently, the simplicity of matrix model results for correlation functions has spurred a rapid evolution of continuum Liouville technology so that as well many any correlation functions can be computed in both approaches and are found to coincide.

29 In particular, following the con

imation that the matrix model approach reproduced the scaling results of [20], some 3-point couplings for order parameters at genus zero were calculated.
6.4. A first look at the double scaling limit

Thus far we have discussed the naive $N \to 1$ limit which retains only planar surfaces. It turns out that the successive coefficient functions $Z_h(g)$ in (6.10) as well diverge at the same critical value of the coupling $g = g_c$ (this should not be surprising since the divergence of the perturbation series is a local phenomenon and should not depend on global properties such as the effective genus of a diagram). As we saw in (2.21), for the higher genus contributions (6.11) is generalized to

$$Z_h(g) \quad \frac{X}{n^{(str^2)} = 2} (g g_c)^n (g g_c^2)^{str} = 2 : \quad (6.14)$$

We see that the contributions from higher genus (< 0) are enhanced as $g \to g_c$. This suggests that if we take the limits $N \to 1$ and $g \to g_c$ not independently, but together in a correlated manner, we may compensate the large N high genus suppression with a $g \to g_c$ enhancement. This would result in a coherent contribution from all genus surfaces.

To see how this works explicitly, we write the leading singular piece of the $Z_h(g)$ as

$$Z_h(g) \quad f_h(g g_c)^{2 str} = 2 : \quad (6.15)$$

Then in terms of

$$1 \quad N (g g_c)^{str = 2} ; \quad (6.15)$$

the expansion (6.10) can be rewritten

$$Z = \quad 2 f_0 + f_1 + 2 f_2 + \cdots = \frac{X}{n^{(str^2)}} (g g_c^2) C h = 2 h f_h : \quad (6.16)$$

The desired result is thus obtained by taking the limits $N \to 1$, $g \to g_c$ while holding fixed the "renormalized" string coupling of (6.15). This is known as the "double scaling limit." (6.14) is an asymptotic expansion for $g > 0$. In secs. 7.3, 7.4 below, we show how to find a function $Z(\cdot)$ with identically the asymptotic expansion.

in [n] from the standpoint of ADE face models on fluctuating lattices. The connection to KdV (to be reviewed in sec. 7.4 here) was made in [34], and then general correlations of order parameters (not yet known in the continuum) were calculated in [57]. Using techniques described in sec. 3.3, continuum calculations of the correlation functions (when they can be done) have been found to agree with the matrix model (for a review, see [14]). For $D = 1$, the matrix model approach of [88] was used in [90] (also [92, 93]) to calculate a variety of correlation functions. These were also calculated in the collective field approach [76, 97] where up to 6-point amplitudes were derived, and found to be in agreement with the Liouville results of [38].

30 Strictly speaking the first two terms here have additional non-universal pieces that need to be subtracted off.
7. Matrix Model Technology I: Method of Orthogonal Polynomials

The large N limit of the matrix models considered here was originally solved by saddle point methods in [82]. In this chapter, we shall instead present the orthogonal polynomial solution to the problem ([84] and references therein) since it extends readily to subleading order in N (higher genus corrections).

7.1. Orthogonal Polynomials

In order to justify the claims made at the end of Sec. 6.4, we introduce some formalism to solve the matrix models. We begin by rewriting the partition function (6.8) in the form

$$Z = \sum_{d=1}^{Z_{d}} d^{2(\gamma)} e^{\frac{1}{2} \text{tr} V(M)}; \quad \gamma = \frac{1}{2} \sum_{i=1}^{N} V_{i}^{2} \frac{1}{2} (\gamma)$$

where we now allow a general polynomial potential $V(M)$. In (7.1), the γ’s are the N eigenvalues of the Hermitian matrix M, and

$$\gamma = \gamma_{i} \quad i \leq j$$

is the Vandermonde determinant. Due to antisymmetry in interchange of any two eigenvalues, (7.2) can be written

$$\gamma = \text{det} \left(\begin{array}{cc} \gamma_{1} \gamma_{2} \gamma_{3} \\ \gamma_{2} \gamma_{3} \gamma_{1} \\ \gamma_{3} \gamma_{1} \gamma_{2} \end{array} \right)$$

where the normalization is determined by comparing leading terms. In the case $N = 3$ for example, we have

$$\gamma = \text{det} \begin{array}{ccc} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 2 & 0 \end{array} = 1$$

Now $\gamma_{ij} = \gamma_{ij}(0)$, so (7.2) follows (up to a sign) since the integration $d\gamma$ above is over real and imaginary parts of the diagonal T_{ij}’s.

31 (7.1) may be derived via the usual Fadeev-Popov method. Let U_{0} be the unitary matrix such that $M = U_{0}^{T} \cdot dU$, where dU is a diagonal matrix with eigenvalues γ_{i}. The right-hand side of (7.2) follows by substituting the definition $1 = \sum_{d=1}^{Z_{d}} d^{2}(\gamma)$. We first perform the integration over M, and then U decouples due to the cyclic invariance of the trace so the integration over U is trivial, leaving only the integral over the eigenvalues γ_{i} of M. To determine (7.2), we note that only the infinitesimal neighborhood $U = (1 + T)U_{0}$ contributes to the U integration, so that

$$Z \gamma = \sum_{i=1}^{Z_{d}} d^{2}(\gamma) e^{\frac{1}{2} \text{tr} V(M)}; \quad \gamma = \gamma_{i} \quad i \leq j$$

Now $\gamma_{ij} = \gamma_{ij}(0)$, so (7.2) follows (up to a sign) since the integration $d\gamma$ above is over real and imaginary parts of the diagonal T_{ij}’s.
The now-standard method for solving (7.1) makes use of an infinite set of polynomials $P_n(\cdot)$, orthogonal with respect to the measure

$$Z_1 \int_1 e^{V(\cdot)} P_n(\cdot) P_m(\cdot) = h_{nm} ; \quad (7.3)$$

The P_n's are known as orthogonal polynomials and are functions of a single real variable x. Their normalization is given by having leading term $P_n(\cdot) = n + \cdots$, hence the constant h_n on the r.h.s. of (7.3). Due to the relation

$$h_n = \det P_{j+1}(\cdot) = \det P_{j+1}(\cdot) \quad (7.4)$$

(recall that arbitrary polynomials may be built up by adding linear combinations of preceding columns, a procedure that leaves the determinant unchanged), the polynomials P_n can be employed to solve (7.1). We substitute the determinant $\det P_{j+1}(\cdot) = P(j) \prod_{k} P_{i_k+1}(\cdot)$ for each of the ()'s in (7.1) (where the sum is over permutations i_k and (1) is the parity of the permutation). The integrals over individual ()'s factorize, and due to orthogonality the only contributions are from terms with all $P_1(\cdot)$'s paired. There are $N!$ such terms so (7.1) reduces to

$$e^{-Z} = N! \sum_{i=0}^{N!} \prod_{k=1}^{N!} f_k^{N} h_{i} ; \quad (7.5)$$

where we have defined $f_k = h_{i_k}$. In the naive large N limit (the planar limit), the rescaled index $k=N$ becomes a continuous variable that runs from 0 to 1, and $f_k=N$ becomes a continuous function $f(\cdot)$. In this limit, the partition function (up to an irrelevant additive constant) reduces to a simple one-dimensional integral:

$$\frac{1}{N^2} Z = \frac{1}{N} \int_{k=0}^{1} X^{(1 \text{ k=N})} \ln f_k \int_{0}^{Z_1} d (1 \text{ nt f(\cdot)}) ; \quad (7.6)$$

To derive the functional form for $f(\cdot)$, we assume for simplicity that the potential $V(\cdot)$ in (7.2) is even. Since the P_i's form a complete set of basis vectors in the space of polynomials, it is clear that $P_n(\cdot)$ must be expressible as a linear combination of lower P_i's, $P_n(\cdot) = \sum_{i=0}^{n+1} a_i P_i(\cdot)$ (with $a_i = h_i^{1/2} \sqrt{R} e^{V} P_i P_i$). In fact, the orthogonal polynomials satisfy the simple recursion relation,

$$P_n = P_{n+1} + r_n P_{n-1} ; \quad (7.7)$$

85
with \(r_n \) a scalar coefficient independent of \(n \). This is because any term proportional to \(P_n \) in the above vanishes due to the assumption that the potential is even, \(\mathbb{R} \mathbb{E}^V P_n P_n = 0 \). Terms proportional to \(P_i \) for \(i < n \) also vanish since \(\mathbb{R} \mathbb{E}^V P_n P_1 = 0 \) (recall \(P_1 \) is a polynomial of order at most \(i + 1 \) so is orthogonal to \(P_n \) for \(i + 1 < n \)).

By considering the quantity \(P_n P_{n-1} \) with paired alternately with the preceding or succeeding polynomial, we derive

\[
e^V P_n P_{n-1} = r_n h_{n-1} = h_{n-1}.
\]

This shows that the ratio \(f_n = h_n = h_{n-1} \) for this simple case is identically the coefficient defined by (7.7), \(f_n = r_n \). Similarly if we pair the \(P_n^0 P_{n-1} \) before and afterwards, integration by parts gives

\[
nh_n = \mathbb{Z} e^V P_n^0 P_n = \mathbb{Z} e^V P_n r_n P_{n-1} = r_n e^V V^0 P_n P_{n-1}.
\]

This is the key relation that will allow us to determine \(r_n \).

7.2. The genus zero partition function

Our intent now is to nd an expression for \(f_n = r_n \) and substitute into (7.4) to calculate a partition function. For de niteness, we take as example the potential

\[
V(\cdot) = \frac{1}{2g} x^2 + \frac{4}{N} + \frac{b}{6N^2};
\]

with derivative

\[
gV^0(\cdot) = + 2 \frac{3x}{N} + 3b \frac{N}{N^2};
\]

The right hand side of (7.8) involves terms of the form \(\mathbb{R} \mathbb{E}^V 2^p \mathbb{P} P_n P_{n-1} \). According to (7.7), these may be visualized as "walks" of 2p steps (p steps up and p steps down) starting at \(n \) and ending at \(n-1 \), where each step down from \(m \) to \(m-1 \) receives a factor of \(r_m \) and each step up receives a factor of unity. The total number of such walks is given by \(\frac{2p}{p} \mathbb{P} \), and each results in a nal factor of \(h_{n-1} \) (from the integral \(\mathbb{R} \mathbb{E}^V P_n P_{n-1} \)) which combines with the \(r_n \) to cancel the \(h_n \) on the left hand side of (7.8). For the potential (7.3), (7.8) thus gives

\[
gn = r_n + \frac{2}{N} r_n (r_{n+1} + r_n + r_{n-1}) + \frac{3b}{N^2} (10 \text{ rrr terms})
\]

\[32\] In other models, e.g., multivariate models, \(f_n = h_n = h_{n-1} \) has a more complicated dependence on recursion coefficients.
(The 10 rrr terms sart with $r_1 (r_1 + r_{1+1} + r_{1+2} + \ldots)$ and may be found e.g. in [38].)

As mentioned before (7.3), in the large N limit the index n becomes a continuous variable, and we have $r_n = N + r(\)$ and $r_{n+1} = N + r(\)$, where $r(\) = 1 = N$. To leading order in $1 = N$, (7.10) reduces to

$$g = r + 6r^2 + 30br^3 = W(r)$$

$$= g_c + \frac{1}{2} W^{0}_{\xi = r_c} r(\) r^2 + \ldots :$$ (7.11)

In the second line, we have expanded $W(r)$ for r near a critical point r_c at which $W^{0}_{\xi = r_c} = 0$ (which always exists without any fine tuning of the parameter b), and $g_c = W(\xi)$. We see from (7.11) that

$$r \equiv (g, g)^{r^2} :$$

For a general potential $V(\) = \frac{1}{2g} \sum_{p} a_p 2^p \text{in (7.9)}, we would have

$$W(r) = \sum_{p} a_p (2p - 1)! r^p :$$ (7.12)

To make contact with the 2d gravity ideas of chapt. 6, let us suppose more generally that the leading singular behavior of $f(\) = r(\)$ for large N is

$$f(\) \equiv (g, g)^{str} :$$ (7.13)

for g near some g_c (and near 1). (We shall see that str in the above coincides with the critical exponent str defined in (6.12). The behavior of (7.3) for g near g_c is then

$$\frac{1}{N^2} Z^1 d (1 \ldots) (g, g)^{str} (1 \ldots) (g, g)^{str+1} Z^1 d (g, g)^{str+1}$$

$$\times (g, g)^{str} n^{str+1} (g=g_c)^n :$$

(7.14)

Comparison with (6.14) shows that the large area (large n) behavior identifies the exponent str in (7.13) with the critical exponent defined earlier. We also note that the second derivative of Z with respect to $x = g_c \ g$ has leading singular behavior

$$Z^{00} (g, g)^{str} f(1) :$$

(7.15)

From (7.13) and (7.14) we see that the behavior in (7.11) implies a critical exponent $str = 1 = 2$. From (6.13), we see that this corresponds to the case $D = 0$, i.e. to pure
7.3. The all genus partition function

We now search for another solution to (7.14) and its generalizations that describes the contribution of all genus surfaces to the partition function (7.1). We shall retain higher order terms in $1 = N$ in (7.10) so that e.g., (7.11) instead reads

\[
g = W(r) + 2r(+)r(+) + r(+) + 2r() \quad (7.16)
\]

As suggested at the end of sec. 6.2, we shall simultaneously let $N \to 1$ and $g \to g_c$ in a particular way. Since $g = g_c$ has dimension [length]2, it is convenient to introduce a parameter a with dimension length and let $g = 4 = a^2$, with $a \to 0$. Our ansatz for a coherent large N limit will be to take $1 = N = a^2$, so that the quantity $1 = (g g_c)^{1/4} N$ remains finite as $g \to g_c$ and $N \to 1$.

Moreover since the integral (7.9) is dominated by near 1 in this limit, it is convenient to change variables from r to z defined by $g = a^2 z$. Our scaling ansatz in this region is $r() = r_c + a z(r)$. If we substitute these definitions into (7.11), the leading terms are of order a^2 and result in the relation $u^2 = z$. To include the higher derivative terms, we note that

\[
r(+) + r(+) + 2r() \frac{\partial^2 r}{\partial z^2} = a a^2 \frac{\partial^2 u}{\partial z^2} \frac{\partial^2 u}{\partial z^2} ;
\]

where we have used "(\equiv) = $a^2 z$ (which follows from the above change of variables from r to z). Substituting into (7.16), the vanishing of the coefficient of a^2 implies the differential equation

\[
z = u^2 - \frac{1}{3} u^{(0)} \quad (7.17)
\]
(after a suitable rescaling of u and z). In (7.15), we saw that the second derivative of the partition function (the "specific heat") has leading singular behavior given by $f(\cdot)$ with $\alpha = 1$, and thus by $u(z)$ for $z = (g z g) a^2 = 4^5$. The solution to (7.17) characterizes the behavior of the partition function of pure gravity to all orders in the genus expansion. (Notice that the leading term is $u z^2$ so after two integrations the leading term in z is $z^{5+2} = z^7$, consistent with (5.19).)

Eq. (7.17) is known in the mathematical literature as the Painlevé I equation. The perturbative solution in powers of $z^{5+2} = z^7$ takes the form $u = z^l = 1 + \sum_{k=1}^{\infty} u_k z^{5k=2}$, where the u_k are all positive. This verifies for this model the claim made in eqs. (6.14). For large k, the u_k go asymptotically as $(2k)!$, so the solution for $u(z)$ is not Borel summable (for a review of these issues in the context of 2d gravity, see e.g. [100]).

Our arguments in chapt. 3 show only that the matrix model results should agree with 2d gravity order by order in perturbation theory. How to ensure that we are studying nonperturbative gravity as opposed to nonperturbative matrix models is still an open question. Some of the constraints that the solution to (7.17) should satisfy are reviewed in [101]. In particular it is known that real solutions to (7.17) cannot satisfy the Schwinger-Dyson (loop) equations for the theory.

In the case of the next higher multicritical point, with b in (7.11) adjusted so that $W^0 = 0 = 0$ at $r = r_c$, we have $W(r) = y + \frac{1}{6} W^0 \phi = r_c (r - r_c) + \cdots$ and critical exponent $\alpha = 1 = 3$. In general, we take $g \rightarrow g = 2^{a + \alpha} a^2$, and $\alpha = 2^{\alpha} = 1 = 3$. So that the combination

\[
(g \theta a)^{\alpha + \alpha} = 1
\]

(7.18)

is valid in the limit $a \rightarrow 0$. The value of a now corresponds to $z = 2^{a + \alpha} a^2$, so the string coupling $z = z^{\alpha + \alpha}$. The general scaling ansatz is $r(\cdot) = r_c + a^2 z^{\alpha - \alpha} u(z)$, and the change of variables from θ to z gives $\alpha(\theta - \theta_c) = \frac{g a - \alpha}{\theta - \theta_c}$. Substituting into the large N limit of (7.10) gives (again after suitable rescaling of u and z)

\[
z = u^3 u_1^0 u_1^1 u_1^2 u_0^{00} = z^{7-3} + a^3 z^{3-3} + u^{000};
\]

(7.19)

\footnote{The first term, i.e. the contribution from the sphere, is dominated by a regular part which has opposite sign. This is removed by taking an additional derivative of u, giving a series all of whose terms have the same sign in the conventions of (7.17). The other solution, with leading term z^{1+2}, has an expansion with alternating signs which is presumably Borel summable, but not physically relevant.}
with \(\lambda = \frac{1}{10} \). The solution to (7.19) takes the form
\[
u = z^{1=3} \left(1 + \sum_{k} u_k \frac{z}{7^{k=3}} \right).
\]
It turns out that the coefficients \(u_k \) in the perturbative expansion of the solution to (7.19) are positive for \(\lambda < \frac{1}{12} \), so the 3rd order multicritical point does not describe a unitary theory of matter coupled to gravity. Although from (5.13) we see that the critical exponent
\[
\lambda_{\text{str}} = 1=3
\]
corresponds to that predicted for the (unitary) Ising model coupled to gravity, it turns out [102, 98, 103] that (7.19) with \(\lambda = \frac{1}{10} \) instead describes the conformal field theory of the Yang-Lee edge singularity (a critical point obtained by coupling the Ising model to a particular value of imaginary magnetic field) coupled to gravity. The specific heat of the conventional critical Ising model coupled to gravity turns out (see sec. 7.5) to be as well determined by the differential equation (7.19), but instead with \(\lambda = \frac{2}{27} \).

For the general 3rd order critical point of the potential \(W(r) \),
\[
W(r) = g_c \left(r_c + r \right)^{m}; \tag{7.20}
\]
we have seen that the associated model of matter coupled to gravity has critical exponent
\[
\lambda_{\text{str}} = 1=3
\]
with scaling ansatz \(r(\lambda) = r + a^{2=3} u(z) \), we nd leading behavior \(u(z) \) (and \(\lambda = \frac{2}{27} \) as expected). The differential equation that results from substituting the double scaling behaviors given before (7.19) into the generalized version of (7.10) turns out to be the 3rd member of the KdV hierarchy of differential equations (of which Painleve I results for \(m = 2 \)). In the next section, we shall provide some marginal insight into why this structure emerges.

The one-matrix models reproduce the (2;2m 1) minimal models (in the notation mentioned after (2.22)) coupled to quantum gravity. The remaining (p;q) models coupled to gravity can be realized in terms of multi-matrix models (to be defined in sec. 7.6).

7.4. The Douglas Equations and the KdV hierarchy

We now wish to describe superficially why the KdV hierarchy of differential equations plays a role in 2d gravity. To this end it is convenient to swich from the basis of orthogonal polynomials \(P_n \) employed in sec. 7.1 to a basis of orthonormal polynomials
\[
\phi_n(\rho) = \phi_n(\rho) = \left(\frac{\rho}{h_n} \right) \text{ that satisfy}
\]
\[
\frac{d e v_{n,m}}{d e v_{n,m}} = \nu_{nm} : \tag{7.21}
\]
In terms of the \(\phi_n \), eq. (7.7) becomes
\[
\frac{\rho^{n+\gamma_n} h_{n+1} \rho^{n+\gamma_n} h_{n+1}}{h_n h_n} n + 1 = \left(\frac{\rho^{n+\gamma_n} h_{n+1} \rho^{n+\gamma_n} h_{n+1}}{h_n h_n} n + 1 \right) = \nu_{nm} m : \tag{7.22}
\]

90
In matrix notation, we write this as\(\mathbf{Q} = \mathbf{P} \), where the matrix \(\mathbf{Q} \) has components

\[
\mathbf{Q}_{nm} = \frac{\alpha_{m}}{\alpha_{m+1}} + \frac{\beta_{m+1}}{\beta_{m}}.
\]

(7.22)

Due to the orthonormality property \((7.21)\), we see that \(\mathbf{R} \mathbf{Q}_{nm} = \mathbf{Q}_{nm} \mathbf{Q}_{mn} \), and \(\mathbf{Q} \) is a symmetric matrix. In the continuum limit, \(\mathbf{Q} \) will therefore become a hermitian operator.

To see how this works explicitly \((7.21)\), we substitute the scaling ansatz \(r() = r_{c} + a^{2-m} u(z) \) for the \(m \)th multicritical model into \((7.23)\),

\[
\mathbf{Q} = (r_{c} + a^{2-m} u(z))^{1/2} \frac{\delta}{\delta r_{c}} + (r_{c} + a^{2-m} u(z))^{1/2}.
\]

With the substitution \(\frac{\delta}{\delta r_{c}} \geq a_{m} \frac{\delta}{\delta z} \), we find the leading terms

\[
\mathbf{Q} = 2r_{c}^{1/2} + a^{2-m} \frac{\delta}{\delta r_{c}} (u + r_{c}^{-2} a_{2}^{2}) ;
\]

(7.23)

of which the first is a non-universal constant and the second is a hermitian 2nd order differential operator.

The other matrix that naturally arises is defined by differentiation,

\[
\frac{\delta}{\delta r_{c}} n = A_{nm} \quad m ;
\]

(7.24)

and automatically satisfies \([A;Q] = 1 \). The matrix \(A \) does not have any particular symmetry or antisymmetry properties so it is convenient to correct it to a matrix \(\mathbf{P} \) that satisfies the same commutator as \(A \). From our definitions, it follows that

\[
0 = \frac{Z}{\frac{\delta}{\delta r_{c}}} \quad n \quad m \quad e^{V} \quad) \quad A + A^{T} = V^{0}(Q) ;
\]

where we have differentiated term by term and used \(\mathbf{R} e^{V} \quad n \quad m = (Q^{0})_{nm} \). The matrix \(\mathbf{P} \) satisfies \(\frac{1}{2} V^{0}(Q) = \frac{1}{2} (A^{T} A +) \) is therefore anti-symmetric and satisfies

\[
\mathbf{P};Q = 1.
\]

(7.25)

To determine the order of the differential operator \(Q \) in the continuum limit it, let us assume for example that the potential \(V \) is of order \(2^\prime \), i.e. \(V = \sum_{k=0}^{2k} \alpha_{k} \). For \(m > n \), the integral \(A_{mn} = e^{V} \quad n \quad a_{m} = e^{V} V^{0} \quad n \quad m \) may be nonvanishing for \(m \quad n \quad 2^\prime \). That means that \(a_{m} \neq 0 \) for \(m \quad n \quad j \quad 2^\prime \), and thus has enough
param eters to result in a \((2^4) \) order dierential operator in the continuum. The single condition \(W^0 = 0 \) results in \(P \) tuned to a 3\(^{rd} \) order operator, and the \((1^4) \) conditions \(W^0 = \ldots = W^{(1^4)} = 0 \) allow \(P \) to be realized as a \((2^4) \) order dierential operator. In \((7.22)\), we see that the universal part of \(Q \) after suitable rescaling takes the form \(Q = d^2 u \).

For the simple critical point \(W^0 = 0 \), the continuum limit of \(P \) is the antihermitian operator \(P = d^3 \frac{3}{4} fu;dg \), and the commutator

\[
1 = [P;Q] = 4R_2^0 = \frac{3}{4} u^2 \quad \frac{1}{4} u^0 \quad 0
\]

(7.26)
is easily integrated with respect to \(z \) to give an equation equivalent to \((7.17)\), the string equation for pure gravity. In \((7.26)\), the notation \(R_2 \) is conventional for the rst member of the ordinary KdV hierarchy. The emergence of the KdV hierarchy in this context is due to the natural occurrence of the fundamental commutator relation \((7.25)\), which also occurs in the Lax representation of the KdV equations. (The topological gravity approach has as well been shown at length to be equivalent to KdV, for a review see \cite{105,106}.)

In general the dierential equations

\[
[P;Q] = 1
\]

(7.27)
that follow from \((7.25)\) may be determined directly in the continuum. Given an operator \(Q \), the dierential operator \(P \) that can satisfy this commutator is constructed as a \"fractional power\" of the operator \(Q \). This method of forming the continuum theory has a beautiful generalization to a larger class of theories, which is de ned in the following two sections.

7.5. Ising Model

The rst extension of the method of orthogonal polynomials occurs in the solution of the Ising model. The partition function of the Ising model on a random surface can be formulated using the two-matrix model:

\[
Z = \int dU dV \quad \text{tr} \quad U^2 + V^2 + 2cUV + \frac{2}{N} (d^4 U^4 + e^H V^4)
\]

(7.28)
where \(U \) and \(V \) are hermitian \(N \times N \) matrices and \(H \) is a constant. In the diagrammatic expansion of the right hand side, we now have two different quartic vertices of the type depicted in Fig. 13b, corresponding to insertions of \(U^4 \) and \(V^4 \). The propagator is determined by the inverse of the quadratic term,

\[
1 - c \quad \frac{1}{c} \quad 1 - c \quad \frac{1}{c}
\]

\[
\frac{1}{c} \quad 1 - c \quad \frac{1}{c} \quad 1 - c
\]

92
We see that double lines connecting vertices of the same type (either generated by U^4 or V^4) receive a factor of $1=(1-c^2)$, while those connecting U^4 vertices to V^4 vertices receive a factor of $c=(1-c^2)$.

This is identically the structure necessary to realize the Ising model on a random lattice. Recall that the Ising model is defined to have a spin $= 1$ at each site of a lattice, with an interaction i, j between nearest neighbor sites h_{ij}. This interaction takes one value for equal spins and another value for unequal spins. Up to an overall additive constant to the free energy, the diagrammatic expansion of (7.28) results in the 2d partition function

$$Z = \prod_{\text{lattices}} \prod_{\text{spin configurations}}^P e^{h_{ij} i, j + H_{ii}}$$

where H is the magnetic field. The weights for equal and unequal neighboring spins are e, so setting the ratio $e^2 = 1-c$ relates the parameter c in (7.28) to the temperature T. It turns out that the Ising model is much easier to solve summed over random lattices than on a regular lattice, and in particular is solvable even in the presence of a magnetic field. This is because there is much more symmetry after coupling to gravity, since the complicating details of any particular lattice (e.g., square) are effectively integrated out.

We briefly outline the method for solving (7.28) (see [107, 108, 103] for more details). By methods similar to those used to derive (7.4), we can write (7.28) in terms of the eigenvalues x_i and y_i of U and V,

$$\frac{Z}{e^Z} = \int (x)(y) d^i x_i d^i y_i \cdot W(x_i, y_i)$$

where $W(x_i, y_i) = x_i^2 + y_i^2 - 2c x_i y_i + \frac{q}{N} (e^H x_i^4 + e^{-H} y_i^4)$. The polynomials we define for this problem are orthogonal with respect to the bilocal measure

$$Z = \int dx dy e^{W(x, y)} P_n(x) Q_m(y) = h_{nm}$$

(where $P_n \subseteq Q_n$ for $H \neq 0$). The result for the partition function is identical to (7.5),

$$\frac{Z}{e^Z} = \prod_{i=1}^N f_i^{n_i}$$
and the recursion relations for this case generalize (7.4),
\[
x P_n (x) = P_{n+1} + r_n P_{n-1} + s_n P_n \ ;
\]
\[
y Q_m (y) = Q_{m+1} + q_m Q_{m-1} + t_m Q_m \ ;
\]

We still have \(f_n = h_n \), and \(f_n \) can be determined in terms of the above recursion coefficients (although the formulae are more complicated than in the one-matrix case).

After we substitute the scaling ansatz described in sec. 7.3, the formula for the scaling part of \(f \) is derived via straightforward algebra. The result is that the specific heat \(u / Z^0 \) is given by (7.19) with \(w = \frac{2}{27} \).

7.6 Multi-Matrix Models

We now expand slightly the class of models from single-matrix to multi-matrix models. The free energy of a particular \((q \ 1)\)-matrix model, generalizing (7.4), may be written (108)

\[
Z = \ln \sum_1 d_{M_1} e^{P_{1}^{1} V_i(M_1) + P_{1}^{2} C_i M_1 M_{i+1}}
\]
\[
= \ln \sum_1 d_{M_1} e^{P_{1}^{1} V_i(M_1) + P_{1}^{2} C_i M_1 M_{i+1}}
\]

where the \(M_1 \) (for \(i = 1; \ldots; q \)) are \(N \) hermitian matrices, the \(\lambda_i \) (\(i = 1; \ldots; N \)) are their eigenvalues, and \((\lambda_i) = (1 \ldots N) \) is the Vandermonde determinant.

The result in the second line of (7.29) depends on having \(C_i \)'s that couple matrices along a line (with no closed loops so that the integrations over the relative angular variables in the matrices can be performed.) Via a diagrammatic expansion, the matrix integrals in (7.29) can be interpreted to generate a sum over discretized surfaces, where the different matrices \(M_i \) represent \(q \) different matter states that can exist at the vertices. The quantity \(Z \) in (7.29) thereby admits an interpretation as the partition function of 2d gravity coupled to matter.

The methods of the previous section generalize to enable the evaluation of (7.29) (108).
7.7. Continuum Solution of the Matrix Chains

Following [108], we can introduce operators Q_i and P_i that represent the insertions of i and $d=d_i$ respectively in the integral (7.22). These operators necessarily satisfy $P_i;Q_i = 1$. In the $N = 1$ limit, we have seen (following [54]) that P and Q become differential operators of finite order, say $p=q$ respectively (where we assume $p > q$), and these continue to satisfy (7.27). In the continuum limit of the matrix problem (i.e. the "double" scaling limit, which here means couplings in (7.23) tuned to critical values), Q becomes a differential operator of the form

$$Q = d^3 + v_2(z);d^2 + \alpha(z)v;$$ \hspace{1cm} (7.30)

where $d = d=dz$. (By a change of basis of the form $Q \mapsto f^1(z)Qf(z)$, the coefficient of d^1 may always be set to zero.) The continuum scaling limit of the multi-matrix models is thus abstracted to the mathematical problem of finding solutions to (7.27).

The differential equations (7.27) may be constructed as follows. For $p;q$ relatively prime, a pth order differential operator that can satisfy (7.27) is constructed as a fractional power of the operator O of (7.30). Formally, a qth root may be represented within an algebra of formal pseudo-differential operators (see, e.g., [109]) as

$$Q^{1=q} = d + \sum_{i=1}^{X} e_i d^i;$$ \hspace{1cm} (7.31)

where d^i is defined to satisfy $d^i f = P_{j=0}^{1} (1)f^{j}d^j i$. The differential equations describing the $(p;q)$ minimal models coupled to 2d gravity are given by

$$Q^{p=q}_+;Q = 1;$$ \hspace{1cm} (7.32)

where $P = Q^{p=q}_+$ indicates the part of $Q^{p=q}$ with only non-negative powers of d, and is a pth order differential operator.

To illustrate the procedure we reproduce now the results for the one-matrix models, which can be used to generate $(p;q)$ of the form $(21;1;2)$. From (7.23), these models are obtained by taking Q to be the hermitian operator

$$Q = K \quad d^3 u(z);$$ \hspace{1cm} (7.33)
The formal expansion of $Q^{1\ 1=2} = K^{1\ 1=2}$ (an anti-hermitian operator) in powers of d is given by

$$K^{1\ 1=2} = d^{21\ 1} \frac{1}{4} u d^{21\ 3} + \cdots$$ \hspace{1cm} (7.34)

(where only symmetrized odd powers of d appear in this case). We now decompose $K^{1\ 1=2} = K^{1\ 1=2}_+ + K^{1\ 1=2}_-$, where $K^{1\ 1=2}_+ = d^{21\ 1} + \cdots$ contains only non-negative powers of d, and the remainder $K^{1\ 1=2}_-$ has the expansion

$$K^{1\ 1=2}_- = \sum_{i=1}^{\infty} e_{2i\ 1} d^{(2i\ 1)} = R^{1\ 1=2}_1 d^{1} + O(d^3) + \cdots :$$ \hspace{1cm} (7.35)

Here we have identified $R^{1\ 1=2}_1$ as the first term in the expansion of $K^{1\ 1=2}$. For $K^{1\ 1=2}_-$, for example, we find $K^{1\ 1=2}_- = d$ and $R^{1\ 1=2}_1 = u=4$.

The prescription (7.32) with $p=21\ 1$ corresponds here to calculating the commutator $K^{1\ 1=2}_+;K$. Since K commutes with $K^{1\ 1=2}_-$, we have

$$K^{1\ 1=2}_+;K = K;K^{1\ 1=2}_- :$$ \hspace{1cm} (7.36)

But since K begins at d^2, and since from the l.h.s. above the commutator can have only positive powers of d, only the leading (d^1) term from the r.h.s. can contribute, which results in

$$K^{1\ 1=2}_+;K = \text{leading piece of } K;2R^{1\ 1=2}_1 d^{1} = 4R^{1\ 1=2}_1 :$$ \hspace{1cm} (7.37)

After integration, the equation $K^{1\ 1=2}_+;K = 1$ thus takes the simple form

$$cR^{1\ 1=2}_1[u] = z :$$ \hspace{1cm} (7.38)

where the constant c may be fixed by suitable rescaling of z and u. Such a scaling is enabled by the property that all terms in $R^{1\ 1=2}_1$ have fixed grade, namely 21, where the grade of d is defined to be 1 (and u therefore has grade 2). The grade of v_q in (7.30) is for an operator Q of overall grade q. As we shall see shortly, this notion of grade is related to the conventional scaling weights of operators. It can also be used to determine the terms that may appear in any equations, since only terms of overall equal grade may be related.

The quantities $R^{1\ 1=2}_1$ in (7.35) are easily seen to satisfy a simple recursion relation. From $K^{1\ 1=2} = K K^{1\ 1=2} K^{1\ 1=2}$, we find

$$K^{1\ 1=2}_+ = \frac{1}{2} K^{1\ 1=2}_+ K + K K^{1\ 1=2}_+ + R^{1\ 1=2}_1 :$$

96
Commuting both sides with K and using (7.37), simple algebra gives

$$R_{l+1}^0 = \frac{1}{4} R_{l-1}^{00} u R_l^0 - \frac{1}{2} u^0 R_l^1 ;$$

(7.39)

While this recursion formula only determines R_{1}^0, by demanding that the $R_{1}(1 \neq 0)$ vanish at $u = 0$, we obtain

$$R_0 = \frac{1}{2} ; \quad R_1 = \frac{1}{4} u ; \quad R_2 = \frac{3}{16} u^2 - \frac{1}{16} u^0 ;$$

$$R_3 = \frac{5}{32} u^3 + \frac{5}{32} u u^0 + \frac{1}{2} u^0 - \frac{1}{64} u^{(4)} ;$$

(7.40)

We summarize as well the first few $K_+^{1=2}$,

$$K_+^{1=2} = d ; \quad K_+^{2=2} = d^3 \frac{3}{4} f u ;$$

$$K_+^{3=2} = d^3 \frac{3}{4} f u ;$$

(7.41)

After rescaling, we recognize R_3 in (7.40) as eq. (7.15) with $= \frac{1}{10}$, i.e. the equation for the $(2,5)$ minimal model coupled to gravity. In general, the equations determined by (7.24) for general p,q characterize the partition function of the (p,q) minimal model (mentioned after (2.27)) coupled to gravity. To realize these equations in the continuum limit, it turns out [111, 112] to require only a two-matrix model of the type (7.29). The argument given after (7.24) for the one-matrix case is easily generalized to the recursion relations for the two-matrix case and shows that for high enough order potentials, there are enough couplings to tune the matrices P and Q to become pth and qth order differential operators. It is also possible to realize a $c = 1$ theory coupled to gravity in terms of a two-matrix model formulation of the 6-vertex model on a random lattice (see e.g. [11]). In [113], it is argued that one can as well realize a wide variety of $D < 1$ theories by means of a one-matrix model coupled to an external potential.

It is possible to define a larger space of models defined by taking linear combinations of the above models. In the case where $Q = K = d^2 u$, for example, we can consider

$$X_k t_k K_+^{1=2} ; K = 1 ;$$

(7.42)

which results after suitable rescaling in the string equation [110, 104] describing a general massive model interpolating between multicritical points,

$$z = X_k (t_k R_k [u])$$

(7.43)
If we consider the higher operators $K^k_+ 1=2$ as perturbations on pure gravity, $P = K^3_+ + P \ t_{(j)K^1_+}$, then their scaling weights follow from a simple argument. Since $u = z^2$ for pure gravity and u has grade 2, we see that a coupling of grade scales as $[z]^{-4}$, giving $=4$ as the gravitationally dressed scaling weight of its conjugate operator. Now the grade of $t_{(j)}$ is 3 $(2j-1) = 4$ $2j$, so it couples to an operator with weight $j=2$.

In the case of unitary in m in m models, z couples to the area, so is proportional to the cosmological constant. In general, however, z couples to the lowest dimensional operator in the theory. From the point of view of a perturbed $(2;2m-1)m$ model, we have $u = z^m$, the grade of $t_{(j)}$ is $(2m-1)$ $(2j-1) = 2m-2j$, and $K^1_+ 1=2$ scales as $(m-j)=m$ with respect to the lowest dimensional operator, i.e., corresponding to $=0$ rather than $=1$ (2.24). If we wish to compare to Liouville scaling with respect to the area, on the other hand, we must multiply by a factor of $=m=2$, which results in

$$\frac{1}{2}(m-j) \quad \text{(7.44)}$$

for the scaling of $K^1_+ 1=2$ viewed as a perturbation of a $(2;2m-1)m$ model (a result we shall use when we expand macroscopic loops in terms of local operators in these theories).

We can also consider the operators that correspond to these perturbations from the standpoint of the underlying one-matrix model. The parameters $t_{(j)}$ in (7.44) correspond to perturbations to jth order multicritical potentials of the form (7.23), and are given in turn by matrix operator perturbations of the form

$$\begin{aligned}
Z \ t_W(t_0 t) &\text{tr} V_{(j)}(M) = \text{tr} \frac{dt}{t} W_{(j)}(1 t) M^2 ; \\
\text{with } W_{(j)}(x) &= g_c \ (x \ x^j) ;
\end{aligned} \quad \text{(7.45)}$$

(Note that the integral in the first line just inverts the expression leading from V to W in (7.43).)

Finally, we note that for a general $(p;q)$ model, the grade of the l.h.s. of (7.23) is $p+q$, so z will be set equal (i.e., following one integration) to a quantity with grade $p+q 1$. A coupling with grade therefore scales as $[z]^{(p+q-1)}$, giving $= =p+q-1$ as the gravitationally dressed scaling weight of its conjugate operator. (The grade of $v_{q-1} = hP \pi$ is always 2, where P is the puncture operator whose two-point function calculates the 2nd derivative of the partition function, hence giving the string susceptibility $\chi_s = 2(p+q-1)$.) If we perturb $P ! P + t_Q^{p-r q-j-1}$, then the grade $p+q-1$ for $q-j-1$ and hence couples to an operator of scaling weight coincident with (2.23) (after multiplying the latter by $= q-1, \ p-1 = 2q=(p+q-1)$ to take into account the coupling of z to the lowest dimensional operator rather than to area).
Exercise. Scaling of Lax operators

a) Show that if Q is the Lax operator of order q, defining the $(p;q)$ series, then the operators in (4.10) are

$$Q^{n=q}.$$ \hfill (7.46)

Parametrizing $n = kq + 1$, we identify these operators with the topological field theory operators $k(O)$ which appear in [106].

b) Calculate the spectrum of indices of (4.4) we expect to find for the Wheeler-DeWitt wavefunctions of the Lian (Zuckerman) states.

8. Matrix Model Technology II: Loops on the Lattice

8.1. Lattice Loop Operators

Consider the one hermitian matrix model, as discussed in chapt. [7] (where we now use M rather than N to denote the $N \times N$ hermitian matrix). In the Feynman diagram expansion, the insertion of the operator

$$\frac{1}{M} \text{tr} \, M$$ \hfill (8.1)

creates a vertex emanating M "spokes," as shown in Fig. 14. On the dual triangulated surface, this operator has inserted a hole with M boundary lengths, and thus has length aM, where a is the lattice spacing. The factor of $1/M$ in (8.1) is needed to take account
of the symmetry factor for the Feynmann diagram. In the following we will generally work with marked loops and discard this factor.

To obtain macroscopic loop amplitudes we must take the continuum limit a! 0 and to maintain a finite physical length, we must simultaneously take M ! 1, holding some combination of a and M xed. From this point of view, the local operators of the theory discussed in sec. 7.2, namely linear combinations of operators of the form \((7.45) \) (e.g. \((7.45) \)), correspond instead to "microscopic loops", i.e. loops only a few lattice spacings in length.

Before proceeding to make precise sense of the continuum limit, we begin with some heuristic remarks. Recall that in the orthogonal polynomial formalism discussed in sec. 7.4, the action of \(M \) was equivalent to \((c_r + Q)^M \), where

\[
Q = 2r_c^{1=2} + a^{2=mn} r_c^{1=2} (u + r_c^{2} e_z^{2}) : \quad (8.2)
\]

Hence if we hold \(M a^{2=mn} = 2r_c \)' xed, we expect the loop operator to become the heat kernel operator,

\[
\frac{1}{M} \text{tr}(M^!) e^Q : \quad (8.3)
\]

After rescaling, we can write \(Q = 2d^2 = dz^2 \) \(u(z; \dots) \), where \(Q \) is the Schrödinger operator associated to the model, and \(d \) is the topological coupling. A rigorous discussion of the above limiting procedure makes use of the free fermion formalism, implicit in the orthogonal polynomial technique (and described in chapt. 9).

An alternative formulation of the lattice loop operator is

\[
W(L) = \frac{1}{N} \text{Tr}(\delta^L) ; \quad (8.4)
\]

where \(L \) is a "chemical potential" for the length. The limiting form \((8.2) \) shows that these loop operators have the same continuum limit, up to a non-universal multiplicative renormalization. This is a useful observation for making sense of examples where \(r_c = 0 \).

To analyze macroscopic loop amplitudes on the lattice, we introduce the resolvent operator

\[
\tilde{W}(\lambda) = \int_0^1 dL e^{-L \tilde{W}(L)} ; \quad (8.5)
\]

defining \(\lambda = e \), we may interpret as a bare boundary cosmological constant, and \((8.3) \) should be regarded as the lattice analog of the relation

\[
Z(\lambda) = \prod_{A=1}^k e^{-\lambda A} Z(A) ; \quad (8.6)
\]

between xed area and xed cosmological constant partition functions.
8.2. Precise definition of the continuum limit

Making use of the resolvent operator (8.2), we can now present a more technical description of the continuum limit discussed in chapters 6-7. To take the continuum limit of the lattice expressions, we first study the $N!$ asymptotics of the correlation functions

$$\mathcal{N} \prod_{j}^{N} \mathcal{W}^{(i)} \mathcal{N} \mathcal{Z} = \mathcal{e}^{N \mathop{\text{tr}} V} \mathcal{Z} \mathcal{e}^{N \mathcal{W}^{(i)}} \mathcal{V}^{(i)} \mathcal{N} \mathcal{F} [V; i] = 2^{2n} \mathcal{B}$$

where $V() = \sum_{j}^{N} T_{j}$ is a polynomial interaction for \mathcal{W}. This is a generating functional for correlation functions of \mathcal{B} operators. As explained in sec. 6.1, at fixed topology the functionals $F [V; i]$ have a lattice expansion

$$F [V; i] = \prod_{F, \mu_{1}, \ldots, \mu_{L_{i}}}^{D} \prod_{i}^{F} Y_{i, \mu_{i}}$$

where $D [F_{i}; L_{i}]$ is the set of distinct "triangulations" of a surface into F_{i}-sided polygons with boundaries of lattice length L_{i}. Using methods described below (in particular the loop equations (8.17)), one can show that the functions F have the following mathematical properties, familiar from the study of phase transitions in statistical mechanical models.

Fig. 15: Subspaces of successively higher codimension in coupling constant space corresponding to multicritical domains.
1) The expansions in V and $\frac{1}{1}$ are convergent in a sufficiently small neighborhood of the origin. To specify a neighborhood of the origin for the potential V, we first define a filtration on the space of potentials by requiring that V be in $V^{(n)}$, the space of polynomials of degree n with no constant or linear term. Considered as a function on the space of polynomials of degree n, we have convergence in a neighborhood of the origin.

2) The expansions have a finite radius of convergence. Defining the lattice area $A = \sum F_i$, it can be established that the asymptotic behavior of the number of distinct triangulations goes as $D \sim e^{\lambda_i A L_i^0}$ for $A > 1$, $L_i > 1$. Thus, the series will diverge as V approaches a real codimension one subvariety, the singular subvariety S of $V^{(n)}$, and as γ_c from above.

3) A priori S and γ_c could depend on the Euler character and the choice of boundary component, but turn out independent of them.

4) The variety S has subspaces of successively higher codimension corresponding to multicritical domains, as depicted in Fig. 15. For the space V^{2n}, the highest multicritical behavior corresponds to a point, given in [6]

$$V^{(n)}(t) = \frac{1}{\prod_{i} L_i^0} \prod_{i} \frac{1}{1 - t L_i} \left(1 + t \right)^{-n}$$

(This is just (7.45) with normalization $g_c = r_c = 1$.)

5) The critical exponents γ, δ, in (2) are "universal," which means that they only depend on the multicritical domain in S. On the other hand, γ, δ are "non-universal" which means they can vary from point to point in S.

We can use these mathematical properties of the functions F to learn about the physics of smooth surfaces as follows. We would like to distinguish "universal" phenomena associated with smooth continuum surfaces and not with the details of lattice decompositions by using the nonanalytic behavior of F as we approach singular values of V. The idea is based on the remark that the contribution of a hole with a finite lattice size, or a surface with a finite number of polygons, to (8.7) will always be analytic in \sqrt{V}. Thus, the nonanalyticity in \sqrt{V} must arise from holes and surfaces whose perimeter and area are in unity in lattice units. Thus, from smooth continuum surfaces,

By turning the above reasoning on its head, we define the continuum limit by isolating the nonanalytic dependence on \sqrt{V}. More precisely, we must define scaling functions as

34 The extent to which these surfaces really are smooth is an interesting question. See [114].
we approach singular values and define the continuum quantities in terms of these scaling functions. Note that if we use such a definition, continuum quantities are ambiguous by terms which are purely analytic in the coupling constants.

8.3. The Loop Equations

The correlation functions of \(\hat{W}(\cdot) \) may be determined by the \(\text{Schwinger-Dyson} \) or loop equations \([9][15][16]\) for the matrix model.

The loop equations are derived by requiring that the matrix model path integral be independent of a change of variables. A convenient way to organize arbitrary analytic changes of variables is to consider the simple transformation

\[
! \rightarrow 1 :
\]

Under (8.10), we have

\[
\text{tr}V(\cdot)! \text{tr}V(\cdot) + \text{tr}V^0(\cdot)(\cdot)^1
\]

\[
= \frac{1}{N^2} \hat{W}(\cdot)^2 :
\]

Inserting (8.11) into \(\text{d} e^N\text{tr}V(\cdot) \) and equating first order terms in gives

\[
\hat{W}(\cdot)^2 = \frac{1}{N} \text{tr}V^0(\cdot)(\cdot)^1 :
\]

We wish to expand the above in \(1=N \). \(\hat{W} \) is normalized so that the expansion in \(1=N \) of \(\hat{W} \) begins at \(O(1) \), corresponding to the disk geometry,

\[
\hat{W}(\cdot) = \hat{W}(\cdot)_{h=0} + \frac{1}{N} \hat{W}(\cdot)_{h=1} + \cdots
\]

By considering the relevant topologies contributing to \((\hat{W}(\cdot))^2 \), we see that the leading term on the left hand side of (8.12) has the topology of two disks. In general, we may separate the contribution of connected and disconnected geometries:

\[
\hat{W}(\cdot)^2 = (\hat{W}(\cdot))^2 + \frac{1}{N} \hat{W}(\cdot)^2_c
\]

where the second term corresponds to connected geometries. Expanding \(V^0(\cdot) \) as a polynomial in \(V \) with coefficients which are polynomials in \(V \), we see that \(\hat{W}(\cdot)_{h=0} \) satisfies a quadratic equation,

\[
\hat{W}(\cdot)_{h=0} V^0(\cdot) \hat{W}(\cdot)_{h=0} + Q(\cdot V) = 0
\]

where

\[
Q(\cdot V) = Q(\cdot) \\
Q(\cdot) = \frac{1}{k!} \text{tr}(V^{k+1})(\cdot \text{tr}V)^{1} :
\]

\(Q \) is a polynomial in \(V \) of degree \(\text{deg}(V) = 2 \) whose coefficients are linear combinations of \(c_j(V) \text{tr}^j(\cdot \text{deg}(V) = 2 \). The disk amplitude is obtained by solving (8.15).
\begin{align*}
V(\frac{\partial}{\partial L}) \left\{ L \right\} &+ \left\{ L \right\} + \left\{ L \right\} + \ldots \\
&= \int_0^L dL' \left\{ L' \right\} + \left\{ L' \right\} + \left\{ L' \right\} + \ldots \\
&+ \int_0^L dL' \left\{ L' \right\} + \left\{ L' \right\} + \left\{ L' \right\} + \ldots
\end{align*}

Fig. 16: Pictorial representation of $V^0(\theta=\theta) W (L) c$.

Geometric Interpretation: SD Equations as Loop Equations:

The loop equations have a beautiful geometric interpretation further justifying the identification of $W (L)$ with a loop operator. Write (8.12) in the form

$$V^0(\) \hat{W}(\) + Q (; V) = (\hat{W}(\) c)^2 + \frac{1}{N^2} (\hat{W}(\) f c)^2 : \quad (8.17)$$

Taking an inverse Laplace transform, we obtain

$$V^0 \frac{\theta}{\theta L} W (L) c = \int_0^L dL' W (L^0) c W (L L^0) c + \frac{1}{N^2} W (L^0) W (L L^0) c ; \quad (8.18)$$

which has the pictorial representation shown in Fig. 16.

Exercise.

Derive (8.18). Note that a polynomial in θ does not have an inverse Laplace transform.

The full set of loop equations may be elegantly summarized by introducing a "source" coupling to the loop operator:

$$Z \left[J \right] = \text{e}^{-N \text{tr} V(\)} R_i \int_0^L dL (L^0) W (L^0) c \left[J \right] W (L L^0) c \left[J \right]$$

Making the change of variables $\theta = e^{L}$ and using the above procedures, we obtain

$$V^0 \frac{\theta}{\theta L} W (L) c [J] = \int_0^L dL^0 W (L^0) c [J] W (L L^0) c [J]$$

$$+ \frac{1}{N^2} W (L^0) W (L L^0) c + \frac{1}{N^2} \int_0^L dL^0 L^0 W (L + L^0) c [J] ; \quad (8.20)$$

104
for which one may draw a similar pictorial representation.

Remark: It is possible, although slightly subtle \[118, 117\], to take the continuum limit of the loop equations we have derived here to write analogous equations for the continuum amplitudes. These continuum loop equations have many important applications, including for example the elimination \[115\] of unphysical solutions to the string equations \(7.43\).

9. Matrix Model Technology III: Free Fermions from the Lattice

The equivalence of matrix models to theories of free fermions is the underlying reason for the solvability of matrix models. In this chapter we describe the free fermion formalism.

9.1. Lattice Fermion Field Theory

The free-fermion formalism provides the basis for a rigorous description of the double-scaling limit of macroscopic loop operators. The formalism is also a very efficient way for calculating loops, both on the lattice and in the continuum. The formalism was first applied to macroscopic loop amplitudes in \[104\].

In sec.\[7.4\], orthogonal polynomials were introduced and it was shown that correlation functions are integrals of powers of multiplying a Vandermonde determinant. Interpreting this determinant as a Slater determinant for a theory of free fermions, we introduce the second-quantized Fermion field

\[
\chi^\dagger () = \sum_{n=0}^{\chi^\dagger} a_n \, n() ;
\]

(9.1)

where \(n \) are the orthonormal wave functions built from the orthogonal polynomials:

\[
n() \mapsto \frac{1}{p_n} p_n() e^{\frac{i}{2 N} N()} ;
\]

(9.2)

and \(f_a \sqcup g = n \).

Correlation functions in the matrix model with \(N \times N \) matrices are obtained by calculating correlation functions in the Fermion field deduced by

\[
a_n^\dagger N i = 0 \quad n \leq N ; \quad a_n^\dagger N i = 0 \quad n < N ;
\]

(9.3)

To see this, introduce the second-quantized operator for multiplication by \(n \),

\[
y^n = d \, y() \sqcup n() ;
\]

(9.4)
and the main observation is

\[
\begin{align*}
\text{D}Y \text{E} & \text{tr} n_i \text{m}atrix \text{m}odel \text{Z} 1 \text{d} \text{tr} n_i e^{N \text{tr} V(i)} \\
& = N_j y^{n_i} N_i:
\end{align*}
\]

(9.5)

where \(V = \sum_{i=1}^{P} g_i i\) and all but nitely many \(g_i = 0\). The proof of this identity uses the orthogonal polynomial techniques, e.g., for the one-point function:

\[
\text{htr} n_i = \frac{R Q d_i Z Y}{N ! h_i} e^{N V(i)}
\]

\[
= \frac{N}{N ! h_i} (N 1)! \frac{h_i}{h_j} d_j \text{det} P_j 1(i) 2 n_i e^{N V(i)}
\]

\[
= \frac{N}{N ! h_i} (N 1)! \frac{h_i}{h_j} d_j \text{det} P_j 1(i) 2 n_i e^{N V(i)}
\]

\[
= h_j j^n j_i = hN j y^{n_i} N_i:
\]

Exercise.

a) Prove (9.2) for two point functions using the same steps as in (9.3).

b) Find a general proof of (9.3).

c) Show that the lattice loop operator (8.4) and resolvent may be realized in the fermion formalism as

\[
W(L) = \frac{1}{N} y e^{L y}
\]

\[
\hat{W}() = \sum_{n=0}^{\infty} y^n = y \frac{1}{1 - y}
\]

(9.7)

9.2. Eigenvalue distributions

We will now justify some of the statements made in sec. 8.2 and indicate why the lattice (and hence continuum) correlation functions are computable.

By Wick’s theorem, we can express all amplitudes in terms of the fermion two-point function

\[
K_N(1; 2) = hN j y(1)(2) N_i:
\]

(9.8)
Therefore, in order to define the double scaling limit we must study the $N!$ asymptotic behavior of the kernel K_N. As explained in sec. 6.2, matrix model correlation functions have an asymptotic expansion in $1/N$, and are obtained from the asymptotic expansion:

$$K_N \prod_{j=0}^{X} N^{-1} j K_j(1; 2)$$

The functions K_j have support on an interval I which is independent of j. As a special case, note in particular that the diagonal of this kernel is the eigenvalue density:

$$(\cdot) = K_N (\cdot; \cdot)$$

By (9.10) we may identify the interval I with support of the eigenvalue density in perturbation theory.

Exercise. Eigenvalue Density

Show that (\cdot) is the probability for finding an eigenvalue with value i in a random matrix ensemble described by $V(\cdot)$. That is, show that it is the matrix expectation value of

$$\frac{1}{N} \sum_{i=1}^{X} (\cdot)$$

By (9.11) we may identify the interval I with support of the eigenvalue density in perturbation theory.

The easiest way to prove our assertions about the nature of the eigenvalue densities proceeds by studying the correlation functions of the resolvent operators $\hat{W}(\cdot)$. Note that $\hat{W}(\cdot)$ is only defined for the real axis since has real eigenvalues. Moreover, the discontinuity of $\hat{W}(\cdot)$ across the real axis is equal to the eigenvalue density.

Solving the quadratic equation we see that the roots of the polynomials are several branch points for $\hat{W}(\cdot)_{h=0}$, and since (\cdot) is the discontinuity of $\hat{W}(\cdot)_{h=0}$, the support of the genus zero eigenvalue density must lie on an interval or finite union of intervals.

35 In more complicated cases the support can be on unions of intervals.
Exercise. Derivation of the Wigner distribution

As an example of an eigenvalue distribution, we consider the Gaussian matrix model. The leading term in the large N asymptotics of the eigenvalue distribution is the famous Wigner distribution

\[K_1(\lambda) = \frac{1}{4} \lambda^2 \left(2 \lambda^2 \right); \quad (9.12) \]

shown in Fig. 17.

Derive the Wigner distribution from the Schwinger-Dyson" equations of the matrix model using the above procedure. First show that for the Gaussian potential we have

\[\mathcal{W} (\lambda) = \frac{1}{2} \lambda^2 ; \quad (9.13) \]

and from this obtain the Wigner distribution (9.12).

The finiteness of the support of the kernels has important implications for the nonanalyticity in . Consider for example the one-point function

\[\mathcal{W} (\lambda) = \frac{1}{N} \left(\frac{1}{E} \right) \frac{1}{Z} \frac{1}{d} K(\lambda) ; \quad (9.14) \]

The nonanalytic dependence on we are looking for comes from the contributions in the integrals near the edge of the support of the eigenvalue distribution. In the last expression we may take \(c \) real and \(\lambda > c \). We encounter nonanalytic behavior as \(\lambda \) hits the edge of the eigenvalue distribution.

Example: Let us verify the statements about analytic dependence on in the example of a Gaussian potential. Expanding \(= c + \frac{1}{2} \lambda^2 + \), or equivalently, expanding around the edge of the eigenvalue distribution, we obtain a nonanalytic function of \(\lambda^2 \) corresponding (formally) to the one-loop amplitude \(W' = \frac{1}{3} \lambda^2 \).

108
9.3. Double(Scaled Fermi Theory)

More generally, to prove (9.9) and to investigate the scaling limit of K near the edge of I more thoroughly, note that using the recursion relation

\[n = \frac{p}{r_{n+1}} n+1 + \frac{p}{r_n} n-1; \tag{9.15} \]

we may write

\[hN \int \gamma(1,2) N i = \sum_{n=0}^{\infty} \frac{p}{r_{n+1}} n+1(1)n(2) \]

\[= \frac{p}{r_{n+1}} \frac{N+1(1)}{1} \frac{N+1(2)}{2} \]

and therefore we should study the scaling limit of the orthonormal wavefunctions themselves.

As discussed in sec. 8.2, the recursion functions \(r_n \) have singular behavior as \(V \to S \). Moreover, using the recursion relations for orthogonal polynomials, as elegantly summarized in the statement \([P;Q] = 1 \), the large \(n \) asymptotics determine a consistent ansatz for the following behavior. If \(V^{(m)}(z) \) is the \(m \)-th multicritical potential, then we approach criticality by taking the limit:

\[V = e^{a^2} V^{(m)}(0) \quad \lim_{n \to \infty} a^{2+1-m} = 1 \]

\[r_n[V!] \quad r_c + a^{2-m} u(z); \tag{9.16} \]

The recursion relation (9.15) implies that if has well-behaved limiting behavior near the edge of the eigenvalue distribution \(c \),

\[n = c + a^{2+m} \quad a \quad (z; \sim) \tag{9.18} \]

(here \(a \) is a normalization factor), then the \(s \) are eigenfunctions of the Lax operator:

\[\begin{align*}
Q &= e^{2z}dz^2 u(z; \sim) \quad = \sim \tag{9.19}
\end{align*} \]

The limiting form of \(\sim \) will be an eigenfunction of \(Q \).

36 In the theory of the KdV hierarchy, such functions are known as Baker-Akhiezer functions.

37 The eigenfunctions of \(Q \) are obtained by demanding appropriate asymptotic behavior in \(x \) and \(z \), ensuring convergence of integrals as \(x \to 1 \) and exponential decay of eigenvalue density outside the perturbative cut at \(x \).
Example. The Gaussian potential

We will work through in detail the fermionic formulation of the double scaling limit for the simplest matrix potential of all, the Gaussian potential $V(\theta) = \theta^2$. The Gaussian potential corresponds to the so-called topological point or the $(1;2)$ point in the Lax operator classification described in sec. 7.7. Perturbations about this point define the correlation functions of topological gravity, described from the point of view of topological field theory in [103].

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure18.png}
\caption{As c, two stationary phase points coalesce at $\lambda = \frac{P}{2}$.}
\end{figure}

We now obtain the full asymptotics in $1=N$ of the contributions to (9.18) of the integrals from the edge of the eigenvalue distribution. We do this first explicitly for the case of the Gaussian potential. In the case of a Gaussian matrix potential $e^{N \text{tr}^2}$, the orthonormal wavefunctions are simply

\[n(\theta) = \frac{N^{1/4}}{2^{n/2}} \frac{1}{n!} H_n \left(\frac{P}{N} \right) e^{N \theta^2/2}; \quad (9.20) \]

where H_n is a Hermite polynomial, and has the integral representation

\[H_n(x) = \frac{2^n}{\sqrt{\pi}} \frac{1}{n!} \int_{-\infty}^{\infty} dt (x+it)^n e^{-t^2}; \quad (9.21) \]

Using the stationary phase approximation, one finds two stationary points for $\theta = \lambda$. For $\lambda < 2$ we find an oscillatory function while for $\lambda > 2$, the wavefunction is zero to all orders of the $1=N$ expansion. We are most interested in the behavior of the wavefunctions for in nesimally close to $\frac{P}{2}$, the edge of the eigenvalue distribution. At this point, the two stationary phase points coalesce as in fig. 18, and by simultaneously scaling $N!^1$ and $c = \frac{P}{2}$ one can obtain a well-defined limit whose asymptotics captures the
In detail, let
\[N a^3 = 1 \quad n=N = 1 \quad a^2 z = \frac{p}{2(1 + a^2)}; \] (9.22)
and let a! 0 holding z; ;\(^\sim\) xed. Then we have
\[\lim_{a! 0} a^{1=2} n() = \sum_{1}^{6} \frac{Z}{2^{3+4}} \quad dte^{it} \quad 2^{-3} (\sim + i+2)^{3+3} \]
\[= \sum_{1}^{6} \frac{1}{2^{3+4}} \quad Ai z + \sim ; \] (9.23)
That is, the double scaling limit of the Hermite functions of the Gaussian model are Airy functions.\(^{38}\)

Fig. 19: A magnified view of the eigenvalue distribution near the endpoint. Note the nearby exponential fall and square root growth far from the endpoint.

The edge of the eigenvalue distribution is at \(\lambda_c = 0 \), and is given by
\[(_) = (Ai)^2 \quad 2^{-3} (Ai)^2; \] (9.24)

From the asymptotics of Airy functions, we obtain the picture of the eigenvalue distribution depicted in Fig. 19. This completes our example of the Gaussian potential.\(^{39}\)

\(^{38}\) The appearance of these functions is directly related to the Airy functions which play a key role in the Kontsevich matrix model.

\(^{39}\) We could have deduced the connection to Airy functions more directly using the WKB analysis of wavefunctions in a harmonic oscillator potential, but that argument does not generalize to other orthogonal polynomials.
Exercise.

Using the asymptotics of the Airy function, show that the double-scaled eigenvalue density behaves like:

\[
\begin{align*}
\left(\frac{1}{4} \right)^{1/4} e^{\frac{1}{3} z^{3/2}} &+ 1 \\
\left(\frac{1}{4} \right)^{1/2} &+ 1
\end{align*}
\]

(9.25)

Returning to the general case, we can use (9.18) to find the behavior of the fermion two-point function in the region of interest, namely, the edge of the eigenvalue distribution. It is just

\[
K (c + a^{2m}; c + a^{2m}) \sim a^{2m} K_{\text{cont}} (1; 2);
\]

(9.26)

where

\[
K_{\text{cont}} = \frac{Z_1}{\int dz (z; 1) (z; 2)}.
\]

(9.27)

(To prove this, note that the continuum limit of the Darboux-Cristi formulæ is

\[
K_{\text{cont}} = \left(\frac{1}{1 + 2} \right)^{1/2} \left(\frac{1}{1 + 2} \right)^{1/2}.
\]

(9.28)

Taking a derivative with respect to , we find \(K_{\text{cont}} = \left(\frac{1}{1 + 2} \right)^{1/2} \left(\frac{1}{1 + 2} \right)^{1/2} \), and integrating gives (9.27). From these remarks we derive the main statement of double-scaled Fermi theory:

The nonanalytic dependence on coupling constants in (9.5) comes from the contributions in the integrals over the edge of the eigenvalue distribution. These contributions in turn may be studied by using the double-scaled fermion field theory, i.e., the theory of free fermions with expansion

\[
Z = \int dz a(z) (z;)
\]

(9.29)

where \((z;)\) is the orthonormalized eigenfunction of the Lax operator \(Q\), which is exponentially decaying for \(z > 0\) and oscillatory for \(z < 0\). The free oscillators satisfy

\[
a(z)j = 0 \quad (z <) \quad a^*(z)j = 0 \quad (z >)
\]

(9.30)

\[
fa(z); a^*(z^a)g = (z^a)
\]

112
In particular, continuum loop amplitudes are obtained from the double-scaled operator creating macroscopic loops

\[
W (\gamma) = \int d\gamma' \gamma' (\gamma): \quad (9.31)
\]

Although we integrate over the entire real axis, in fact the Laplace transform converges. A detailed study of the asymptotics of the Baker-Akhiezer functions shows that decreases exponentially fast (as \(e^{-m+\frac{1}{2}} \)) in the region of perturbative support of the eigenvalue density, and oscillates with an algebraically decaying envelope within the region of support. On that region, the eigenvalue density grows algebraically and is Laplace transformable.

10. Loops and States in Matrix Model Quantum Gravity

10.1. Computation of Matrix Model Quantum Loops

We now use the fermion formalism to calculate macroscopic loop amplitudes in the one-matrix model. Beginning with the one-loop amplitude we insert (9.31) to get one of the beautiful results of [104].

\[
W (\gamma) = \sum_{n=0}^{\infty} \kappa^{-n} \int d\gamma' \gamma' (\gamma): \quad (10.1)
\]

Similarly, the connected amplitude for two macroscopic loops is easily shown to be [104].

\[
W (\gamma_1)W (\gamma_2) = \sum_{n=0}^{\infty} \kappa^{-n} \int d\gamma_1 \gamma_2 (\gamma_1 \gamma_2): \quad (10.2)
\]

40 Notice that this is valid only when the Lax operator has a continuous spectrum. This criterion can be used to select boundary conditions on the physically appropriate solutions to the string equation: for example, it selects the solutions first isolated in [118].
The formulae (10.1) and (10.2), while elegant, do not make
manifest the physics of the models we are discussing. To address
this problem, we examine these formulae at genus zero. Since
counts loops, we can regard the expectation value in (10.1) as a
"quantum-mechanical" expectation value, with playing the role of h, and obtain the

genus zero approximation to the loop formulae as follows. Using the Campbell(Baker-
Hausdorff formula to separate exponentials of \(p^2 \) and \(u \), and then inserting a complete set of
eigenfunctions

\[
\eta \text{p } \eta \eta \frac{1}{2} e^{i p x} ;
\]

we obtain

\[
W (') \eta = \int dz z e^{p^2} e^{u^2} \frac{1}{2} dz Z e^{p^2} e^{u} = Z^{1} \frac{1}{2} e^{p^2} e^{u} \frac{1}{z^{1} e^{p^2} e^{u}}.
\]

Let us consider this formula first for the case of pure gravity. If we wish to calculate the
expectation value of a loop with the cosmological constant inserted, we take a derivative
with respect to to bring the operator down from the action, yielding

\[
D W (') e = \frac{1}{2} e^{p^2} e^{u}.
\]

In pure gravity, the string equation is the Painlevé I equation (7.17):

\[
u^2 \frac{2}{3} u^0 = z ;
\]

and the genus zero equation becomes simply \(u(z) = z^{1-z} \). The matrix model result for the
wavefunction of the cosmological constant is thus

\[
V = W (')
\]

precisely as expected from the continuum theory (e.g. sec. 4.3).

Exercise. Spectrum of 2D Gravity

Using the KPZ formula (4.5), show that the spectrum of numbers in the \(W dW \)
equation (4.7) for the case of pure gravity is \(j = j + \frac{1}{2}, j = 0 \).
More generally, we may calculate the one macroscopic loop amplitude for general perturbed \((2;2m-1)\) models coupled to gravity along the following lines. The genus zero limit of the string equation \((7.43)\) can be written
\[
X_j u^j = 0 : \quad \text{for} \quad j = 0 \tag{10.8}
\]
(Note \(= \xi\). Recall that the \(t_j\) describe the coupling to the various scaling operators and if the largest nonvanishing \(t_j\) has \(j = m\), we are describing 2D gravity coupled to the \((2;2m-1)\) minimal model.) Using \((10.8)\), can explicitly evaluate the loop amplitude as
\[
W(\tau)_{h=0} = \frac{1}{\mathcal{Z}_{1=2}^{1}} \int_{t_0}^{1} dx \ e^{u(x \mathcal{P}_1)} = \frac{1}{\mathcal{Z}_{1=2}^{1}} \int_{u}^{x} dy \ j_t y_j^{1} e^{-y} \tag{10.9}
\]
\[
= \frac{1}{\mathcal{Z}_{1=2}^{1}} \int_{j=1}^{X} j_t y_j^{1} \ e^{j_1(\tau)} ;
\]

where
\[
j_j(x) = j \! x \ j_1^{1=2}(1 + x + x^2=2!+ \ j=j_1 \ e^{-x} ; \tag{10.10}
\]

and \(\tau' = u'\). (We assume here that all but finitely many \(t_j\) are nonzero.) The relation of these amplitudes to the Bessel functions of the continuum theory is less evident than in \((10.7)\) and will be explained in sec. 10.3.

Similarly, we can study the genus zero approximation to the propagator as
\[
W(\tau_1)W(\tau_2)W(\tau_3)_{h=0} = \frac{\mathcal{Z}_{1=2}^{1}}{\mathcal{Z}_{1=2}^{1}} \int_{t_0}^{1} dx \ \int_{t_0}^{1} dy \ e^{u'_{(\tau_1 + \tau_2 + \tau_3)}(x \ y)^{1=2}(\tau_1 + \tau_2 + \tau_3)} \tag{10.11}
\]
\[
= 2^{p_1} \ e^{u_{(\tau_1 + \tau_2)}(\tau_1 + \tau_2 + \tau_3)} ;
\]

Exercise.

Prove \((10.11)\) by inserting \((10.2)\) into \((10.2)\). Similarly, try to prove
\[
W(\tau_1)W(\tau_2)W(\tau_3) = 2^{p_{1,2,3}} e^{u_{(\tau_1 + \tau_2 + \tau_3)}} \tag{10.12}
\]

(We will prove this more efficiently below.)
10.2. Loops to Local Operators

By shrinking the loops we can obtain correlation functions of the local operators. This intuition comes from the critical string example discussed in chapt.1 and from the expression for the matrix model loop operator (8.4) which is manifestly an expansion in local operators.

In eq. (7.44), we saw that in the matrix model there are scaling operators \(j/K \) scaling like \(e^{1/2} \) with \(j = 1/2(m-j), j=0;1;\ldots \). According to (3.33), the macroscopic loop operator has an expansion as in (3.37),

\[
W(\tau) = \sum_{j=0}^{\infty} \frac{X}{j^{1/2}} \exp(jt) .
\]

(10.13)

Exercise. Exponents

Use the result (3.33) to verify the expansion (10.13) using the fact that for pure gravity we have \(Q = 5=2 \) and \(j = 1 \) \(j=2, j=0;1;\ldots \).

As we have already discussed in the context of semi-classical Liouville theory, the expansion (10.13) is not strictly true and must be treated with care. As we see from (10.9), there can be negative powers of \(j \) in the small \(j \) expansion of loop correlators. In sec.3.11, we showed that the \(j! \) behavior of loop amplitudes must satisfy certain rules which imply that one can unambiguously extract the correlators of local operators. The rules of sec.3.11 are confirmed by explicit matrix model computations. For example, notice that (10.3) can be written as

\[
W(\tau)_{h=0} = \sum_{j=0}^{\infty} \frac{X}{j^{1/2}} \exp(jt) + \frac{X}{(n+\frac{1}{2})} h_{n} \exp(n/\frac{1}{2}) .
\]

(10.14)

The divergent terms in \(\tau \) are indeed analytic in the coupling constants. Similarly, notice that (10.13,10.12) are smooth as any loop length goes to zero. In general, with the rules (1) and (2) from the end of sec.3.11 in mind, we can extract correlation functions of local operators by shrinking macroscopic loops.

Exercise.

Using (10.13), calculate \(h_{n_{1} n_{2} n_{3}} \).
Exercise. The general amplitude

Using rules (1) and (2) and the genus zero KdV equations, we will prove that

\[D^n \frac{E}{W \left('i \right)} = \sum_{i=1}^{n} \frac{\Theta_n}{\Theta_{t_0}} e^n P_i \]

(10.15)

For example, to prove the three macroscopic loop formula proceed as follows:

\[W \left('i \right)W \left('j \right)W \left('k \right) = \sum_{n=0}^{\infty} \frac{\Theta_n}{\Theta_{t_0}} \frac{\partial^n}{\partial t_0} W \left('j \right)W \left('k \right) \]

\[= \sum_{n=0}^{\infty} \frac{\Theta_n}{\Theta_{t_0}} \frac{\partial^n}{\partial t_0} \sum_{i=1}^{n} \left('j + 'k \right) \]

\[= 2 \frac{\partial^n}{\partial t_0} \sum_{i=1}^{n} \left('j + 'k \right) \]

(10.16)

In the last line we may obtain the \(' \) dependence immediately since the amplitude must be totally symmetric in \('i; 'j; 'k \). Give a complete proof of (10.15) along these lines by induction.

This formula was first discovered in [19] from a different point of view and then rediscovered in [38]. The strange fact that the amplitude is essentially only a function of the sum of the loop lengths has never been given a simple explanation.

10.3. Wavefunctions and Propagators from the Matrix Model

Let us finally match the expectations of sec. 4.3 above, specifically the Bessel function behavior of wavefunctions, with the results of the matrix model computations of sec. 10.1. At first the results appear to be very different but this turns out to be a matter of working in two different bases.

One quick way to see this is to use the Gegenbauer addition formula to expand the genus zero propagator (10.11) in terms of Bessel functions:

\[p \frac{\partial^n}{\partial t_0} e^n = \sum_{i=1}^{n} \left('i + 'j \right) \]

\[= \left('i + 'j \right) \left(i! \right) (2j + 1) I_{j+\frac{1}{2}} (\left('i + 'j \right) + \left('i + 'j \right)) + \left[1 \frac{1}{2} \right] : \]

(10.17)

Although we have pulled this identity out of a hat, it is quite natural. The Yukawa potential in three spatial dimensions, which is the Green’s function for the Helmholz operator \(r^2 \), is just \(e^{\frac{x_1 r_2}{2} - \frac{r_1 r_2}{2}} \). This Green’s function may be expanded in partial waves and the Gegenbauer addition theorem amounts to that expansion.

117
This suggests that instead of the local operator expansion \((10.13)\), we use a different expansion
\[
W (') = \sum_{j=0}^{\infty} i^{j+\frac{1}{2}} j = 2^j \chi_j (1)^j \frac{u_j}{u_{j+1}} ; \quad (10.18)
\]
That is, instead of expanding the loop in terms of the functions \(I_1 = 2; I_3 = 2; \ldots\), we use the basis functions \(I_1 = 2; I_3 = 2; \ldots\). Using the properties of \(I\), we see that this change of basis is upper triangular and hence the operators \(^j\) are related to \(j\) by an upper triangular transformation whose coefficients are analytic functions of \(u^2\).

Since we isolate continuum contributions from nonanalytic dependence on couplings like \(\tau\), we must not mix operators with coefficients that are nonanalytic in \(\tau\). Conversely, we are always free to make reductions involving coefficients which are analytic in \(\tau\). Since the critical exponents \(j^\pm\) are rational, there can be operator mixing, and hence there is no unique definition of scaling operators. In order for the change of basis \((10.18)\) to satisfy this rule, \(u^2\) must be an analytic function of the couplings \(t_k\). One way this can happen is by considering perturbations around the pure gravity point where \(u^2 = 2\).

The wavefunctions of the operators \(^j\) are given by shrinking one of the loops,
\[
h^j W (') = u^{j+\frac{1}{2}} K_j (u') ; \quad (10.19)
\]
in complete agreement with the Euclidean on-shell wavefunctions of sec. 4.3. Thus, we have actually done better than we had any right to expect, the minisuperspace approximation to the wavefunctions turned out to be exact for these boundary conditions.

In the theory of a particle, the propagator was written in terms of on-shell and o-shell states as in \((5.4)\) above. Similarly here we may write the matrix model propagator in a way which nicely summarizes the spectrum of the theory
\[
W (') W (') = \sum_{E, E'} \frac{dE}{2} G (E, E') ; \quad (10.20)
\]
where
\[
G (E) = \frac{\chi_j}{\int_{E^2 + (j + \frac{1}{2})^2}} \left(\frac{1}{2} \right)^{2j+1} (j + 1) = \cosh E ; \quad (10.21)
\]

\footnote{More generally, one should look at the so-called \textit{\textbackslash conformal backgrounds}, which, as argued in \cite{33}, are the precise matrix model couplings corresponding to a tensor product with a conformal \((2;2m-1)\) model. An understanding of these backgrounds was needed to resolve certain paradoxes about one- and two-point functions in 2d gravity \cite{38}.}
It is extremely interesting to note that even for pure gravity the third quantized universe propagator is not the naive minisuperspace W heeler-DeWitt propagator (5.20). In particular the ultraviolet behavior of the propagator (in E) is completely different from the naive propagator (5.20). For example, the 1=E^2 behavior in the ultraviolet becomes e^E behavior. Our understanding of why this is so is incomplete. (Part of the story is explained in the next section.)

In general, we can decompose amplitudes as

\[W(\gamma_1) = \int_{\mathbb{Z}_2} dE \prod_{i=1}^{n} A(E_1; \ldots; E_n) ; \tag{10.22} \]

which (in the case of the four-point amplitude) we depict as

By shrinking \(\gamma_1 \) to zero we get an expansion in terms of local operators. Alternatively, and equivalently, by doing the integral over the \(E_i \) we pick up residues corresponding to the Euclidean on-shell states. A similar picture emerges for all the multicritical points. The following exercise carries this out in detail for the Ising model.

Exercise. The Ising Model

The Ising model has a \(\mathbb{Z}_2 \) symmetry flipping up spins for down, which, in the matrix model formulation described in sec. 7.2, is exchange of U \leftrightarrow V. Letting \(W(\gamma) \) denote the \(\mathbb{Z}_2 \) odd/even loop operators show that

\[W(\gamma_1) W(\gamma_2) = X_{j_1} (j + 1=3) I_{j_1, j_2=3} (2^P \gamma_1') K_{j_1, j_2=3} (2^P \gamma_2') \]

\[X_{j_2} (j + 2=3) I_{j_2, j_3=3} (2^P \gamma_1') K_{j_2, j_3=3} (2^P \gamma_2') ; \tag{10.23} \]

By summing the infinite series, show that

\[G(E; \gamma) = 2 (e^E 1 + e^{-E}) \frac{\sinh E}{\sinh 3E} ; \tag{10.24} \]

Remark: We have shown that the wavefunctions \(W(\gamma) \) satisfy a linear W dW equation. On the other hand, from the Schwinger-Dyson equations (8.18) and their continuum analogs, we see that \(W(\gamma) \) itself satisfies a nonlinear equation. A precise understanding of the relation of these has never been given (except in special cases [120]). This is an interesting problem for the future.
10.4. Redundant operators, singular geometries and contact terms

One important and not generally discussed issue is the contribution of singular geometries to the path integral. In the case of microscopic loop amplitudes, there are geometries in which loops collide to make figure-eights as in Fig. 20, and as well more complicated geometries. Our understanding of the contributions of these geometries is very incomplete, but there is plenty of evidence that such terms are responsible for several peculiarities of the matrix model answers (e.g. the cosh propagator discovered above) and perhaps lie at the heart of a geometrical understanding of the Lian-Juzekman states. See also the discussion at the end of sec. 11.4 below.

11. Loops and States in the c = 1 Matrix Model

11.1. Definition of the c = 1 Matrix Model

There are several approaches to defining a matrix model for gravity coupled to c = 1 matter. The most direct method is the discretization of the Polyakov path integral for a one-dimensional target space,

\[Z_{gg}(g) = \sum_{g} \prod_{j=1}^{j} dX_{i} e^{P_{h_{ij}} L(X_{i}, X_{j})}; \]

where \(j \) is the number of vertices on the lattice which is summed over Euler character 2 \(2h \), and the nearest neighbor interaction \(L(X_{i}, X_{j}) \) between the bosonic fields \(X_{ij} \) at vertices \(i; j \) is summed over links \(h_{ij} \) between vertices.
The asymptotic expansion in of the partition function (11.1) can be equivalently generated from an integral over \(N \) matrices,

\[
Z(N; g) = \ln D e \int_{R} \frac{g^{-1}}{N} \text{tr} dX \ dY \frac{1}{2} (X) G^{-1}(X) Y (Y) + dX \ V (X) ;
\]

where \((X) \) is an \(N \times N \) hermitian matrix field, \(V \) is a polynomial interaction of some fixed order, and the propagator \(G(X) = \exp L(X) \). \(g \) is a loop counting parameter, and therefore counts the number of vertices in the dual graph (identified with the area of the lattice). As in sec. 6.1, the coefficient \(N \) in an expansion of \(Z \) in powers of \(N^2 \) gives the sum of all connected Feynman diagrams with Euler characteristic. As functions of \(g \), these coefficients are all singular at a critical coupling \(g_c \) where the perturbation series diverges. The continuum limit can be extracted from the leading singular behavior as \(g \to g_c \), a limit which emphasizes graphs with an infinite number of vertices.

Taking \(L(X_i, X_j) = (X_i X_j)^2 \) in (11.1) leads to the continuum limit from \(d^2 P \frac{g^{ab}(r_a X)(r_b X)}{N} \), thus providing a standard discretization of the Polyakov string [2] embedded in one dimension. This quadratic choice corresponds to a gaussian propagator, \(G(X) = \exp(X^2) \), in the matrix model (11.2). In momentum space, the leading small momentum behavior of the gaussian form \(G^{-1}(P) = \exp P^2 \) coincides with that of the Feynman form \(G^{-1}(P) = 1 + P^2 \), which corresponds in position space to \(G(X) = \exp(\frac{1}{2}X^2) \). As argued in [2], this substitution (corresponding to \(L(X_i, X_j) = (X_i X_j)^2 \), with continuum form \(j^{ab}(\partial_a X \partial_b X)^{j=2} \), should not affect the critical properties (e.g., critical exponents).

Due to the ultraviolet divergence of the model, only its short distance, i.e., non-universal behavior, is affected [5]. For the same reason, continuum answers should only depend on the universality class of the potential \(V \), the necessary conditions for which will be discussed below. For now we simply require \(V(X) \) to go to +1 for \(X = 1 \) in order that (11.2) is well-defined.

For the latter choice of propagators, i.e., the Feynman propagator, after rescaling we can write (11.2) as

\[
F_{mm}(N; g; V) \lim_{T \to 1} T^{-1} \ln D(X) e^{(R_{I}^{-1}/0) dX \ tr(P^2 + g^{-1}V(P g^{ab}(r_a X)(r_b X)))} ;
\]

(11.3)

\(^{43} \) Note that this matrix model construction works equally well for bosons \(X = 1; \ldots; D \), to generate strings embedded in \(D \) dimensions. For \(D > 1 \), however, the matrix model representation is no longer solvable.

\(^{44} \) Indeed we will see that energies of order \(1 = N \) dominate the continuum limit.
Using Feynman diagrams to obtain the large N asymptotics of the function \(F_{mm} \), we write (as in (11.1))

\[
F(N; g; V)_{mm} = X N^{2 \hbar} g^{ij} \frac{Z}{dX_i} e^{X_i X_j};
\]

The quantum mechanical model (11.3) was solved to leading order in large N in [82]. Interpreting the solution as the partition function (11.4) of 2d gravity on a genus zero worldsheet coupled to a single gaussian massless field, it was shown in [82] that the string susceptibility exponent, defined by the leading singular behavior \(Z(g) = (g_c g)^{str} \), satisfies \(str = 0 \), in agreement with the continuum prediction of [53]. The emergence of such physically reasonable answers in the continuum limit supports the assumption of universality with respect to the choice of propagator.

We will now study the continuum limit of the integral (11.3) to confirm and extend the above discussion.

11.2. Matrix Quantum Mechanics

From general principles, we see that (11.3) is simply the ground state energy for the quantum mechanics of an \(N \times N \) matrix, and was analyzed from this point of view in [82].

The reduction to free fermions can be established quickly using a path integral argument given in [82]. In the matrix quantum mechanics, we can discretize the time coordinate \(X \rightarrow X_i \) and then pass to the action

\[
S = N \sum_i X_i \langle X_i (X_{i+1}) + \text{tr} V (X_i) \rangle;
\]

We now analyze the model as a matrix chain model as in sec. 7.3, diagonalizing

\[
(X_i) = 1 1 1 \ldots 1 \quad (11.6)
\]

where \(i = \text{Diag}(1(\mathbb{1}) : \cdots : N(\mathbb{1}) \rangle \). The Vandermonde determinants all cancel except for the first and last. Taking the time lattice spacing to zero, we are left with a path integral for \(N \) quantum mechanical degrees of freedom \(i(t) \),

\[
F_{mm}(N; g; V) \lim_{T \to 1} T^{1/2} \frac{1}{\text{str}} \int_{0}^{\hbar} X \prod_{t=1}^{T} \int_{0}^{\hbar} dx \sum_{i=1}^{N} \frac{\lambda}{\hbar} \int_{0}^{\hbar} g^{ij} V (X_i X_j); \]

122
Thus we are studying the quantum mechanics of N free fermions moving in a potential $g \ V (P \ g)$ with Planck's constant equal to $\hbar = 1/N$,

$$F_{mm} (N ; g; V) \frac{1}{\hbar} E_{\text{ground}} = N \sum_{i=1}^{X} \frac{1}{\hbar} V (P \ g)_{i=1}^{i}; (11.8)$$

where

$$\frac{1}{2N^2} \frac{d^2}{d^2} + \frac{1}{g} V (P \ g)_{i=1}^{i}$$

To define the double scaling limit we must:

1) Compute the asymptotic expansion as $N \rightarrow 1$,

$$F_{mm} \sum_{N}^{2 \hbar} F_{h} (g; V) ; (11.9)$$

2) Isolate the leading singular behavior of F_{h} as $g \rightarrow g_{c}$.

3) Determine the scaling variable and scaling functions as $g \rightarrow g_{c}$ and $N \rightarrow 1$.

We begin by studying the function $F_{0} (g; V)$ corresponding to genus zero surfaces. The potentials of interest are polynomials that have a quadratic maximum. We place this maximum at $\lambda = 0$ and shift V so that $V(0) = 0$, so that V might look as in Fig. 21. To make ideas, one can take

$$V(\lambda) = \frac{1}{2} \lambda^2 + \frac{1}{4} \lambda^4; (11.11)$$

but it is important to note that the results hold for a large class of potentials, thus providing evidence that we are calculating true continuum results and not lattice artifacts.

Since $\hbar = 1/N$ in our problem, the function F_{0} can be calculated as the leading term in a semiclassical expansion using the WKB approximation. Classically the energy becomes
continuous and particle states are specified by points in fermion phase space \((p; \lambda)\). By the Pauli exclusion principle, we can put at most one fermion in each volume element of area \(2h\) in phase space. At the same time we are putting \(O(1/h)\) distinct particles into the sea, so the sea covers a region of area \(O(1)\). In the classical limit, the state described by the Fermi sea of the free fermions is thus a region in phase space. By the Liouville theorem, the time evolution of the system preserves the area of this region, so we may think of the region as a fluid in phase space. We will return to this picture in chapters 12 and 13 below. The fluid has a total area determined by the Fermi level, which is in turn xed by the total number of fermions,

\[
N = \frac{Z}{2h} \left(F \right) ;
\]

(11.12)

implying that

\[
1 = \frac{Z}{2h} \left(F \right) ;
\]

(11.13)

where

\[
(p; \lambda) = \frac{1}{2}p^2 + \frac{1}{g}V(g)\frac{p}{\lambda} ;
\]

Thus, we require that the fluid have total area one. The total energy is

\[
E_{\text{ground}} = \frac{Z}{2h} \left(F \right) ;
\]

(11.14)

which implies

\[
F_0(g; V) = \frac{Z}{2h} \left(F \right) ;
\]

(11.15)

Eq. (11.13) determines the Fermi level \(F\) as a function of \(g\), and then (11.15) determines \(F_0(g; V)\).

Fig. 22: Level curves in phase space. Filled Fermi levels are shaded.

124
To see how singularities of \(F_0 \) can arise, let us consider the specific potential (11.11) for which
\[
(p, \lambda) = \frac{1}{2} p^2 + \frac{1}{2} g^4 : \quad (11.16)
\]
Level curves for \(p \) are plotted in fig. 22. At small values of \(g \), the lattice expansion (11.4) converges. To define the continuum limit, we look for the leading singularity in \(F_0 \) due to the singularity in \(g \) closest to the origin. In general, as we vary \(g \) the region of unit area defined by (11.13), and hence the weighted area (11.15), vary analytically. As we tune \(g \) from small values (as in fig. 22) to large values, however, \(g \) passes through a value of order 1 where the \(p = 0 \) line surrounds the unit area. At this juncture the shape of the Fermi sea equipotential changes discontinuously, resulting in nonanalytic behavior in \(F_0 \). Thus we are interested in the limit \(g \to g_c \), where \(g_c \) is defined by equating the Fermi level \(F \) with the top of the quadratic maximum (\(= 0 \) here by convention).

![Figure 23: Blow up near origin of fig. 22.](image)

From the above discussion, it is (intuitively) clear that the nonanalytic part of the integrals (11.13, 11.15) comes from the crossing region \(p = 0 \), and blowing up this region gives the picture in fig. 23. The singular dependence of \(F_0 \) can therefore be determined by
\[
F_0 = \frac{2}{Z} \sum_p \frac{d}{2} \left(\frac{1}{6} (p^3_+ - p^3_-) + \left(\frac{1}{2} \right)^2 + \frac{g^4}{4} \right) (p_+ - p_-)
= \frac{2}{Z} \sum_p \frac{d}{2} \left(\frac{1}{3} (p_+^2 + \frac{1}{2} p_-^2) \right) \left(\frac{1}{2} \right)^2 + \frac{g^4}{4} \frac{p^2}{p^2 + 2 F} + (11.17)
= \frac{1}{2} \left(F \right)^{3/2} \frac{1}{4} g \log \left(\frac{F}{f} \right) + \quad : \quad 125
\]
Here $1,2$ are the two turning points, p define the upper and lower branches of the Fermi surface, the first line is exact, and the terms omitted in the subsequent lines are analytic in g and F. Since the critical value for g is of order one, we immediately obtain the leading nonanalytic behavior as $g → g_c$ as

$$
F_0 = \frac{2}{F} \log(F) +
$$

and

$$
N^2 F_0 = 2 \log N + ;
$$

where

$$
N_F ;
$$

and the ellipsis in the second line of (11.18) indicates terms which are analytic or less singular in g. (In particular, we can write \log rather than $\log(F)$ in (11.18) since the difference is just an analytic piece $2 \log N$.)

Exercise. Doing the integrals

For the specific example (11.16), all the integrals can be done explicitly in terms of elliptic functions. Perform these integrals and verify the statements about nonanalytic dependence from the exact results.

Four important remarks:

1) From the above derivation, it is clear that the critical properties are independent of the detailed form of V and depend only on the existence of a quadratic maximum.

2) The result (11.18) suggests that it is g and not any power of g_c or g that should be taken as the scaling variable. This is indeed the case as we will confirm in the next section. Thus the double scaling limit is defined by varying g so that $g = F(g)N$ is held fixed. The free energy in this limit takes the form

$$
F \sim g(N) ; V ! F () ;
$$

This definition of the $c = 1$ double scaling limit was given in [86(89)].

3) The relation between the bare cosmological constant g and the scaling variable $F(N)$ is subtle. We can obtain this relation, at tree level, from the relation (11.13):

$$
1 = 2 \left[\frac{2}{p} \int (p\ p) = \frac{2}{p} \int d^2 F + \frac{1}{2} F^2 + ;
$$

45 We have made a constant rescaling to eliminate irrelevant numerical factors.

126
Evaluating the singular part of the integral gives

\[g^c (F) \log(F) + \quad : \quad (11.22) \]

Historically, the peculiar relation (11.22) between the \"bare\" cosmological constant and the scaling variable caused a great deal of confusion. (For a discussion, see [14].) Unlike (7.18), a very complicated function of \(g^c \) multiplies \(N \) to form the scaling variable that is held fixed in the double scaling limit. An interpretation of this result directly from the continuum spacetime point of view has been given in [75], and we shall reinterpret this understanding in terms of macroscopic loop eld theory in sec. 11.6.

4) Multi-critical \(c = 1 \) Theories. At \(c < 1 \) one discovers an enormous space of multi-critical points. At \(c = 1 \) this has not been as extensively investigated, although some results may be found in [57]. While the spacetime interpretation of these theories remains unclear, there is evidence that perturbations of the conventional \(c = 1 \) theories by special state operators ow to these points. The reason is that the matrix model describes the special state operators, which yield the above multi-critical behavior. As discussed below, these operators seem to be related to the special states.

11.3. Double-Scaled Fermi Field Theory

Let us now turn to fermionic quantum mechanics and investigate to all orders of perturbation theory. Formulated in terms of a fermionic quantum eld theory, the theory has the action

\[S = N \int \frac{1}{Z} \text{d}X \frac{1}{dX} + \int \frac{d^2}{d^2} + \frac{1}{g} \text{P} \frac{g}{g} \quad ; \quad (11.23) \]

and lattice Fermi operators

\[\hat{\psi}(\vec{x}) = \sum_{i=1}^{a} (\"a\"; \vec{x}) e^{i\psi} \quad (11.24) \]

The wavefunctions \((\"a\"; \vec{x})\) are eigenfunctions of the Schrödinger equation (11.23), and we may take the potential \(V \) to be symmetric since it effectively becomes so in the double-scaling limit. Thus we also have an index \(\vec{x} \) which refers to the parity of the wavefunction, and a repeated index will indicate a sum over parity states. The \(a \)'s anticommute and satisfy \((\"a\"; \vec{x}) a^\dagger (\"a\"; \vec{y}) g = \delta_{ij} \quad (11.25) \). The Fermi sea \(N \) is defined as usual.

127
As we have seen from the tree-level analysis, the singular terms in F come from the behavior of the theory for $O(N^{1/2})$ and $O(1=N)$. Thus we scale equation (11.9) by setting $\sim = \frac{P}{2N}$ and $i = "=N$, so that (11.9) becomes

$$\frac{d^2}{d\tau^2} + \frac{\sim^2}{4} + O(N^{1/2}) i = "=N.$$ \tag{11.25}

All the details of V are in the $O(N^{1/2})$ piece and what remains is the parabolic cylinder equation. (See appendix A.) Two consequences of this are:

1) The density of states at the Fermi level can be calculated to all orders of perturbation theory. The WKB matching of the parabolic cylinder function (valid at the tip of the potential) to the WKB functions (valid in the other regions of V) involves the large \sim asymptotics of the cylinder function. Matching the phases, we end from the asymptotic formula (A.6) for the behavior of the parabolic cylinder function that the quantization condition $("_{n+1}) ("_{n}) = \text{implies that}$

$$\frac{\partial n}{\partial \tau} = \frac{1}{2} \Re \left(\frac{1}{2} + i\tau \right); \tag{11.26}$$

where $(x) = \frac{d}{dx} \log (x)$ is the digamma function. Identifying the density of states with a second derivative of the free energy, we confirm the double scaling procedure mentioned at the end of the last section. In particular, the semiclassical expansion of τ is

$$\tau = \frac{1}{2} \ln \tau + \sum_{m=1}^{\infty} \left(2^{2m-1} \frac{1}{m} \frac{B_{2m}}{2^{m}} \right) \frac{h}{2} \tau^{2m}; \tag{11.27}$$

where the B_{2m} are Bernoulli numbers. This expansion shows that indeed N_F is the correct scaling variable and justifies the definition of the double scaling limit in (11.20).

2) We expect that, just as in the one-matrix model studied in the sec. 9.3, the wavefunctions themselves have $N ! 1 \lim its in terms of \tau-function normalized parabolic cylinder functions, independent of the details of V:

$$\frac{\partial \tau}{\partial \tau} \sim ("; \sim) = \frac{P}{2N} \tau(V) \sim 2 \frac{N^{1/2}}{\log N} \tau^{1/2} ("; \sim) \tag{11.28}$$

where the wavefunctions $("; \sim)$ are given in (A.1, A.2). The prefactor takes proper account of the normalizations of the wavefunctions and can be verified by putting a non-universal wall at distance $O(1)$ from the maximum. Thus, as in the one-matrix model, we
may take the double scaling limit of the fermion operator by first defining an operator \(\hat{N} \) with a smooth \(N \to 1 \) limit,

\[
\hat{N}(\delta x) = \left(\frac{1}{(2N)^{1/4}} \right) \hat{N} \delta N x \; ;
\]

where we have substituted \(x = X = N \). We now rescale

\[
a_\ell(\delta x) = \frac{a(\ell)}{\log \frac{2}{2N}} \; ; \tag{11.30}
\]

so that in the \(N \to 1 \) limit we have

\[
\hat{N}(\delta x) = A^{(\ell)} = \delta \exp(\delta x) a(\ell) \; ;
\]

where \((\delta x) \) are normalized as in appendix A (eqns. (A.1, A.2)). The vacuum of the double scaled field theory is defined by

\[
a(\ell)j = 0 < a(\ell)j = 0 > ; \tag{11.32}
\]

where the Fermi level is as in (11.13).

11.4. Macroscopic Loops at \(c = 1 \)

The discussion of macroscopic loop operators given in chapters 8 and 9 above continues to hold at \(c = 1 \) with some minor modifications [90]. We now wish to compute the continuum limit of the macroscopic loop operator

\[
W_{\text{lattice}}(L;\ell) = \int dx e^{iQx} \text{tr} e^{iX}(x) \; ; \quad \int dx e^{iQx} \; \gamma(\delta x) e^\ell = W_{\text{cont}}(\ell;\ell) ; \tag{11.33}
\]

In particular, the boundary condition on the loop is of Dirichlet type, \(x(\ell) = x \).

A subtlety that arises is that the eigenvalue density is concentrated on both sides of the quadratic maximum, or, in double-scaled coordinates, on \((1; \frac{P}{2}; 0) \) and \(\frac{P}{2}; 1 \). This means there are two (perturbatively) disjoint worlds and we cannot simultaneously

46 Note that in this chapter we have used \(X \) to denote the lattice target space coordinate and in what follows we use \(x \) to denote the continuum target space coordinate, in minor conflict with the notation of chapter 3 in which \(X \) denoted the continuum target space coordinate.
Laplace transform the eigenvalue density with respect to both. We can get around this difficulty by using a technical trick. We compute amplitudes instead for the Fourier transform with respect to

\[M(z_1; x_1) = \int_1^\infty e^{iz_1} e^{ix} \]

We will find that the answer naturally splits into two pieces. In the first piece we may continue \(z! \) \(i' \) in the upper half plane to obtain a convergent answer. This analytic continuation makes no sense in the second piece, but there we can analytically continue \(z! \) \(i' \) in the lower half plane. We interpret the two pieces as the contributions of the two "worlds" defined by the two eigenvalue cuts. Focusing on either contribution, we can define macroscopic loop amplitudes for real loop lengths. This rather strange reasoning can be checked in various ways. At the level of tachyon correlation functions, for example, the techniques of Chapt. 13 make it possible to calculate even if we put an infinite wall at \(q = 0 \), rendering \(y e ' \) rigorously well-defined. The resulting amplitudes agree to all orders.

Now we describe the calculation of the amplitudes \(M(z_1; q_1) \). The Euclidean Green's functions of the eigenvalue density \(\gamma(x_1; 1) \), where \(x \) is the "time" dimension of the \(c = 1 \) matrix model, are defined by

\[G_{\text{Euclidean}}(x_1; 1; \ldots; x_n; n) = \int_1^\infty \gamma(x_1; 1) \gamma(x_n; n) \]

Since the fermions are non-interacting, these Green's functions may be written in terms of the Euclidean fermion propagator,

\[S_E(x_1; 1; x_2; 2) = e^{x} \int_1^\infty \frac{dp}{2} e^{ip} \text{I}(p; 1; 2) \]

where \(I \) is the resolvent for the upside-down oscillator Hamiltonian \(H = \frac{1}{2}p^2 - \frac{1}{2}g^2 \), or, more generally, for a Hamiltonian \(H = \frac{1}{2}p^2 + V(0) \) with the potential tuned in the scaling region to differ from exact quadratic behavior. In particular, for \(q > 0 \),

\[I(q; 1; 2) = \text{I}(q; 1; 2) = \hbar \frac{1}{H} \frac{1}{iH} j_2 i \]

130
Using Wick’s theorem, we evaluate (11.35) as a sum of ring diagrams and thereby obtain the integral representation for the eigenvalue correlators

\[G_{\text{Euclidean}}(q_i; \ i) = \frac{1}{n} \sum_{i=1}^{n} \frac{Z}{n} \frac{\partial^2}{\partial q_i \partial q_i} \exp \left(\frac{i}{2} \sum_{i=1}^{n} X_{\{i\}} Y_{\{i\}} S_E(x_{\{i\}}; (i); x_{\{i+1\}}; (i+1)) \right) \]

\[= \frac{1}{n} \sum_{i=1}^{n} \frac{X}{n} \left(\sum_{q_i} \frac{d}{d q_i} \right) \exp \left(\frac{i}{2} \sum_{i=1}^{n} X_{\{i\}} Y_{\{i\}} I(Q_k; (k); (k+1)) \right) \]

where \(Q_k = q + q_{(i)} + \cdots \) and the sum is over the permutation group \(n \).

We can now obtain the formula for loop amplitudes as follows. The resolvent of the upside down oscillator may be given the integral representation:

\[\frac{1}{n} \frac{\partial}{\partial M} (z_i; q_i) = \frac{1}{2} \sum_{n=1}^{\infty} \frac{X^2}{n!} \sum_{k=1}^{\infty} \exp \left(\frac{i}{2} \frac{z^2}{\sinh} \right) \frac{1}{\cosh^n} \frac{1}{\sinh^n} \]

where \(= \text{sgn}(\text{Im}) \). Therefore, the calculation of (11.34) reduces to the evaluation of a gaussian integral with the result:

\[\theta \frac{\partial}{\partial M} (z_i; q_i) = \frac{1}{2} \sum_{n=1}^{\infty} \frac{X^2}{n!} \sum_{k=1}^{\infty} \exp \left(\frac{i}{2} \frac{z^2}{\sinh} \right) \frac{1}{\cosh^n} \frac{1}{\sinh^n} \]

\[\theta \frac{\partial}{\partial M} (z_i; q_i) = \frac{1}{2} \sum_{n=1}^{\infty} \frac{X^2}{n!} \sum_{k=1}^{\infty} \exp \left(\frac{i}{2} \frac{z^2}{\sinh} \right) \frac{1}{\cosh^n} \frac{1}{\sinh^n} \]

where \(k = \text{sgn}(Q_k) \).

We now examine several special cases of the above formula.

a) One macroscopic loop:

\[M_1 = \sum_{K=1}^{K} \left(\frac{Z^2}{2} \sum_{n=1}^{\infty} \frac{X^2}{n!} \sum_{k=1}^{\infty} \exp \left(\frac{i}{2} \frac{z^2}{\sinh} \right) \frac{1}{\cosh^n} \frac{1}{\sinh^n} \right) = \]

This is the Hartle-Hawking wavefunction. Analytically we have

\[M_1 = \text{Re} \left(\frac{Z^2}{2} \sum_{n=1}^{\infty} \frac{X^2}{n!} \sum_{k=1}^{\infty} \exp \left(\frac{i}{2} \frac{z^2}{\sinh} \right) \frac{1}{\cosh^n} \frac{1}{\sinh^n} \right) = \]

The genus expansion is obtained by restoring the string coupling \(g \), according to

\[g = \frac{1}{g} g \cdot \frac{1}{g} : \frac{1}{g} \left(\frac{1}{g} \right) \frac{1}{g} : = \]

131
The perturbative expansion of the Hartle-Hawking wavefunction is obtained by expanding the last factor in (11.41), and continuing $z ! i'$ in an integral representation for the Bessel function.

b) Two macroscopic loops:

$$M_2 = \ldots + \kappa^2 \ldots + \kappa^4 \ldots$$

This gives the propagator from which we may hope to understand the spectrum of the theory.

The integral formula for $\frac{\partial}{\partial \omega} M$ becomes

$$\int_0^1 e^{i \sum \lambda^2 (z^2 + z^2) \coth(\omega)} \int_0^1 e^{i \sum \lambda^2 (z^2 + z^2)} ds e^{i \sum \lambda^2 (z^2 + z^2)}$$

This formula holds for z_1 real. If we wish to have real loop lengths we replace $\Im ! \frac{1}{2} i$ and continue $z_1 ! i', as discussed above.

The integral over s may be written as

$$2 \epsilon^i \int_0^1 e^{i \sum \lambda^2 (z^2 + z^2)} \sin \int_0^1 e^{i \sum \lambda^2 (z^2 + z^2)} + \sum_{r=1}^{\infty} \frac{\epsilon^i}{r^2} J_r(2) \sinh(r)$$

where $\sum = z_1 z_2 = 2 \sinh(\omega)$. The remaining integral over can be done in terms of Whittaker functions to give nonperturbative answers. This is done in detail in [90].

At genus zero, we have

$$W (\gamma_1 p) W (\gamma_2 p) = \frac{p}{\sin p} \int_0^1 \epsilon^i \epsilon^{i(2 \sum \lambda^2)} K_p(2 \sum \lambda^2)$$

and therefore

$$W (\gamma_1 p) W (\gamma_2 p) = \frac{Z_1}{2} \int_0^1 \epsilon^i \epsilon^{i(2 \sum \lambda^2)} K_p(2 \sum \lambda^2)$$

with

$$G (E \omega) = \frac{1}{E^2 + p^2 \sinh E}$$

As

$$= \frac{1}{\sin p E^2 + p^2} + \sum_{r=1}^{\infty} \frac{2(1) r^2}{r^2} \frac{1}{p^2} E^2 + r^2$$

132
c) Three macroscopic loops:

The same techniques as above can be applied to three and four macroscopic loop amplitudes. The final formulae are rather complicated (see e.g. [91]), while at genus zero there is considerable simplification.

The entire genus zero amplitude, together with the integer powers of ϵ, is summarized nicely in terms of macroscopic state wavefunctions [91]:

$$D_Y W (\epsilon; \epsilon') = E_1 Y_1 \, dE_1 \frac{E_1}{E_1 K d_1 (Z^{\nu_1} - \epsilon_1)} (E_1 + E_2 + E_3) \coth \frac{1}{2} (E_1 + E_2 + E_3) :$$

$$E = (11.48)$$

Exercise. macroscopic ! microscop ic

Evaluate the integrals in (11.48) using residues by closing the E_1 contours in the upper or lower half-plane. (Warning: this involves a certain amount of algebra | the result is in [91].)

The results (11.48), (11.47), and (11.48) contain a wealth of information on the nature of contact terms and singular geometries in the path integral of the $c = 1$ theory. Note especially from (11.47) that the propagator agrees with the naive W heeler-DeWitt propagator at low values of E_j, but is quite distinct, indeed exponentially decaying, at large values of E_j. Correspondingly, in position space the propagator turns out to be smooth at $\epsilon_1 = -\epsilon_2$. From a quantum gravity point of view, the only source of violation of the naive $W dW$ propagator in the Euclidean quantum gravity path integral is the contribution of singular geometries such as $g.20$. From a target space point of view, the smoothness of the propagator suggests the existence of other degrees of freedom. This guess is confirmed by the pole structure of the propagator manifested in the second line of (11.47). These extra degrees of freedom are clearly related to the special states. The two ideas: 1) contributions of singular geometries, and 2) existence of new degrees of freedom related to special states, are tied together by interpreting the new degrees of freedom in terms of Liouville boundary operators, or, equivalently, in terms of redundant operators in the matrix model. Recall from sec. 10.4 that such operators contribute figure eights | the lattice version of the singular geometry of $g.20$. In [91] this interpretation was elaborated upon, and partially carried out for the data provided by the three-point function (11.48).
11.5. Wavefunctions and Wheeler-DeWitt Equations

From (11.45) we can easily extract the wavefunction of the vertex operator V_q by extracting the coefficient of $\frac{\partial}{\partial x}$ as $\frac{1}{1!}$ to get

$$W(\cdot, q) V_q = \frac{3}{\partial^2} K_q (2^D - \cdot)$$ \hspace{1cm} (11.49)

This result is analogous to (10.13), and is in complete accord with the continuum answer.

The wavefunctions to all orders of perturbation theory are not much more complicated. We extract the term proportional to $z_1^{(1)}$ in (11.44) and perform the remaining integral in terms of W hittaker functions to find

$$q(\cdot) = 2 (\frac{(1)}{\partial^2}) \frac{\partial}{\partial t} \int_0^\infty Z_{1}^{(1)} dt \left(\frac{1}{2} i + t \right)^{1/2} W_{1/2} \left(\frac{1}{2} i + t \right)$$ \hspace{1cm} (11.50)

where $W(\cdot)$ is a W hittaker function. In particular, the function $q(\cdot) = (1/2) W(\cdot)$ satisfies an equation derived from the W hittaker equation:

$$\left(\frac{\partial}{\partial \xi} \right)^2 + 4 \xi^2 (\xi^2 + 1) = 0$$ \hspace{1cm} (11.51)

Therefore the all-orders W heeler-DeWitt wavefunctions satisfy some simple differential relations generalizing the genus zero W heeler-DeWitt equation. The answer is especially simple at $q = 0$ where we find the modified W heeler-DeWitt equation:

$$\left(\frac{\partial}{\partial \xi} \right)^2 + 4 \xi^2 (\xi^2 + 1) = 0$$ \hspace{1cm} (11.52)

where we have explicitly introduced the topological coupling. The consequence of (11.51) is not so simple when $q \neq 0$.

11.6. Macrosopic Loop Field Theory and $c = 1$ Scaling

In sec. 5.2, we discussed the tachyon field $T(\cdot, X)$. On the other hand, the formulae of the previous section suggest the existence of a macrosopic loop field theory in which $W(\cdot, x)$ is a field. Since \cdot and x are related, we may suspect that the two fields T and W are essentially the same (recall that X from sec. 5.3 translates directly to the continuum x we use in this chapter).

\footnote{We disagree with a recent discussion of the all-orders W dW equation in [121].}
Treated as a field, W has a vacuum expectation value given by the Hartle-Hawking wavefunction, and correlations of fluctuations W are measured by higher correlation functions. On the other hand, we see from (11.49) that first order fluctuations W correspond exactly to the tachyon wavefunction, i.e. satisfy the Wheeler-DeWitt equation, up to a factor of the coupling constant. This suggests the relation

$$W('x) = e^{i\varphi} T('x).$$

(11.53)

In the next section we shall see that tachyon S-matrix elements can be extracted directly from W correlators, further corroborating this result.

Replacing (11.53) by an equality, we may transform the standard free tachyon action

$$S_0 = \int dx d' \ e^{Q} \ (\frac{\partial}{\partial T})^2 + e^{T^2} + T (H_x + \frac{Q^2}{4}) T$$

(11.54)

to the action

$$S_0 = \int dx d' \ e^{Q} \ (\frac{\partial}{\partial T})^2 + e^{T^2} + T (H_x + \frac{Q^2}{4}) T$$

(11.55)

The interactions are complicated, but can be deduced from the formulae of sec. 11.4.

Using the tachyon wavefunction, we are now prepared to adapt Polchinski's discussion [75] to interpret the scaling law variation (11.22) and the definition (11.19) in terms of the continuum theory. As we see from (11.49) with $q = 0$, the wavefunction for the static tachyon background is $K_0(2^P - ')$. To mimic the discreteness of S-matrix models, we consider a cut scaling variable B (analogous to F) and measure distances in lattice units. Substituting in (11.53), we find that the static tachyon configuration in the cut theory is given by

$$T(') = (2^P B)^2 K_0(2^P B')$$

(11.56)

In the model approach (eq. (5.11)), the spacetime one-point function plays the role of the cosmological constant. With an ultraviolet cut 0 on the theory, the value of the tachyon field at the cut is thus naturally interpreted as the bare cosmological constant

$$g \ g \ T(0) \ (2^P _B)^2 K_0(2^P _B)$$

(11.57)

since working at the cut is equivalent in the matrix model to multiplying the bare cosmological constant by the (unit) area of the basic triangle. As $B \rightarrow 0$, we have

$$g \ g \ (2^P _B \log B)$$

(11.58)

which is functionally equivalent to (11.22), giving the relation between the bare worldsheet cosmological constant and the scaling variable.

48 To go from the variables used in [75] to our conventions, let $g \ g \ c \ F$.

135
The function $x^2 K_0(x)$ of (11.56) moreover behaves as in Fig. 24, with a peak at $x = 0(1)$. (This is the analog of the soliton configuration of (75), although in our argument we use the W. heeler(Dewitt) equation for macroscopic loops rather than the properties of an interacting tachyon theory.) As $B \to 0$, the peak occurs at larger and larger lattice lengths $\lambda' = e^{p_\tau} 1 = B$. The scaling behavior at higher genus follows from perturbation theory with the effective action (5.12) in the dilaton background $hD_i = (Q = 2) = \frac{P}{2}$. The effective string coupling is thus $e = e^{p_\tau}$, where we have substituted the value at the peak of the tachyon configuration which dominates the string scattering. Since the bare string coupling (genus counting parameter) in the matrix models is $= 1 = N$, we see that holding fixed the effective string coupling $e = e^{p_\tau}$, $1 = (N = B)$, the double scaling limit defines the $c = 1$ double scaling limit as in the matrix models [86,95], where the string coupling is as well related to the bare cosmological constant via (11.58) rather than via (7.18) as in the $c < 1$ models coupled to gravity.

Tachyon condensates

In this discussion we are identifying $h^2 K_0(2P - \cdot)$, while in the model discussion (see (5.14)), we identified e. These do not even agree in the limit $\lambda' \to 0$. This confusion has plagued the subject for several years now. As mentioned in the paragraph following (4.11), it suggests that we should really identify the cosmological constant operator as $h^2 e$, which has the λ' behavior as $\lambda' \to 1$. We comment further on the two possible cosmological constant operators at the end of sec. 13.6.

11.7. Correlation functions of Vertex Operators

As in the $c < 1$ theories, vertex operators are obtained by looking at the small λ' expansion. In particular, using the reasoning of the exercise below (10.13) together with
the formula (4.12), we see that the coefficients of \(j q \) in the small ' expansion of the macroscopic loop operators must be proportional to the correlation functions of the \(V_q \). We are fortunate that for generic \(q \) there is only a one-dimensional BRST cohomology class.

String amplitudes are asymptotic expansions in the string coupling \(\alpha' \) whose coefficients are integrals over moduli space. These can be calculated by considering the \('i ' \) \(0 \) expansion of the matrix model loop operators:

\[
Y_{h j} W ('i_1 q_1) j i = Y_{h j} \tilde{R}_n (q_1; \cdots; q_n) 1 + O (\alpha'^2) \text{ + analytic in } 'i : \quad (11.59)
\]

Then, as asymptotic expansions in \(\alpha' \), we have

\[
R_n (q_1; \cdots; q_n) = \mathcal{A}_n (V_{q_1}, V_{q_n}); \quad (11.60)
\]

where

\[
\mathcal{A}_n (V_{q_1}, V_{q_n}) = \left. \frac{X}{h_0} \right|_{V_{q_1}} \left. \frac{X}{h_0} \right|_{V_{q_n}} \left. \frac{Z}{M_{h, n}} \right|_{V_{q_1}} \left. \frac{Z}{M_{h, n}} \right|_{V_{q_n}} \quad (11.61)
\]

(the CFT correlator \(V_{q_1}, V_{q_n} \) is interpreted as a differential form on moduli space \(M_{h, n} \), i.e. includes a product \(Q \) over ghost zero modes), and

\[
V_q = \mathcal{Y}_{j j} \cos (k X \mathcal{Y}_{j j}) = \mathcal{P} \mathcal{P} \mathcal{P} \mathcal{P} \mathcal{P} \quad (11.62)
\]

is the tachyon vertex operator of (4.12). The normalization is fixed by comparison of computations of the right hand side performed by DiFrancesco and Kutasov [48], as described in sec. 14.2. We see from (11.61) that the S-matrix for the spacetime tachyon can be extracted from correlation functions of the macroscopic loop operator \(W \), hence \(T \) and \(W \) are interpolating fields for the same asymptotic states, as suggested in the preceding section.

\[49\] Historically, the first attempts at \(D = 1 \) correlation functions used powers of the \(\alpha' \) field as scaling operators [123, 2].
Remarks:

1) The definition (11.59) of R_n is ambiguous if $q_i \not\in \mathbb{Z}$. The functions can be defined for $q_i \not\in \mathbb{Z}$ by continuity.

2) The right hand side of (11.60) is by definition an asymptotic expansion in the string coupling $1= \Sigma$. On the other hand, the matrix model gives a nonperturbative completion since (in contrast to the difficulties at $c<1$) we may perform all manipulations with a potential giving a perfectly well-defined matrix model integral.

As an example of the use of (11.60) we may immediately extract from the small ' expansion of the all-orders Wheeler-DeWitt wavefunction (11.50) the two-point function of the tachyon:

$$\frac{\partial}{\partial \hat{V}_q} V_{q_i} = (\hat{q} \hat{j})^2 \text{Im} \ e^{i \hat{q}_j^{j+2}} \left(\frac{\hat{q} \hat{j}^+}{2} \right)^2 \left(\frac{\hat{q} \hat{j}^-}{i} \right)^2$$

$$+ \sum_{r=1}^{\infty} (\hat{q} \hat{j}^r) \left(\frac{3q^4}{5760} \right) \left(10 \hat{q} \hat{j}^2 + 5q^2 + 12 \hat{q} \hat{j}^+ + 7 \right)$$

$$+ \sum_{r=1}^{\infty} (\hat{q} \hat{j}^r) \left(\frac{9q^6}{2903040} \right) \left(63 \hat{q} \hat{j}^2 + 42q^2 + 217 \hat{q} \hat{j}^+ + 205 \hat{q} \hat{j}^3 + 93 \right) \quad (11.63)$$

In sec. 13.5 below we will describe a much better way to compute tachyon correlators which easily yields the generalization of (11.63) to arbitrary tachyon correlation functions.

Special states in the matrix model

If one wishes to interpret the integer powers of \hat{q} in terms of an operator expansion it is necessary to introduce the redundant operators $B_{r,M}$ corresponding to moments of \hat{r}. It can already be seen from (11.49) that to define such operators we must take

$$B_{r,M} = \lim_{r \to 0} \frac{\partial}{\partial 'q} W (\hat{q}) \int_0^Z dx d \ e^{i qx} \hat{y}^r$$

where $q > r$, otherwise the limit is divergent. We then analytically continue to any q. The physical origin of the divergence at $q > 0$, or, at larger r, is in the ultraviolet region of the worldsheet integral, and is probably connected with the fact that the special state operators are irrelevant operators.
By upper triangular transformations of the basis of operators, analogous to the change of basis in sec. 10.3 relating j to \hat{j}, we obtain the full operator expansion of the macro-
scopic loop [91]:

$$W_{in}(p;\bar{p}) = V_p(\hat{p}j + 1) \hat{p}^j + 2I_pj(2p^-r) \frac{X}{r} B_{r,p} \frac{2(1)r}{p} r \pm 1 \frac{r}{2} I_c(2p^-r) ; (11.65)$$

12. Fermi Sea Dynamics and Collective Field Theory

12.1. Time dependent Fermi Sea

Another source of intuition, very different from the macroscopic loop approach, comes from the motions of the Fermi sea of the upside-down oscillator and the associated collective field theory, also known as the Das-Jevicki-Sakita theory [76-77, 93]. As we saw in our analysis of the tree-level free energy (sec. 11.2), one is naturally led to think about the fermionic phase space. This point of view leads to a very beautiful description of tree-level $c = 1$ dynamics [94].

In sec. 11.2, we studied the ground state from the point of view of a fluid in phase space. When describing dynamics, we have to perturb the system so we are now looking at time-dependent Fermi seas resulting from the disturbances produced by various operators. The possible dynamical solutions of the system can be described in the following way [95]. Consider the generating functional for correlators in the theory,

$$Z[J] = \int d\gamma e^{\gamma (idt + d^2 = d^2 + \frac{2}{2}) + J^\gamma} ; (12.1)$$

where we imagine J has been turned on and off during a finite time interval. (In this section, the $c = 1$ coordinate will always be taken to be a Minkowskian time coordinate.). The source J acts as an external force on the fermions. After it has been turned off, the state evolves as some time-dependent solution of the system. It is clear that the points simply move along trajectories in phase space appropriate to the upside-down oscillator, that is, they move along lines of constant $p^2 = 2$.

139
Thus to write down the general time-dependent motion of the system we imagine at time zero a generic Fermi sea as in Fig. 25, which we may describe as a parametrized curve

\[\lambda = (1 + a(t)) \cosh(\lambda); \quad p = (1 + a(t)) \sinh(\lambda); \]

where \(a(t) \) is a smooth function subject to the constraint that the initial Fermi surface \((\lambda, p) \) be physically reasonable. Hamilton's equations

\[\partial_t p = fH; \quad p = \partial p : \quad (12.2) \]

then give the general solution for time evolution:

\[\lambda = (1 + a(t)) \cosh(t); \quad p = (1 + a(t)) \sinh(t); \quad (12.3a) \]

\[(12.3b) \]

12.2. Collective Field Theory

We are now in a position to derive the collective field theory of \(c = 1 \). Consider the case in which the Fermi sea only has two branches \(p \). The functions \(p(\lambda, t) \) may be thought of as on-shell fields related by a boundary condition \(p(\lambda, t) = p(\lambda, t) \) where \(\lambda \) is the leftmost point of the sea. As in Sec. 11.3, the energy, or Hamiltonian, is given by

\[H = \frac{1}{2} \int d\lambda \left\{ \frac{p_\lambda^2}{2} + \frac{p^2}{2} - \frac{\lambda}{2} \right\} + \frac{Z}{2} \int d\lambda (p_\lambda p) : \quad (12.4) \]
To interpret (12.4) as a eik theory of the eigenvalue density, define

\[p = e^{2} \theta : \]

(12.5)

In terms of , the eigenvalue density is given by

\[() = p, \quad p = 2 \theta : \]

(12.6)

After rescaling, the Hamiltonian in these variables may be written as

\[
H = \frac{Z}{d} \left(\frac{2}{2} 0 \frac{2}{6} (0)^{3} + \frac{v()}{2} 0 + \frac{Z}{2} \right) d 0 ;
\]

(12.7)

where \(v() \) is the double-scaled matrix model potential \(\frac{1}{2} \lambda^{2} \). This Hamiltonian appeared from very different points of view in [76, 77, 93] as the eik theory of an eigenvalue density eik \((; t) \). The present derivation overcomes some of the difficulties with understanding the Jacobian for the change \(Q = \frac{d}{\lambda} \) \(d (; t) \).

Exercise.

Derive the Lagrangian corresponding to the Hamiltonian (12.7).

Fig. 26: A configuration of the Fermi sea with folds. \(p \) is a multi-valued function of

Folds

As pointed out in [93], there can be solutions to (12.3a,b) which have four or more branches \(p(; t) \) for a given \((e.g. \), g. 26). These solutions are perfectly sensible from the free fermion point of view but are quite strange from the collective eik theory point of view. Curiously, the number of folds is not conserved in time. A surface with two
branches can very well evolve into one with four or more branches, and vice versa. These fold-solutions are extremely interesting in the context of collective field theory as a model of string field theory, for they show that the "obvious" string field might be a bad description of the string degrees of freedom for some perfectly sensible backgrounds. It has been suggested that if the \[c = 1 \] model is equivalent to a model of \(1 + 1 \)-dimensional black holes, then folding solutions will be an important piece of the puzzle.

12.3. Relation to \(1+1 \) dimensional relativistic field theory

It is natural to rewrite the collective field theory as a relativistic theory. Let us consider solutions such that there are only two branches \(p \) of the Fermi sea. Consider the classical equations of motion for a particle in an upside-down oscillator:

\[\dot{p} = 0 ; \quad (12.8) \]

solved by \(\dot{p} = A \cosh(t + B) \). Thus if we change our spatial coordinates to \(\dot{p} = 2p \cosh \), motion in \(t \) space is relativistic: \(\dot{p} = t + B \).

Let us now explain this point within the collective field theory. We are interested in the fluctuations \(p \) of the Fermi sea. Since there is a nonzero background field configuration corresponding to the genus zero eigenvalue density,

\[p = \frac{p}{2} = \left(\frac{1}{2} \right) + O \left(e^2 \right) ; \quad (12.9) \]

we make a field redefinition

\[p (\frac{t}{2}) = \frac{t}{2} ; \quad (12.10) \]

so that, up to a constant shift independent of \(t \), the Hamiltonian \((12.4) \) becomes

\[H = \frac{1}{2} \int Z \left(\frac{1}{2} + \frac{p}{2} \right) \left(\frac{1}{6} e^2 \left(\frac{1}{1 + e^2} \right) \left(\frac{1}{1 + e^2} \right)^2 \right. \]

\[+ \left. \frac{1}{6} e^6 + \frac{3}{e^2} \frac{1}{1 + e^2} \left(\frac{1}{1 + e^2} \right)^3 \right) \quad (12.11) \]

Far from the edge of the eigenvalue density, we may define \(s = 0 \) \(S \), where \(S \) is a free massless scalar field.
Dirichlet boundary conditions imply the free propagator for the fermions:

\[
Z \int_0^1 \cos E_1 \cos E_2 \frac{dE}{E^2 + p^2} =: (12.12)
\]

The change of variables to (12.11) can be pursued more carefully and perturbation theory calculations can be performed in this formalism. See [76] and [13] for details.

Remark: The one-loop free energy in this 1+1 dimensional relativistic field theory can be calculated [74] and goes as \(\log \), which is hence interpreted as the volume of \(-\)space. Further attempts to interpret this result may be found in [15] (see also sec. 11.4).

12.4. \(-\)space and \(-\)space

Collective field theory is a theory of a massless boson that represents fluctuations in the eigenvale density. On the other hand, the massless boson of string theory is a scalar field \(T(\cdot; t) \). In this section we discuss the nontrivial relation between these two bosonic fields [21].

As we have seen, the macroscopic loop and tachyon field are essentially the same. In turn, \(W \) and \(\hat{W} \) are related by a Laplace-like transform,

\[
W(\cdot; x) = Z_1 \int_{2^p}^1 dE e^{\frac{Z_1}{2} K_1(2^p \cdot')} + Z_1 \int_0^1 dE e^{2^p \cosh @} =: (12.13)
\]

where in the second equation we have shifted the field by its genus zero one-point function to \(= (2^p \cosh) \), and changed variables to \(\frac{\theta}{2} + 4 \), and changed variables to \(\frac{\theta}{2} \).

Using this transformation on fields, we can understand the relation between the tree level propagators of the \(W \) theory, (11.46, 11.47) and those of the collective field theory (12.13). The key relation is provided by the kernel \(e^{2^p \cosh} \), which satisfies the differential equation:

\[
H e^{2^p \cosh} = \frac{\theta^2}{2} e^{2^p \cosh} = \frac{\theta^2}{2} e^{2^p \cosh} =: (12.14)
\]

Many authors continue to identify \(-\) with the Liouville coordinate. While both spaces share many qualitative features, they cannot be the same. The matrix model coordinate has no (obvious) geometric meaning in the discrete worksheet sum. Rather, it is the loop operator \(W(L) \) that has a geometric meaning and is related to the worksheet metric, and therefore to the Liouville field.
It follows that if we define a nonlocal transformation of functions:

\[
\begin{align*}
\hat{\mathcal{B}}(\theta) &= \frac{Z_1}{Z_0} \int_0^\theta d\theta' e^{\cosh \mathcal{B}(\theta')} \\
\hat{\mathcal{B}}(\theta) &= \frac{Z_1}{Z_0} \int_0^\theta d\theta' e^{\cosh \mathcal{B}(\theta')}
\end{align*}
\]

(12.15)

then we have

\[
\mathbf{f}(H) \hat{\mathcal{B}}(\theta) = \frac{Z_1}{Z_0} \int_0^\theta d\theta' e^{\cosh \mathbf{f}(\frac{\theta^2}{\theta}) \mathcal{B}(\theta')}
\]

if \(\mathcal{B} \) is such that integration by parts is valid. In this way we may establish the classical function identities:

\[
\begin{align*}
K_{iE}(2^P \mathcal{B}) &= \frac{Z_1}{Z_0} \int_0^\theta d\theta' e^{2^P \cosh \mathcal{E}} \\
\frac{\cos \mathcal{E}}{E \sinh \frac{\mathcal{E}}{E}} &= \frac{Z_1}{Z_0} \int_0^\theta d\theta' e^{2^P \cosh \mathcal{K}_{iE}(2^P \mathcal{B})}
\end{align*}
\]

(12.16)

relating eigenfunctions of the Bessel and Laplace operators. Comparing, we now see that (12.13) indeed maps \([11.46],[11.47]\) to \((12.12)\). As a further check, the tree level 3-point function of the eigenvalue density has been calculated in \([97]\) to be

\[
Z_{1} \int_1^\infty \frac{dE_i}{E_i} \frac{E_i}{iq} \cos E_{1i} (E_1 + E_2 + E_3) \coth \frac{1}{2} (E_1 + E_2 + E_3)
\]

which is related to \([11.46]\) by (12.13).

The transform (12.13) is very subtle. While it is nonlocal, it can be shown to map exactly the quadratic -space action (12.11) to the -space \(WdW\) action (11.55). On the other hand, the interaction terms will not be locally related. The nonlocality of the Lagrangian for \(T(j;\theta)\) is not a surprise. It is present in the covariant formulations of closed string \(\mathcal{E}\)ld theory \([44]\) and has also been found within the context of 2D string theory by Di Francesco and Kutasov using continuum methods (see below). (The detailed comparison of the \(W\) - \(\mathcal{E}\)ld theory with the above two formulations has not been carried out.)

As a second application, the origin of the \(W\) - \(\mathcal{E}\)ld equation from the point of view of the eigenvalue dynamics can be understood as follows:
Exercise. Variations on W dW

a) Derive the W dW equation for tachyon wavefunctions using the dynamical Fermi sea picture as follows. Write

$$W (';t) = \cd e' p (;t) p (;t) :$$

Using the ow equations, show that

$$\partial W = \frac{1}{2} \cd d e' (p (;t) + p (;t)) ^2 :$$

Then take another derivative to obtain

$$\partial _t ^2 (\partial _t ^2) ^2 W = 2 r^2 \cd d e' H (')$$

$$H () = \frac{1}{6} p (;t) ^3 - 2 p, \quad \frac{1}{6} p (;t) ^3 - 2 p$$

Take the variation of the loop to get the wavefunction of the tachyon and from this recover the W dW equation:

$$\partial _t ^2 \frac{d^2}{d z^2} W = 2 r^2 W : \quad (12.18)$$

b) Generalize part a) to arbitrary Hamiltonians of the form $H = p^2 + \frac{1}{2} V ()$, where V is a polynomial, to obtain

$$\partial _t ^2 + r^2 V (\frac{\partial }{\partial z}) + \frac{1}{2} V' (\frac{\partial }{\partial z}) W = 2 r^2 W : \quad (12.19)$$

for fluctuations in W along the Fermi surface, $H (p;) = . This equation was derived differently in [121, 123].

It should be emphasized that [12.18, 12.19] are only valid at genus zero.

Remark A further interesting property of the transform [12.13] not directly related to 2D gravity is that it relates massive and massless field theories in 2 spacetime dimensions. To see this, consider the Lagrangian of a massive Klein-Gordon field in 2 Euclidean dimensions:

$$Z S_{K G} = d^2 w \partial_w \partial_w + 4 \cd ^2 : \quad (12.20)$$

Making a change of variables $w = e^z, z = \frac{1}{2} (+ i X)$, the action becomes

$$S_{K G} = d^2 z \partial_z \partial_z + 4 \cd ^2 : \quad (12.21)$$

It is precisely this action which is mapped to a massless field on the half-space 0 by [12.13].

51 Based on conversations with A.B. Zamolodchikov.
12.5. The \(\omega_1 \) Symmetry of the Harmonic Oscillator

Collective field theory reduces genus zero matrix-model dynamics to the dynamics of a phase-space fluid under the influence of an upside-down harmonic oscillator. This system has a very interesting symmetry algebra, following from the existence of an infinite-dimensional symmetry of the harmonic oscillator.\(^{52}\)

Consider the functions \(a = p, a = +p \) on phase-space. Under the Hamiltonian \(H \) defined by \(H = \frac{1}{2}(p^2 + \omega^2) \), we have \(a(t) = a(0)e^{i\omega t} \), so the functions

\[
C_{n,m} = (a_+)^n(a^-)^m e^{i(n-m)t}
\]

are, in fact, time-independent. As functions on \(\mathbb{R} \) under Hamiltonian flow they satisfy

\[
\frac{dC_{n,m}}{dt} = \frac{\partial C_{n,m}}{\partial t} + fH\cdot C_{n,m} = 0;
\]

and should be considered as conserved charges with explicit time-dependence. It is also evident that they form a closed algebra under Poisson brackets,

\[
C_{n,m} \cdot C_{n',m'} = 2(m^0n - m'n^0)C_{n+n',m+m'} + n;m 0;
\]

As we will see below, this defines the \"wedge subalgebra\" of \(\omega_{1+1} \). Notice that \(C_{1,0} \) is itself the Hamiltonian. Upon quantization, we obtain a quantum \(\omega_1 \)-type algebra which is in fact a spectrum-generating algebra.\(^{53}\)

Exercise. Classical \(\omega_{1,1} \) and its subalgebras

There is a bewildering choice of bases and algebras in the literature all related to \(\omega_{1,1} \) but differing in slight, yet important, ways. In this exercise we survey some of them.

Classical \(\omega_{1,1} \) \(^{124}\) is the algebra generated by basis vectors \(W_{s+m}, s = 0;1;2;\ldots, \)

\(n \in \mathbb{Z}, \) subject to the relations

\[
[W_{s+m};W_{s'+m'}] = (s^0n^0 - s'n^0)W_{s+s';m+m'} - n;m 0;
\]

\(^{52}\) This symmetry of the harmonic oscillator appears to have been noticed first by matrix-model theorists in 1991! Although it was well-known that one could construct a phase space realization of the wedge subalgebra of \(\omega_1 \), the important point that this is a dynamical symmetry of the oscillator appears to have been overlooked.

\(^{53}\) Note that the ordinary harmonic oscillator action is minus the Euclidean action of an inverted oscillator. Thus the above results apply to the ordinary harmonic oscillator. The formulæ differ in some factors arising from the analytic continuation of Euclidean to Minkowskian time.
The basis generators are parametrized by a semilattice of points $(s; n)$ in \mathbb{R}^2. Equivalent bases in the literature are obtained by applying a one transformation to this semilattice.

For example, one could instead take generators $V_{s,m}$, $s = 1; 2; \cdots$; $n \in 2 \mathbb{Z}$, related by $V_{s,m} = W_{s+1,m}$ to give

$$[V_{s,m}; V_{s,m+1}] = ((s^0 1)n (s 1)n^0)V_{s+2m+2, n} :$$ \hspace{1cm} (12.26)

Several subalgebras are notable:

- w: generated by $V_{s,m}$ but with $s \geq 2$. In the study of extended chiral algebras of rational conformal field theories, one encounters these algebras where $V_{s,m}$ are the modes of spin s currents generating the algebra. It is therefore hardly surprising to find the next subalgebra:

 W Witt algebra = Virasoro ($c = 0$): the algebra generated by the elements with $s = 2$:

 $$[V_{s,m}; V_{s,m+1}] = (n n^0)V_{s+2m+2, n} :$$ \hspace{1cm} (12.27)

- w: the Wedge subalgebra, is generated by $Q_{j,m}$ with $j = 0; 1; 2; \cdots$; $m \in 2$ if $j; j + 1; \cdots; j 1; jg$ with relations

 $$[Q_{j,m}; Q_{j', m},] = (j^0 m^0)Q_{j+1, m+1} :$$ \hspace{1cm} (12.28)

- w^2: the double-wedge subalgebra is the subalgebra of the wedge algebra generated by $Q_{j,m}$ with $j = 1; 2; 3; \cdots$; $j < j 1$ Clearly we can continue the process and form a hierarchy of wedge algebras w^k, defined by restricting $j < j n + 1$.

 V_{ir}: the Borel subalgebra of the Virasoro algebra. V_{ir} may be embedded in the w algebra in many ways:

 $$L_{2n} = Q_{s+1, m} \hspace{1cm} s = 0; 1; 2; \cdots$$

 $$L_{2n} = Q_{s+1, 1} \hspace{1cm} s = 0; 1; 2; \cdots$$

 $$L_s = V_{s+2} \hspace{1cm} s = 1; 2; \cdots$$

 w^*: Borel subalgebra of w.

 This is generated by $V_{s,m}$ where $s = 2; 3; \cdots$ and $n = s + 1$, and is the analog of the Borel of Virasoro. It plays a role in the w-constraints of the $c < 1$ models. For $w^{*}_{1,1}$ include $s = 1$.

 a) Show that w^*_1 is a subalgebra of w.

 b) Show that $w^* = w$ contains both of the Virasoro algebras defined in the first two lines of (12.29).
The w_1 symmetry of the inverted oscillator was nicely reformulated in terms of symplectic geometry in [67]. The action of the oscillator, in first order form, is $S = R d$, where $R = pdq \ dt$ is a 1-form on (phase space) \mathbb{R}^2. A transformation on this space that takes $p + d$ is a symmetry. Symmetries are thus transformations preserving the 2-form $p = d$. For the inverted oscillator, we may write

$$p^0 = \cosh tp \quad \sinh tq$$

(12:30)

$$q^0 = \sinh tp + \cosh tq$$

The symmetries are thus generated by the Hamiltonian vector fields

$$V_g = \frac{\partial g(p^0; q^0)}{\partial q^0} \frac{\partial}{\partial p^0} - \frac{\partial g(p^0; q^0)}{\partial p^0} \frac{\partial}{\partial q^0}$$

(12:31)

associated to the charges g, where g is a polynomial in $p^0; q^0$. By standard symplectic geometry:

$$[V_{g_1}; V_{g_2}] = V_{g_1; g_2}$$

(12:32)

so we may invariantly characterize the wedge algebra as the algebra of area-preserving polynomial vector fields on \mathbb{R}^2.

Exercise. Realizations of w-algebras

Verify that:

a) The wedge algebra may be realized as a Poisson algebra by

$$Q_{jm} = 2a^j a^m$$

(12:33)

b) The Borel algebra realization occurs naturally in phase space via

$$V_{s,m} = p^{n+1} s^l$$

(12:34)

c) Using (12.34), show that Vir^+ corresponds under Poisson action to the algebra of analytic coordinate changes in \mathbb{R}^2.

12.6. The w_1 Symmetry of Free Field Theory

Classical Theory. Finally let us note that what is true of harmonic oscillators is necessarily true of free field theory: any free field theory contains an infinite set of w_1 algebras. Spacetime locality considerably limits the set of interesting algebras. For example, if $(x; t)$ is a free massless field in 1+1 dimensions, we can consider the spin currents:

$$V_s(x; t) = \frac{1}{s} (\partial)^s \quad s = 1; 2; \ldots$$

(12:35)

whose moments form a classical w_{1+1} algebra.

148
Exercise. Poisson brackets

Use the Poisson brackets \(f\{x\};\{y\}\}g = 2^0(x \cdot y) \) to show that the modes of \(V_s \)
\[
V_s(x) = \sum_{n \in \mathbb{Z}} V_{s,n} e^{inx} \quad 0 < x < 2
\]

obey a classical \(w_{1+1} \) algebra:

\[
fV_{s,p};V_{s,p,m}^2g = i(s^0 1)n \quad (s 1)n^2 V_{s,p};V_{s,2m+n}^2 :\]

Quantum Theory. There is a large literature on quantum extensions of \(w_1 \). One of particular interest to us is \(W_{1+1} \) which may be realized as the algebra of modes of the Fermion bilinears \(\{z\}^k \{z\}^l \); where \(\{z\} \) comprise a Weyl fermion in 2 dimensions. By bosonization this may be related to the algebra generated by the modes of the currents \(V_s = \frac{1}{s} e^{-iz} \{s\}^e \{z\}^e \). The structure constants are very complicated and can be found in [125][126].

Remark: It should be clear from the above discussion that \(w_{1+1} \) symmetry is generic, and occurs whenever there is a massless scalar field in the problem. This symmetry is so robust that its seeming presence in completely wrong or meaningless formulae has deceived many an author.

12.7. \(w_1 \) Symmetry of Classical Collective Field Theory

Let us apply the results of the previous section to collective field theory. Both in -space and in -space, we have asymptotic conformal field theories (= massless scalars) in spacetime. Thus, we expect on a priori grounds to nd a spacetime \(w_1 \) symmetry of the S-matrix. (See sec. 13.9 below.)

One approach, pursued by A van and Jevicki [127], is to form the charges

\[
Q_{j,p} = \frac{1}{2} \sum_{p} dp (p + j + m + 1) (p + j + m + 1);
\]

interpreting \(p \) in terms of the collective field as in [125]. The integrals don’t converge so the expression is somewhat formal, but, working formally, one can use the Poisson bracket structure to show that the charges satisfy the correct algebra. Although collective field theory is not a free theory A van and Jevicki show that it has a spectrum generating algebra given by these charges. They go on to interpret the collective field action in terms of
coadjoint orbit quantization for a group of area-preserving diffeomorphisms \[128]. Similar work has been undertaken in a series of papers by Wadia and collaborators \[129].

The \(w_1\) symmetry may also be seen in the Fermi uid picture \[130, 131], where the charges have exactly the realizations in terms of phase space coordinates described in the previous section. In the Fermi sea picture, the wedge algebras \(-w, -w^2\) have pretty geometrical interpretations discussed in \[67, 131\]. The phase space charges have associated Hamiltonian vector fields inducing diffeomorphisms of the \((\rho, p)\) plane. The double-wedge algebra \(-w^2\) is the algebra of area-preserving diffeomorphisms that preserves the hyperbola \(a_+ a_- = 0\). Therefore, by conjugating with an appropriate diffeomorphism, we can turn it into the algebra preserving the collective field ground state at \(\geq 0\). Notice that these diffeomorphisms \(\times\) a Fermi level as a set, but not pointwise. Similarly the triple-wedge subalgebra \(-w^3\) preserves the Fermi sea pointwise. The quotient \(-w^2 = -w^3\) contains two copies of the Virasoro Borel, \(V\), corresponding to diffeomorphisms of the upper and lower branches of the Fermi sea.

It was first proposed in \[32\] that the \(w_1\) symmetry of the matrix model is related to the extra complexity of the BRST cohomology found in the Liouville approach and discussed in sec. \[4.5\] above. The best evidence for the connection is:

1) Algebraic structures. As we will discuss in sec. \[14.4\] below, in the continuum approach (at least, at \(\geq 0\)) one discovers very similar algebraic structures, in particular, a realization of the \(-w^2\) algebra associated with the charges \(A_{jm}\) discussed in sec. \[4.5\]. However, in view of the generic nature of such symmetries, and the nontrivial relation between the matrix model coordinate and the Liouville field, we should be cautious about such identifications.

2) Quantum numbers. From the local operator expansion \[11.65\] we see that the operators \(\hat{B}\), which are simply related to the moments \(B_r\) of \(\hat{r}\), have wavefunction

\[
\hbar \hat{B}_{r\lambda} W (\lambda; \rho) \propto r^{\rho-2} K_\rho (2^{\frac{\lambda}{\rho}}) ; \quad (12.38)
\]
as one would expect for the W Heefer (DeWitt) itt wavefunctions of the ghost number \(G = 2\) special operators of sec. \[4.3\]. In particular, after the transform to \(\rho\)-space these operators have the correct Liouville quantum numbers.

3) Behavior of Redundant Operators. The transformations

\[
\hat{s}_\lambda = (1 + i\sigma q)^{-2} (1 + i\sigma q)^{-1} \hat{s}_\lambda (1 + i\sigma q)^{-1} (1 + i\sigma q)^{-1} e^{i\rho t} ; \quad (12.39)
\]

150
where \(s = 1; 2; \ldots \) and \(q \in \mathbb{R} \) form a closed algebra if we interpret the fractional powers by expanding in \(= \) and dropping nonpolynomial terms. The algebra of such transformations can be shown to be \([\mathfrak{H}_1; \mathfrak{H}_2] = \left(q_1 s_2 - q_2 s_1 \right) \mathfrak{H}_1^{s_1} \mathfrak{H}_2^{s_2} : \) \((12.40) \)

For \(q \not\in s; s + 2; \ldots ; s \), these transformations are not symmetries of the harmonic oscillator action

\[
S = \frac{1}{4} \int \left(-\frac{d}{dt} \right)^2 dt ;
\]

but rather induce the variation

\[
^s_{\mathfrak{H}}S = \frac{1}{(s-1)!} \int_{r=0}^{\infty} q^s Z \left(s \right) \left(2z \right) e^{ikx} dt : \]

In other words, the operators \(\mathfrak{B}_s(q) \) are redundant operators, with only contact term interactions if \(q \not\in s; s + 2; \ldots ; s \). For \(q \not\in s; s + 2; \ldots ; s \), they are not redundant and hence are bulk operators. The failure of these operators to be redundant in the latter case is a signal of the appearance of an extra cohomology class, as is indeed predicted by the continuum formalism.

One weakness of the matrix model approach to understanding the special states is that one cannot tell which of the four cohomology classes at discrete values of \((p; px)\) is represented by the matrix model operators.

One can try to use the transformations \((12.40) \) to obtain Ward identities for insertions of special state operators. This works nicely for \(s = 1 \) \([91] \). However, as shown by the results of the next chapter, for \(s \) \(2 \) the measure and ordering problems present serious obstacles to this approach.

13. String scattering in two spacetime dimensions

13.1. Definitions of the S-Matrix

We are finally ready to calculate the scattering of strings in two spacetime dimensions described physically in sec. 12 (i.e., g. 2). Recall that scattering takes place in Minkowski space. In this chapter we study the theory of sec. 5.4 A; the Liouville coordinate is
regarded as space, the time coordinate t is a negative signature $c = 1$ and obtained by analytically continuing X. The tachyon background

$$T(t; t) = e^{\frac{p - T}{2}}$$

(13.1)

acts as a repulsive wall for incoming bosons and the dilaton background leads to a spatially-varying coupling

$$e(t) = e^{\frac{T}{2}}$$

(13.2)

Because the S-matrix of massless bosons in two-dimensions is a subtle object, we begin with some precise mathematical definitions of what we are talking about. We begin with the string definition. As explained in sec. 5.4, the vertex operators are V_i, given by (5.23). Using (11.61), we write

Def 1: The connected string scattering matrix elements are asymptotic expansions in given by

$$S_{ST}^{X_i} = A_n(V_{i_1} ; \ldots ; V_{i_k}; V_{i_1'} ; \ldots ; V_{i_l'})$$

(13.3)

Mathematically it is easier to use a Euclidean signature boson X via the analytic continuation $jj! i!$:

$$V_{i^+}! V_q \quad q > 0$$

$$V_{i^-}! V_q \quad q < 0$$

(13.4)

We'll refer to the S-matrix elements calculated with V_q as the "Euclidean S-matrix."

According to the matrix model hypothesis, these amplitudes may be calculated via the $c = 1$ matrix model according to the discussion of sec. 11.7. If one is interested in the S-matrix and not in the macroscopic loop amplitudes (which contain much more information), then it is most efficient to calculate the collective field S-matrix which we describe next.

In collective field theory we define the S-matrix according to the coordinate-space version of the LSZ prescription, that is, we isolate the piece of the large spacetime asymptotics of time-ordered Green's functions which is proportional to the product of on-shell incoming and outgoing wavefunctions.

54 Indeed, defining the S-matrix directly via asymptotics in $-space \[134\]$, as presented below, was an important technical advance over the original method \[90\] of calculating loop amplitudes and then shrinking the loops.
An incoming or outgoing boson of energy $\omega > 0$ has wavefunction

$$\psi_i(t; \tau) = e^{i\omega(t+\tau)},$$

$$\psi^R(t; \tau) = e^{i\omega(t-\tau)},$$

respectively. Therefore we define the S-matrix according to

Def 2: Consider the asymptotic behavior of the time-ordered, connected, Minkowski collective field Green's function:

$$G(t_1; t_2; \ldots; t_n) = \Theta(t_{ij}) \Theta(t_{ji}) \psi_i(t; \tau).$$

as $t_i + 1, t_j - 1 (i \neq k) t_i + 1, t_j - 1 (k + 1 \leq n = k + 1)$. Then we define the connected S-matrix element for the process $j^0_1; \ldots; j^0_n$ to be the function $S^C_{\psi^R}$ in the asymptotic formula:

$$G(t_1; t_2; \ldots; t_n) = \int \psi_i(t; \tau) \psi^R(t; \tau) \prod_{i=1}^n \frac{d\psi_i^{(0)}}{d\psi_i^{(0)}} \prod_{i=1}^n \frac{d\psi_{i}^{(1)}}{d\psi_{i}^{(1)}} \prod_{i=1}^n \frac{d\psi_{i}^{(0)}}{d\psi_{i}^{(0)}} \prod_{i=1}^n \frac{d\psi_{i}^{(1)}}{d\psi_{i}^{(1)}} R(t_1; \ldots; t_n).$$

The plane wave states are normalized such that $h! j^0_1 = ! (\omega!)$. An equivalent definition has been used in [96, 97] to compute the S-matrix from standard Feynman perturbation theory applied to collective field theory.

While this definition is physically satisfying, it is not the best mathematical definition. An equivalent definition is obtained by continuing the Minkowski Green's functions to Euclidean space $t_i = \sqrt{-1} \omega X_i$. Fourier transforming the Euclidean Green's functions with respect to X_i, we obtain mixed Green's functions

$$G_E(q_1; \ldots; q_n; \omega) \equiv \int \psi_i(t; \tau) e^{i\omega X_i} G_{\text{Euclidean}}(X_1; \ldots; X_n; \omega).$$

in terms of which we may define the S-matrix via:

Def 2: The large ω asymptotics

$$G_E(q_1; \ldots; q_n; \omega) \equiv \int \psi_i(t; \tau) e^{i\omega X_i} R(q_1; \ldots; q_n) 1 + O(e^{-\omega})$$

defines a function $R_n(q_1; \ldots; q_n)$ from which we may obtain the connected $S^C_{\psi^R}$-matrix elements via analytic continuation $j^0_1; \ldots; j^0_n$, where $q < 0$ corresponds to the incoming, and $q > 0$ corresponds to the outgoers. Specifically, $S^C_{\psi^R} = \int \psi_i^{(0)} R(t_1; \ldots; t_n).$

Remark: The non-obvious property that the function R_n is independent of the order in which the t_i are taken to 1 was demonstrated in [132].
The equivalence of the collective eld theory S-matrix and the correlators de ned by shrinking macroscopic loops is demonstrated using the relation between -space and -space explained in sec. [12.4] above. In particular, transforming asymptotic wavefunctions according to (12.13), we relate \('0 \) and \('1 \) asymptotics via the integral

\[
Z \int_A e^{2p - \text{cosh} e^{ij} (P - P_{ij}) (j_{ij})}; \tag{13.9}
\]

plus terms regular in \(' \). Notice that the two prescriptions only make complete sense when \(q \) is nonintegral. Otherwise we must use the full identity

\[
Z \int_A e^{2p - \text{cosh} e^{ij} = \frac{\sin \frac{j_{ij}}{1 + 1}}{e^{(m, n, j_{ij})}}}; \tag{13.10}
\]

The pole in the \(\{ \) function in (13.9) \} is a warning that we cannot unambiguously separate the two terms in (13.10) via nonanalyticity in \(' \).

Leg Factors

According to the arguments of chapt. [11], we expect that the Euclidean S-matrices \(S^{ST} \) and \(S^{CF} \) should agree up to an overall normalization \(f(q) \) of the vertex operators \(V_q \). This is because, for \(q \in \mathbb{Z} \), the BRST cohomology with the relevant quantum numbers is one-dimensional. Indeed, comparison with vertex operator calculations in Liouville theory, which will be described in sec. 14.2 below, shows that

\[
A_{0,n} (V_{q_1}, \ldots; V_{q_n}) = (1)^{j+1} \frac{Y^n}{(j_{ij})} R_n (q_1, \ldots; q_n) \tag{13.11};
\]

The factors

\[
f(q) = \frac{(j_{ij})}{(j_{ij})} \tag{13.12};
\]

are called \"leg factors.\" Notice that for the Minkowski S-matrix they are pure phases, but the phases for incoming and outgoing are not complex conjugated. Comparison with the rst quantized wavefunction for the spacetime boson, described by the W heeler-DeW it equation (5.21), indicates that neither normalization in (13.11) is the correct physical normalization since standard rst-quantized scattering theory predicts that the genus zero 1! 1 S-matrix is \(\frac{\langle \eta \rangle}{\langle \eta \rangle} \). This suggests that the correct normalization of the vertex operators is obtained by taking the square root of (13.11). All this needs to be clarified.
13.2. On the Violation of Folklore

The c = 1 S-matrix violates several standard aspects of S-matrix folklore. It is commonly said, for example, that one cannot define an S-matrix for massless bosons. For example, the standard LSZ prescription appears to be problematic because if we make a

eld redenition

\[! + \alpha_2^2 + \alpha_3^3 + \cdots \quad ; \quad (13.13) \]

in the massless case there is no gap between the one-particle and two-particle thresholds, so S-matrix elements appear to depend on the choice of interpolating eld. More physically, we cannot expect to tell the di erence between (say) a right-moving boson of energy E and two right-moving bosons of energy E = 2. A related mathematical point is that the momentum-space Green’s functions should have cuts, not poles, so we can’t isolate an S-matrix element by extracting the residues at poles.

In the present case we nd that there are no cuts, but there are instead kinematic regions, and the momentum-space Green’s functions are continuous, but not di erentiable, across regions. The S-matrix will have a large symmetry group related to W_1, which is nonlinear in the momentum and allows us to distinguish a right-moving boson of energy E and two right-moving bosons of energy E = 2.

Another objection to massless S-matrices is that by a simple conformal transformation one can turn the vacuum with particles. In our case, the “decoherence” or wall at \(\varphi = 0 \) breaks conformal invariance enough to forbid such freedom.

We have also violated folklore in another way. The exactly solvable S-matrix presented below has particle production, yet at the same time has a large W_1 symmetry. Typically, exactly solvable S-matrices in eld theories with in nite numbers of conservation laws do not have particle production.

There are several related issues, connected with the interpretation of the wavefunction factors \(f(q) \). The resolution of these issues will probably require careful speci cation of how S-matrix elements are to be measured.

Finally, we remark that the c = 1 S-matrix bears a great similarity to a number of other physical problems which have been of interest in recent years. These include the

55 For a discussion of the independence of the S-matrix from a choice of interpolating eld, see 12, 123.

56 Indeed, calculations of Hawking radiation in the CGHS theory [134] are based on this phenomenon.
Kondo effect, the Callan-Rubakov effect, Hawking radiation and particle scattering off a black hole (especially in the CGHS model \[134\]) and 1 + 1 linear dilaton electrodynamics.

Massless S-matrices have played a role in the theory of exactly solvable field theories, for example they have appeared in past discussions of the XXX and XYZ models \[136\] and more recently have begun to play a more central role in the massless c-ows between conformal field theories \[137\].

13.3. Classical scattering in collective field theory

We now consider the classical scattering problem for the collective field using the picture of the time-dependent Fermi sea. Suppose the solution is given by \(12_{3a}\) and represents an incoming wave packet which is dispersed as it travels in phase space. We will derive a functional relation between the incoming and outgoing wave packets \[95\].

Let us return to the general solution \(12_{3a}\), and assume there are no folds. We may solve the first equation to obtain \(1 ; t\). If there were no dispersion of the wave packet, we would find \(1 ; t\) = \(t\). Denote the difference by \(\Delta\). From the spacetime asymptotics of the solution \(12_{3a}\) above, we find

\[
(t) = \log 1 + at + (t) \quad ; \quad (13:14)
\]

and, in particular, becomes a function of one variable. The asymptotic behavior defining in- and out-waves is

\[
p(1) = \frac{1}{2} 1 + (t) + O(1 = 2) \quad ; \quad (13:15)
\]

where \(1\) holding \(t\) fixed. Plugging this into the expression \(p\) and comparing with the general solution, we find that the waves can be expressed in terms of the function \(a\) as:

\[
1 + a = 1 + at + (t) \quad ; \quad (13:16)
\]

Thus we can calculate the time-delay, namely the relation between \(t\) and \(t^0\) such that:

\[
x^0 = (x) = x + 2) x = x + 2 \quad (x) \quad ; \quad (13:17)
\]

\[57\] The conditions for this are given in \[138\].
since from (13.14) we see that \(+ (x^0) = + (x) \). It follows from (13.14) and (13.16) that we have the functional relation between in- and out-waves:

\[
(x) = + (x) = + x + \log 1 + (x) ;
\]

(13.18)

From the derivation we see the essential physics: different parts of the wavepacket suffer different time delays.

We now solve the equation (13.18), thus solving the classical field scattering and, in principle, the tree level S-matrix of the theory. The solution of (13.18) was given in (13.8) and is derived as follows. Suppose \(+ \) constitute a solution of the classical scattering equations (13.13), and suppose further that \(+ \) is a nearby solution, where \(z \) are small. To first order in the variations, (13.18) becomes:

\[
+ (x) dx = (x) dx ;
\]

(13.19)

where \(x = x + \log (1 + (x)) \). Taking a Fourier transform of this equation, with

\[
Z_1^1 \frac{d}{1} (x) e^{i x} ;
\]

(13.20)

leads to

\[
+ (x) = \frac{1}{2} \int Z_1^1 \frac{d}{1} e^{i x} (x) 1 + (x) i ;
\]

(13.21)

This may be regarded as a first-order differential equation in function space. Integrating this equation with the boundary condition \(+ = 0 \) \(= 0 \), we obtain the general solution of Polchinski’s scattering equations:

\[
2 (x) = \frac{1}{i} \int Z_1^1 \frac{d}{1} e^{i x} 1 + (x) i ;
\]

(13.22)

In position space this takes the form

\[
(x) = \frac{X}{p} \frac{(\theta_k + p \frac{1}{1})(x)^p}{(\theta_k)^p} ;
\]

(13.23)

(The ratio of \(- \) functions is interpreted as a polynomial in derivatives.)

This completely solves the classical scattering problem.
13.4. Tree-Level Collective Field Theory S-Matrix

From the classical scattering matrix, we may derive the tree-level quantum S-matrix by interpreting the left- and right-moving fields as incoming and outgoing quantum fields:

\[\begin{align*}
Z_1^+ & = i \frac{d}{4} (t^*) \\
Z_1^- & = i \frac{d}{4} (t)
\end{align*} \]
(13.24)

Now following Polchinski, we interpret the relation (13.23) as a relation between incoming and outgoing Fourier modes:

\[\left(\right) = \left(\right) \]
(13.25)

Quantum mechanically, the Fourier modes in (13.24) are creation and annihilation operators for left- and right-moving particles. Let us consider the S-matrix element for one incoming left-moving particle of energy \(\omega_i \) to decay to \(m \) outgoing particles of energies \(\omega_j \):

\[S_c(\omega_i \omega_j \cdots \omega_j) = \hbar \delta \left(\omega_i \right) + \sum_j (\omega_j) \psi_i \psi_j \]
(13.26)

where the vacuum is defined by \(\omega > 0 \). From (13.25) we may read without further calculation the result:

\[S_c^C = (\omega_i \omega_j \cdots \omega_j) = \left(\right) i^m \]
(13.27)

The corresponding Euclidean S-matrix is

\[\tilde{\mathcal{S}}_R \]
(13.28)

Other S-matrix amplitudes can be derived analogously [138]. The S-matrix is not analytic in the energies \(\omega \), and does not satisfy crossing symmetry. In general we must divide momenta space into kinematic regions. These are defined as follows. (It
is convenient to work in Euclidean space here). For any set S of momenta we let
\[H(S) = \int_{q \in S} f q 2 R^k \]
and we take connected components of the region
\[n X \cap h_i a \quad q_i = 0 \backslash R^k \quad [S H(S)] = C; \]
where $[S$ is over proper subsets S of momenta, and the C are the disjoint kinematic regions.

From the above formulae one can show that S is continuous on $f q_i = 0 g \backslash R^k$, and indeed in each region C, S-matrix elements are polynomials in the q_i. The polynomials change from region to region, however, so the S-matrix elements are not differentiable across regions.

Example: Four-point function.

Both cases $S_c(1! 2 + 3 + 4)$ and $S_c(1 + 2! 3 + 4)$ are covered by the formula
\[i(\pi)^2 \prod_{i=1}^n \q_i 1 + i m a x f i g; \]
where analyticity is lost due to the appearance of the maximal value $max f i g$.

13.5. Nonperturbative S-matrices

The tree level S-matrix can be extended to all orders of perturbation theory, and can even be given an unambiguous nonperturbative definition by returning to the eigenvalue/macroscopic loop correlators of chapt. 11. According to Def 2 and (13.9) above we must isolate the large asymptotics of (11.38). These in turn follow from the large asymptotics of the Euclidean fermion propagator (113'), which we now describe.

The function I can be written in terms of parabolic cylinder functions, whose asymptotics are well-known. In this way we find the asymptotics for $i! 1 + 1$ to be:

\[I(q; 1; 2) = \prod_{i=1}^2 e^{q j_i 2 j_i f (i) G (i)} \]
\[+ R q e^{(G (1) + G (2)) e q (1 + 2)} 1 + O (e^{-1}) \quad q > 0 \]
\[I(q; 1; 2) = \prod_{i=1}^2 e^{q j_i 2 j_i f (i) G (i)} \]
\[+ (R q) e^{i (G (1) + G (2)) e^{q (1 + 2)}} 1 + O (e^{-1}) \quad q < 0; \]

where $G ()$ is the WKB wavefunction factor. The two terms in (13.31) may be understood intuitively as those corresponding to direct and reflected propagation of the fermions in the
The presence of a wall. The function \(R_q \) is a Euclidean continuation of the fermion reflection factor \(R(E) \) for potential scattering with \(V(x) \). In particular, for scattering on a half-line \(\mathbb{R}_{[0;1]} \), we have

\[
R(E) = i^{ieE} \left(\frac{1 + ieE}{1 - ieE} \right) \frac{1}{ieE} \left(\frac{1}{2} + ieE \right) = iE \frac{2e^{3i}}{4} \cos \left(\frac{1}{2} + ieE \right) \left(\frac{1}{2} + ieE \right)
\]

(13:32)

The corresponding Euclidean "bounce factor" is given by \(R_q = R(\mu \pm i\eta^2) \). Using the rule \(\eta^2 \equiv i \), we can pass easily back and forth from the Euclidean to the Minkowskian picture (keeping in mind that \(q < 0 \) corresponds to incomers and \(q > 0 \) to outgoers).

In order to obtain the \(S \)-matrix from (11.38) we must substitute (13.31) into (11.38) and isolate only the terms corresponding to the coefficients of the on-shell wavefunctions. In particular, we are only interested in the terms where (1) the factors of \(e^{iG()} \) cancel, and (2) the overall \(- \) dependence is proportional to \(\eta_{i\eta^2} \). The decomposition of \(I \) in terms of direct and reflected propagation is easily encapsulated in a diagrammatic formalism whose detailed derivation is given in [132]. The final result is sufficiently intuitive that the reader should be satisfied with our presentation here without proof.

Fig. 27: 11 scattering

Consider the case of 11 scattering, illustrated by Fig. 27. We have depicted an incoming relativistic boson, which may be fermionized to a particle-hole pair. The particle and hole undergo potential scattering, and reflect back from the wall. They may then be
rebozonized. The amplitude for this process is simply an integral over possible particle-hole energies weighted by the reection factor for the particle and hole, that is, we have the 1! 1 S-matrix element:

\[S(! ! !) = \sum_0^Z d_1 R (! !) R + (! !) : (13.33) \]

\[I = \begin{cases} q > 0 & \text{(a)} \\ q < 0 & \text{(b)} \end{cases} \]

Fig. 28: a) A pictorial version of the integral I for positive momentum. b) A pictorial version of the integral I for negative momentum.

Fig. 29: Incoming and outgoing vertices. The dotted line carrying negative (positive) momentum \(q \) should be thought of as an incoming (outgoing) boson with energy \(j_{ji} \). Momentum carried by lines is always conserved as time flows upwards.

This intuitive description may be formalized by the following set of general rules:

To each incoming and outgoing boson associate a vertex in the \((t; t)\) half-space. Connect points via line segments to form a one-loop graph. Since the expression for I in (13.31) has two terms, we have both direct and reected propagators as in Fig. 28. Each line segment carries a momentum and an arrow. Note that the reected propagator in Fig. 28, which we call simply a \"bounce," is composed of two segments with opposite arrows and momenta. These line segments are joined according to the following rules:

RH1. Lines with positive (negative) momentum slope upwards to the right (left).

RH2. At any vertex arrows are conserved and momentum is conserved as time flows upwards. In particular momentum \(q_i \) is inserted at the vertex as in Fig. 29.

RH3. Outgoing vertices at \((t_{out}; t_{out})\) all have later times than incoming vertices \((t_{in}; t_{in})\):

\[t_{out} > t_{in}. \]

\[58 \text{ The following is paraphrased directly from [132].} \]
Fig. 30: Bounce factors for reflected propagators. The Minkowskian factors are shown at the left, and their Euclidean analogs are shown at the right.

To each graph we associate an amplitude, with bounce factors R for reflected propagators as in Fig. 30, and 1 for upwards (downwards) sloping direct propagators. Finally, we sum over graphs and integrate over kinematically allowed momenta, thus getting a formula for the Euclidean amplitudes R_n which reads schematically:

$$ R = \int_{\text{graphs}}^{\text{bounces}} dq \ R_Q \left(\ R_Q \right) : \ (13.34) $$

See [132] for more details.

Fig. 31: $1 \leftrightarrow 2$ scattering

Exercise.

Returning to Minkowski space, derive the $1 \leftrightarrow 2$ scattering matrix by showing that the two diagrams in Fig. 31 correspond to

$$ P Z \left(! \ ! _1 + ! _2 \right) = \int_0^{\omega} dx R \left(+ ! \ x \right) R \left(x \right) : \ (13.35) $$
Finally, we must relate these nonperturbative S-matrix entries to string perturbation theory. By double-scaling, the string perturbation series can be extracted by restoring the string coupling α_s and taking $\alpha_s = 0$ asymptotically. This is the same as taking $\alpha_s = 1$ asymptotically holding p_i or λ_i fixed. Thus we need the asymptotic behavior of the bounce factors. To all orders of perturbation theory, we can replace the expression (13.32) by the simpler expression for the Euclidean bounce factor at $p > 0$:

$$R_p = \left(i^\alpha \right)^p \frac{\left(\frac{1}{2} i + p \right)}{\left(\frac{1}{2} i \right)} 1 + \sum_{k=1}^{\Xi} Q_k(p)$$

(13.36)

Here the Q_k are polynomials in p.

13.6. Properties of S-matrix Elements

From the above algorithm one can calculate any S-matrix element. Some general properties of the S-matrix elements following from the above construction are the following. First let us define some notation. By KPZ scaling, the Euclidean S-matrix elements

$$D^k_{\lambda^i} E_{\lambda^j} = \frac{2h+k}{\frac{1}{2}} \sum_{i=1}^{p} F_h(q_i, \ldots, q_k)$$

(13.37)

de ne certain functions $F_h(q_i, \ldots, q_k)$ associated to the moduli spaces $M_{h,k}$ of curves with h handles and k punctures. Defining different kinematic regions C as in eq. (13.28), one can then show:

Some Properties of perturbative amplitudes:

i) F_h is parity-invariant: $F_h(\lambda_i) = F_h(\lambda_i)$.

ii) F_h is continuous on \mathbb{R}^k

iii) In C, F_h is a polynomial in the momenta with rational coefficients. In general the polynomial is different in different regions. That is, the expressions are continuous but not continuously differentiable.

iv) The degree of the polynomial is $2k + 4h - 3$.

v) As any momentum goes to zero, we have

$$D^k_{\lambda^i} E_{\lambda^j} = 0$$

(13.38)

vi) If $q_i \in \mathbb{Z}$, then $F_h = 0$ for sufficiently large genus, specifically, for $2h + 2k > P$.

163
Property (i) follows from the integral representations of macroscopic loops \[50\]. Properties (ii), (iii) and (v) are proved in \[132\]. (Property (iii) was first noted in \[90, 95, 48\].) Properties (iv) and (vi) are proved in \[139\].

Properties (ii-v) have interesting physical interpretations: Properties (ii) and (iii) result from having derivatively coupled massless bosons. Usually, massless particles lead to cuts in the S-matrix. In our case, the cuts become simple discontinuities of the derivatives with respect to energy. Property (iv) essentially says that at large spacetime energies the string coupling becomes effectively energy dependent, \(e(\!) \sim \) \(\!^2 \). This effective energy-dependence of the string coupling has been discussed from the continuum Liouville theory point of view in \[140\].

Exercise. Energy-Dependent Effective String Coupling

Derive the rule \(e(\!) \sim \!^2 \) from the Liouville theory as follows \[140\]: From the formula for Liouville energy, compute the turning point in . Plug into the formula for the spatially-dependent string coupling to nd \(e(\!) = e = \!^2 \).

A related phenomenon is the inapplicability of the string perturbation expansion for high energy scattering \[90\]. The asymptotic expansion for string perturbation amplitudes is an expansion at \(\!^2 \) for \(\!^2 + 1 \). Ordinarily in physics we attempt to measure physical values of the coupling constants (e.g., \(\! = \frac{1}{137} \)) and we probe physical laws by building ever larger and more expensive accelerators, i.e., by increasing the energies \(\!^2 \). In the \(c = 1 \) model we would nd, at \(\!^2 \) and sufficiently high energies, that the string perturbation series ceases even to be an asymptotic expansion. At such energies new physics must emerge and the string approximation, which is now seen to be only a low energy approximation, breaks down. In the present context the "underlying physics" which we would discover would be the spacetime matrix model fermions. It remains to be seen if this situation is typical of nonperturbative string theory.

Decoupling of the cosmological constant

The low-energy theorem, property (v), is probably related to the decoupling of one of the two cosmological constant operators, and plays a key role in the analysis of \[140\]. Taking a naive \(\!^2 \) limit of the tachyon vertex operator, we obtain \(\! ^2 (1 + (i \! X \! j j) = \! ^2 + 0 (\!^2)) \). One may therefore try to interpret property (v) in terms of the decoupling of the cosmological constant operator \(\! ^2 \) and as well the "operator" \(\! X \! ^2 \).

\[59\] Ignore renormalization group flow of couplings, for the sake of this argument.
since the leading term in amplitude goes as \(|j| \) which multiplies the operator \(e^{P\overline{z}} \). This ts in well with the Seiberg bound (3.40). By a limiting process, we may interpret \(e^{P\overline{z}} \) and \(e^{P\overline{z}} \) as the two KPZ dressings of the unit operator. We choose the root of the KPZ equation (2.19) so that the exponential grows at \(\lambda = 1 \), this being the root we expect to correspond to a local operator. In the present case we must choose the root \(e^{P\overline{z}} \), as anticipated in the paragraph following (4.11), and in accord with the argument given at the end of sec. 11.6.

Exercise. Spacetime interpretation of the bounce factor

Apply the low energy theorem, property (v), to the two-point function to show that the "bounce factor" is the one-point function of the tachyon zero mode [141]:

\[
\hbar T_0 = i \log R(\overline{z}; V):
\]

We regard property (vi) as intriguing: it strongly hints at a topological eld theory interpretation of \(c = 1 \).

13.7. Unitarity of the S-Matrix

One immediate application of the algorithm of sec. 13.5 is that we can give a very simple and conceptual discussion of the unitarity of the S-matrix [132].

Fig. 32: Composition of three maps: fermionization, free-fermion potential scattering, and rebosonization.
The key observation is that the combinatorics of connecting lines according to the diagrammatic rules of the previous section is identical to the combinatorics of bosonization. We can then describe the algorithm as a three-step process: fermionization, then free-fermion potential scattering, then rebosonization, as shown in q.32.

To be more precise, we describe in/out bosonic Fock spaces $F^{\text{in}=\text{out}}$ made from the Heisenberg algebra of in/out massless bosons: $(f^{\text{in}=\text{out}})$ where $2 R , [()]; (0) = 0 (+ 0)$ and the in/out vacua are defined by $(0) \delta i = 0$ for $\langle 0 \rangle$ < 0. Now, the Hilbert space of the theory may also be described in terms of the Fermionic Fock space H_{FF} defined by the oscillators $a(E)$ of sec.11.3 (see ([11.3], [11.32])). As is well-known, the fermionization map

$$Z_1 f! b : () ! \ d a(+) \dd{a} (())$$

(13.40)

defines an isometry $H_{FF}^0 = F^{\text{in}=\text{out}}$, where the superscript 0 indicates restriction to the sector with the difference \# particles \# holes = 0. Thus, the prescription of sec.13.4 may be summarized by writing the collective field S^{CF} as a composition of three maps:

$$S^{CF} = f! b \ F F b! f ;$$

(13.41)

where $b! f$ is the fermionization map, $f! b$ is the inverse bosonization map, and S_{FF} is the free-fermion potential scattering S-matrix defined by (13.32). Although standard bosonization is definitely not exact for the non-relativistic fermion system, the asymptotic bosonization is exact for fermions in a potential approaching $V() \rightarrow 0$ at infinity, and this succeeds for computation of the S-matrix.

From (13.41), we immediately deduce that the S-matrix is nonperturbatively unitary if and only if S_{FF} is unitary. There are two immediate consequences of this remark.

1) In theories with no infinite wall where the reaction factors have absolute value smaller than one, the theory will fail to be nonperturbatively unitary. This is not because bosons can tunnel, but because a single fermion in a particle/hole pair can tunnel, thus leaving a nontrivial soliton sector on either side of the world. Put another way, if we insist that the (left and right) Hilbert space of the theory be H_{FF}^0 (again the sector with \# particles \# holes = 0) then the model will be non-unitary. If we allow nonzero #

60 We are describing only one world so we drop the label.
particle number, i.e., nonzero soliton sectors, then nonperturbative unitarity will be restored. A target space string interpretation of the solitons would be quite interesting.

2) By making small perturbations of the matrix model potential g_{21}, we can produce in nitely many nonperturbatively unitary completions of the string S-matrix. In other words, the requirement of nonperturbative unitarity is a very weak constraint on nonperturbative formulations of string theory. Strangely, the situation is opposite to that of unitary $c < 1$ models coupled to gravity, where no satisfactory nonperturbative definitions exist. In either case, we see that matrix models have been somewhat disappointing as a source of nonperturbative physics.

The key formula (13.41) leads to a concise generating functional for all S-matrix elements [141]. A very intriguing aspect of this formula is that it involves the asymptotic conformal eld theory in spacetime in a natural way.

We have mentioned above that the collective eld theory, or equivalently the spacetime tachyon theory $T(\tau; t)$, is asymptotically a conformal eld theory. In fact there are two asymptotic conformal eld theories corresponding to the two di erent null in nitys I^0 in the past and the future. According to (13.41), the entire content of broken conformal invariance in the interior is summarized by the potential scattering of fermions:

$$ a(E)_{\text{out}} = R(E) a(E)_{\text{in}} = S^1 a(E)_{\text{in}} S $$

$$ S \exp \int d\epsilon \log R(E) a(E) a(E)_{\text{in}} $$

As we have noted, unitarity of the S-matrix is equivalent to the identity $R(E)R(E) = 1$ on the reaction factors.

We may use (13.42) to summarize the entire S-matrix as follows. Define vertex operators with normalization

$$ \mathcal{V}_\epsilon = (\frac{i!}{(i!)^2})^{1+1!} = 2 \mathcal{V}_\epsilon $$

relative to the normalization of (5.22), and define the generating functional

$$ 2F \epsilon t(\epsilon) ; t(\epsilon) = \sum_{\rho} \partial_{\rho} R_1 \epsilon e^{\int d\epsilon t(\epsilon) \mathcal{V}_\epsilon} = \sum_{\rho} \partial_{\rho} R_1 \epsilon e^{\int d\epsilon t(\epsilon) \mathcal{V}_\epsilon} $$

where ϵii indicates a sum over genus and integral over moduli space, P_R (as in (11.61)), and the subscript c indicates the connected part. The genus expansion of
(13.44) is given by \(F = F_0 + \frac{1}{2} F_1 + \cdots \), and thus by KPZ scaling, combining (13.41) and (13.42) we have the formula [141]:

\[
2 F_t(t); t(1) = \hbar \int_0^R \frac{1}{e} d! t(1) (1) S R_1 e^{d! t(1) (1)} \mu_c : (13.45)
\]

The expression (13.45) has a simple compact Euclidean space analog. If we take the Euclidean coordinate \(X \) to have finite radius, then from [142][143], we see that the only modification in (11.38) is that bosonic momenta instead lie on a lattice \(2 \frac{1}{2} Z \) and the fermions, now interpreted as being at finite temperature \(1 \), have Matsubara frequencies \(\frac{1}{2} (Z + \frac{1}{2}) \).

![Fig. 33: The Euclidean spacetime of the matrix model in natural coordinates. Note that the asymptotic conformal field theory on spacetime is concentrated in the 'ultraviolet' region at the center of the disk.](matrix_model_wall)

The analytic continuation of the asymptotically conformal collective field is given by the standard \(c = 1 \) scalar field

\[
\theta \mid \text{in} = \text{out} (z) = \frac{\theta \mid \text{in} = \text{out}}{\text{n} \text{out}^{n+1}} ; (13.46)
\]

where \(z = e^{-iX} \), so that the Euclidean spacetime in the \(z \)-plane looks as in Fig. 33.

In particular, the bosonization becomes the standard one with Weyl fermions in the Neveu-Schwarz sector:

\[
f \mid \text{r} = \frac{X}{m + \frac{1}{2}} \frac{z}{Z \frac{m}{2Z}} (z) = \frac{X}{m + \frac{1}{2}} \frac{z}{Z \frac{m}{2Z}} \mid \text{v} = \frac{X}{m + \frac{1}{2}} \frac{z}{Z \frac{m}{2Z}} (z) \mid (13.47)
\]

The Euclidean analog of (13.42) is

\[
in \mid \text{m} = \chi (m + \frac{\hat{p}}{2}) = R (m + \frac{\hat{p}}{2}) : (13.48)
\]

168
where $p_m (m + \frac{1}{2}) = \cdot$

Thus defining Euclidean equivalents $V_q = 1_{\mathbb{R}^+} \frac{(\pi j)}{(\pi j)} V_\mathbb{R}$ of (13.43), the Euclidean analog of (13.44) becomes

\[
2_F \quad DD P^{n-1} v_{n-1} - P^{n-1} v_{n-1} \quad EE
\]

\[
= 1_{m+\frac{1}{2}} \text{d} \int \text{S} e^{-1} \text{S}^{n-1} p c
\]

(13.49)

where \mathbb{S} is the standard $\text{SL}(2,\mathbb{C})$ invariant vacuum and the scattering operator is now given by

\[
S =: \text{exp} \quad \log R_{p_m} \quad \text{out} \quad \text{out} \quad \frac{m+\frac{1}{2}}{m+\frac{1}{2}}
\]

(13.50)

The formulae (13.44, 13.49) are enormous simplifications over previous expressions for $c = 1$ amplitudes. They also clarify several mathematical properties of the $c = 1$ S-matrix, in particular, its connections to integrable system $sl(2)$

13.9. Tachyon recursion relations

From the previous formulae we can obtain some interesting relations between tachyon amplitudes. We will restrict attention to genus zero with X uncom pacted in this section.

We may interpret the solution (13.24) or (13.25) to the classical scattering problem in terms of operators in the coherent state representation acting on the generating functional Z of all amplitudes. This leads immediately to the w_{1+1} ow equations for genus zero amplitudes. The equations are most elegantly stated at the self-dual radius, or by working at infinite radius but restricting to integer momenta. In either case we have:

\[
2 \frac{1_{t(n)}}{1_{t(n)}} Z = \frac{1}{1_{t(n)}} dw \frac{1_{n+1}}{1_{n+1}} : @ (w) : Z ;
\]

(13.51)

where we have the coherent state representation:

\[
@ = w^{1+X} k t(k) w^{k=1} + \frac{1}{2} w^{k=1} \frac{1}{2} w^{k=1} w^{1_{t(k)}} ;
\]

(13.52)

\[\text{[61]}\] M. Green and T. Eguchi have pointed out some intriguing similarities between the present discussion of the $c = 1$ S-matrix and the topological[antitopological fusion of [144]]. Indeed, a picture of in-and out-disks joined along the $= 0$ boundary of g.33 defines exactly the same geometrical setup.
and in (13.51) we only keep terms to leading order in the l^2 expansion for any given correlator.

In terms of explicit constraints on amplitudes, these equations lead to the following relations between tachyon amplitudes [139]. The identities are most simply written in terms of

$$T_q = \frac{(j_1j_2)}{(1+q)} V_q :$$

(13.53)

Consider first the insertion of a "special tachyon," with $q \in \mathbb{Z}_+$. If we continue in with $n \geq 2 \mathbb{Z}_+$, then the series (13.29) truncates after $n+1$ terms. These terms have a \"universal\" effect in correlation functions. Specifically, an insertion of T_n is given by

$$h_{T_q} = \sum_{i=1}^{n} \sum_{k=2}^{(2+q)} \min(X, k) \frac{X}{(2+q-k)} \left(q(T) q \right) X Y Z \sum_{s_1} \sum_{s_k} \sum_{j=1}^{n} T_{q(s_j)} T_{q(s_j)} T_{q(s_j)} ;$$

(13.54)

where $q > 0$ [62]. The notation is as follows: Let $S = f_{q_1} \cdots q_n g$, and let S_1 denote the subset of S of negative momenta. Denote $m = \mathcal{S}$. The sum over T is over subsets of S of order l. The subsequent sum is over distinct disjoint decomposition positions $S_1q \cdots q_k S_k = S n T$. $q(T)$ denotes the sum of momenta in the set T. The momenta q_i are taken to be generic so that the step functions are unambiguously. This entails no loss of generality since the amplitudes are continuous (but not differentiable) across kinematic boundaries [90].

The first two examples of (13.54) are:

$$n = 1 : \quad T_{11} T_{q_1} = \sum_{i=1}^{n} \sum_{k=2}^{(2+q)} \min(X, k) \frac{X}{(2+q-k)} \left(q(T) q \right) X Y Z \sum_{s_1} \sum_{s_k} \sum_{j=1}^{n} T_{q(s_j)} T_{q(s_j)} T_{q(s_j)} ;$$

(13.55)

$$n = 2 : \quad T_{21} T_{q_1} = \sum_{i=1}^{n} \sum_{k=2}^{(2+q)} \min(X, k) \frac{X}{(2+q-k)} \left(q(T) q \right) X Y Z \sum_{s_1} \sum_{s_k} \sum_{j=1}^{n} T_{q(s_j)} T_{q(s_j)} T_{q(s_j)} ;$$

(13.56)

[62] In [138] these were written, with no loss of generality, for positive integer q. The case $m = \mathcal{S}$ is exceptional (13.54) vanishes while the correlator does not) but the amplitude is known from (13.27). This ungainly feature is not shared by (13.51).
Note that in (13.56) there is a change in tachyon number by one in the second line, and the product of two correlators in the third line. The pattern continues for higher \(n \): there are terms with \(j = 1 = k \) removing incoming tachyons, which are linear in the correlators, and terms with a product of \(k \) correlators. Using the representation (13.44), one can write the analog of (13.51), which is valid to all orders of \(1= \) perturbation theory. Essentially, the \(w_{1+1} \) algebra is replaced by the \(W_{1+1} \) algebra [41].

13.10. The many faces of \(c = 1 \)

In recent years many authors have tried to relate other interesting physical systems to the \(c = 1 \) matrix model. These include:

1) Two-dimensional black holes.

It was originally proposed by Witten [32] that the SL(2;R)=U(1) model of black holes would be, in some sense, equivalent to the \(c = 1 \) model. This fascinating conjecture has inspired an enormous literature, but, despite all the work, the situation remains confused. Space does not allow a proper review here. A small sampling of the vast literature includes the following proposals:

a) The models are equivalent after a non-local integral transform on the field variables.

In [145], a transform from the Liouville equations of motion to the SL(2;R)=SO(2) equations of motion is proposed. See also [146]. In [147], this transform was composed with the \(- \)space to \(- \)space transform described in sec. 12.4. The results so far have been limited to transforms of the tachyon equations of motion and, when treated nonperturbatively, have some difficulties with singularities at the horizon and/or the singularity. There have been many variants of these proposals in the literature. See, for example, [148].

b) The models have different operators turned on corresponding to non-normalizable modes. Consequently the (Euclidean) black hole and the \(c = 1 \) model are in different \"superselection sectors\" [147].

c) The 2D black hole and the \(c = 1 \) model are equivalent; the \(c = 1 \) \(S \)-matrix includes black hole formation and evaporation as an intermedeate process, but the black hole physics is difficult to recognize because of the exact solubility of the model. Specifically the \(w_1 \) symmetry of the theory makes black holes difficult to recognize in the \(c = 1 \) \(S \)-matrix. This has been advocated in [149].

d) The 2D black hole and the \(c = 1 \) model are related, but are different cosets of SL(2;R) current algebra [150].
e) The $c = 1$ mode l is e quivalent to a twisted $N = 2$ supersymmetric $SL(2; \mathbb{R}) = U(1)$ m ode l [151].

f) The m ode ls are not equivalent and we w ill learn nothing about black holes from the $c = 1$ m ode l. Several physical arg u ments m ay be advanced in favor of this vie wpoint.

2) Topological Field Theory.

In [152[151]], a relation betw een the $c = 1$ m ode l with X compacted on a self- dual radius and a certain topological eld theory has b een proposed. This is potentially signi cant because the $c = 1$ m ode l has, as we have seen, local physics and a nontrivial S-m at rix. This topological eld theory is a twisted $SL(2; \mathbb{R}) = U(1)$ Kazama-Suzuki m ode l at level $k = 3$ coupled to to pol ogical gravity. A mong other things, this interpretation w ould equate the tachyon S-m at rix for T_k with the Euler character of the vector bundle $\mathcal{V}! \mathcal{M}_{g,n}$ whose ber at a Riemann surface is

$$\mathcal{V}j = H^0; K^2 \prod_{i=1}^n O(z_i)^1 k_i.$$ (13.57)

where K is the canonical bundle of \mathcal{M}. This conjecture has b een checked for the free energy [153] and for the four-point function [154[151]). Checking this in other cases appears to be quite nontrivial.

3) 2D QCD.

V ery recently [154], a connection with two-di mensional QCD has b een advocated.

14. Vertex Operator Calculations and Continuum Metho ds

M atrix m ode l reason ing is extrem ely indirect. It is therefore imp ortant to verify m atrix m ode l results directly via vertex operator calculations. A side from logical consistency, it is useful to see how m atrix m ode l results are explained by standard string-theoretic ideas (for example in terms of operator product expansions, etc.). M oreover, vertex operator calculations are the only known approach to the supersymmetric m ode ls.

14.1. Review of the Shapiro-Virasoro Amplitude

M any of the im portant ideas of string perturbation theory are nicely summarized in one of its oldest res ults: the Shapiro-Virasoro amplitude for 4-point scattering of string tachyons. A lthough this m aterial is completely standard, it is good to review it before plunging into the bizarre world of 2D string theory.
The relevant density on moduli space for the scattering of four on-shell closed string tachyons is

\[(V_{p_1}; V_{p_2}; V_{p_3}; V_{p_4}) = d^2 z \, dz \, j_{p_1}^a \, j_{p_1}^b \, j_{p_2}^a \, j_{p_2}^b \, j_{p_3}^a \, j_{p_3}^b \, j_{p_4}^a \, j_{p_4}^b \, 1_{p_1}^{a_1} \, 1_{p_2}^{a_2} \, 1_{p_3}^{a_3} \, 1_{p_4}^{a_4} \; (14.1)\]

where \(z = z_{13} z_{24} = z_{12} z_{34} \) and \(\frac{1}{2} p_i^2 = 1 \).

In this case, the integral over moduli space \(M_{0,4} \) can be done using the formula

\[d^2 z \, j_{p}^a \, j_{p}^b \, 1_{p}^{a_1} = (1 + a) \, (1 + b) \, (a \, b \, 1) \; (14.2)\]

and hence

\[A_{0,4}(V_{p_1}; V_{p_2}; V_{p_3}; V_{p_4}) = \frac{(1 + p_1 \, d_1) \, (1 + p_2 \, d_2) \, (1 + p_3 \, d_3)}{(p_1 \, d_1) \, (p_2 \, d_2) \, (p_3 \, d_3)} \; (14.3)\]

The left hand side of (14.2) converges when the arguments of all the \(- \) functions are positive. Amplitudes in other kinematic regimes, obtained by analytic continuation in the external momenta, have an infinite set of poles at the values:

\[\frac{1}{2} (p_1 + p_2)^2 = 1; 0; 1; \ldots \]
\[\frac{1}{2} (p_2 + p_3)^2 = 1; 0; 1; \ldots \] \((14.4)\)
\[\frac{1}{2} (p_3 + p_4)^2 = 1; 0; 1; \ldots \]

These poles have both spacetime and worldsheet interpretations:

Spacetime interpretation. The poles signal the existence of new particles in the theory. At the above values of \(t; u; s \), there is an on-shell particle in the respective channel. This is the first signal of the infinite tower of string states of arbitrarily large target space spin.

Worldsheet interpretation. The poles arise from the terms in the operator product expansion. The poles in the t channel, for example, are best understood by considering the operator product expansion of operators \(V_{p_1} \) with \(V_{p_3} \). Then we have:

\[\omega \omega e^{ip_1} \chi(z; 0) \omega \omega e^{ip_3} \chi(z; 0) X^s(0) = (1) \omega \omega e^{ip_3} \chi(z; 0) \omega \omega e^{ip_1} \chi(z; 0) X^s(0) \; (14.5)\]

where \(s \) has ghost number 4. Thus we can interpret the expansion of \(X \) in powers of \(z \) as a statement about the factorization properties of the correlator:

\[NVVV Vi \, NVV s \, \text{V} Vi : \; (14.6)\]

Exercise. Gaussian OPE

Express the operators in \((14.4) \) in terms of Schur polynomials of \(@^k c; @^k X \).
The expansion is only convergent for \(|j| < 1 \), so we must separate the integral over moduli space into two parts: \(j \) and \(j \geq 1 \), where \(|j| < 1 \). In the first integral we may use the OPE and integrate term by term to get:

\[
A_{0,1} = 2 \sum_{n=1}^{\infty} \frac{V_1^2 V_3 V_2 V_4}{\sinh \theta} : Z_j : (14.7)
\]

Thus we see that the poles in the t-channel come from the contribution of operators in the \(V_1 V_3 \) OPE that satisfy \(\frac{1}{2} (p_1 + p_3)^2 = 1; 0; 1; \ldots \). Furthermore, the Fock space for the Gaussian conformal field theory (tensored with ghosts) may be decomposed into states which are BRST cohomology representatives, unphysical states, and trivial states, in a manner invariant under the conjugation \(s \). That is, the factorization behaves schematically like:

\[
X_{\text{phys} \text{phys}} X_{\text{unphys} \text{trivial}} X_{\text{trivial} \text{unphys}}: (14.8)
\]

Since the \(V_i \) are BRST invariant, only the BRST invariant operators can contribute to the sum in (14.7). Thus we finally conclude that the infinite sum of poles in the scattering amplitude stem from the BRST cohomology classes in the operator product expansion. Similarly, the poles in the \(s;u \) channels arise from the other two boundaries of moduli space.

Note, in particular, that it would be inconsistent with unitarity to truncate the string spectrum to lowest lying states.

Exercise. BRST puzzle

When \(p_1 + p_3 \) is not on-shell, every term in (14.8) is a BRST commutator so \(V_{p_1} V_{p_3} \) is BRST trivial. Explain why this does not imply that the four-point function is zero.

14.2. Resonant Amplitudes and the \(\text{Bulk S-Matrix} \)

Unfortunately the Liouville theory is incalculable: we cannot even write the density on moduli space in general, much less integrate it. We can of course calculate in the free theory at \(\theta = 0 \). This has led to a large literature on the \(\text{Bulk scattering matrix} \) to be contrasted with the \(\text{W all scattering matrix} \) or \(\text{W-matrix} \) discussed in the previous chapter.

Bulk scattering is scattering in the \(\theta = 0 \) theory with the condition \(s = 0 \), where \(s \) is the KPZ exponent (3.44), is imposed as a kinematic condition. This makes best physical
sense if we rotate it (as we may when \(s = 0 \)), and regard \(X \) as a spatial variable. We are therefore discussing theory B of sec. 5.2. As explained there, the vertex operators are given by (5.24) and we have energy and momentum conservation laws for the amplitude \(\hbar T_{k_1}^+ T_{p_1} \) given by

\[
X X \quad k_1 + p_1 = 0 \\
X X \quad s = 2 \quad (1 + \frac{1}{2}k_1) \quad (1 + \frac{1}{2}p_1) = 0
\]

(14.9)

Standard vertex operator calculations now give

\[
\sum_{i=1}^{N} \sum_{j=1}^{N} d^2z_i \quad \delta_{ij} j^{2s_{ij}};
\]

where we take the three points at 0;1;1 as usual, \(s_{ij} = \frac{1}{2}k_ik_j \), \(= \frac{1}{2} + k= \frac{1}{2} \) for \(T_k^+ \), and \(= \frac{1}{2} \) \(= \frac{1}{2} \) for \(T_p \). The amplitude (14.10) is known as the \"shifted Virasoro (Shapiro amplitude)" and is quite similar to the familiar expressions for strings in Minkowski spacetime. Let us examine these amplitudes more closely.

Consider first the case where all vertex operators but one have the same chirality, without loss of generality we take say (+; \(N \)). If the effective mass is \(m = \frac{1}{2} + \frac{1}{2}p_1^2 = 1 \) \(p > 0 \), and \(p_i + p_j > 1 \), then the integral (14.10) is convergent and well-defined, and results in

\[
\sum_{i=1}^{N} \sum_{j=1}^{N} \quad (m_i) \quad \left(\frac{N}{2} \right) \quad (N - 2)!
\]

(14.11)

This has been shown in [48,48] by analytic arguments and in [154] by an elegant algebraic technique. Note in particular that:

1) \(p_i k_i \geq R \). We have put \(= 0 \) so there is no longer any rationale to impose the Seiberg bound (3.40).

2) As in 26 dimensions, we can continue to other momenta for which the integral representation does not converge. Then there are poles, but in this case they occur for \(p_i = 1;2;\ldots \). These are known as the \"leg poles."

3) We already see a remarkable difference between \(D = 2 \) and \(D > 2 \) strings since in general there is no simple closed formula for (14.10) for \(N > 4 \).

Let us now consider other combinations of chiralities. We end a new surprise. Because of kinematic \"coincidences\" one cannot define the integrals, even by analytic continuation, since one is always sitting on top of a \(\delta \)-function pole or zero. Indeed it has been argued in [48,49] that these amplitudes are zero, at least for generic external momenta.
Example. Let us consider the most general four-point function. In string theory, we apply the fundamental identity (14.2). Usually we use this expression in conjunction with analytic continuation in the momenta to define the scattering matrix in all kinematic regimes. Let us apply this to the amplitude $T_{k_1 k_2}^* T_{p_1 p_2}$. The kinematic constraints (14.3) force $p_1 + p_2 = (k_1 + k_2) = 2$. Thus the third factor of (14.2) becomes $\langle 2 \rangle = 0$, while the first two factors remain nonsingular for generic momenta.

![Figure 34: Several nonvanishing bulk processes. One can also take the parity conjugate of each of these processes.](image)

The mixed chirality amplitudes are put to zero by some authors [48, 156] and argued (on the basis of unitarity equations) to be proportional to $-f$-functions in momenta by others [157, 158]. Taken together these amplitudes define the "Bulk S-matrix," or B-matrix for short. Bulk scattering is quite peculiar, some examples of processes are drawn in Fig. 34. The existence of particle creation/annihilation in some processes is not surprising given the time-variation of the background, and in particular of the coupling constant. The existence of $-f$-function singularities in the other S-matrix elements suggests that the spacetime background with $\epsilon = 0$ is highly unstable.

Factorization on discrete states

It should be emphasized that the simplicity of the formula for N-tachyon scattering amplitudes (14.11) is extremely remarkable. The analogous singularity structure for the 26-dimensional string would be vastly more complicated. Physically this arises because in 2D there is only one propagating degree of freedom. Nevertheless, since the amplitudes (14.11) were calculated using free-field operator products, the standard discussion of sec. 14.1 applies here as well, with small modifications implied by the kinematic laws (14.3). This has been carried out in detail in [157, 158]. Using the free-field OPE as in sec. 14.1,
in [156] it is shown that the leg poles" in (14.11) may be interpreted in terms of on-shell intermediate discrete states. The vanishing of the mixed chirality amplitudes is important in their discussion. While this makes sense from the worldsheet point of view, the existence in spacetime of (norm alizable!) modes which are only physical at discrete momenta is quite peculiar and has not been adequately interpreted.

14.3. Wall vs. Bulk Scattering

We finally discuss the relation of the B-matrix to the W-matrix, that is, we compare amplitudes at \(s = 0 \) with amplitudes at \(s > 0 \). Since we cannot expand in \(s \) we have no right to expect a simple relation. Moreover, the perturbative W-matrix does not have a good \(s = 0 \) limit. Nevertheless, there is an interesting series of conjectures explored in [47, 48, 49] on the relation between these S-matrices. We describe these here.

To compare, we must continue back to Euclidean space and impose the Seiberg bound (3.40). Thus we only consider processes with \(T^+_k, k > 0 \), and \(T^+_k, k < 0 \). The chirality rule thus becomes the rule that amplitudes are generically zero unless all but one of the momenta \(k_i \) have the same sign. Without loss of generality, we take \(k_1, \ldots, k_N < 0 \), hence \(s = 0 \) implies that \(k_{N+1} = N + 1 \). We now try to relate the \(s = 0 \) and \(s > 0 \) theories by integrating over the Liouville zero mode as in sec. 3.5, splitting \(s = 0 + \sim \). This gives:

\[
\text{hW} - \text{V} f = - s \text{hW} \; \sim, \text{V} f : \\
(14.12)
\]

Since \(s = 0 \), the RHS is ill-defined, but the pole of the \(s \)-function has a nice physical interpretation. Returning to mixed area correlators we see that it arises from an ultraviolet \(A ! 0 \) divergence. That is, in spacetime term \(s \), a divergence from an integration over the volume of the \(s \)-coordinate. We may therefore regulate the theory and consider log the regularized volume of the world,

\[
s (s) j = \left(\int^Z \frac{dA}{A} e^{A} \right)^n \log (s) : \\
(14.13)
\]

To extract the residue of the \(s = 0 \) pole, we divide by the volume of \(- \)-space. As mentioned in sec. 3.5, the Liouville interaction is effectively zero in \(\text{most} \) of \(- \)-space so we should be able to treat as a free field in this regime and calculate the residue of the \(s = 0 \) pole with
free-field techniques. But this calculation just leads to the B-matrix. Using the free-field result (14.14) gives \(k_i < 0, i = 1; N \):

\[
\mathcal{V}_k \mathcal{V}_i = \sum_{S} \sum_{j=0}^{\infty} s \mathcal{V}_k \mathcal{V}_i \mathcal{V}_j = \sum_{S} \sum_{j=0}^{\infty} s \mathcal{V}_k \mathcal{V}_i \mathcal{V}_j
\]

where now \(m_i = 1 \) \(k_i \) and \(k_{N+1} j = N \) and we regulate by taking \(s = i \) 0. Di Francesco and Kutasov [48] have generalized this result to positive integer values for \(s \) by carefully taking limits \(k_i \) 0, and nd

\[
\mathcal{V}_k \mathcal{V}_i / \mathcal{V}_i = \sum_{S} \sum_{j=0}^{\infty} s \mathcal{V}_k \mathcal{V}_i \mathcal{V}_j = \sum_{S} \sum_{j=0}^{\infty} s \mathcal{V}_k \mathcal{V}_i \mathcal{V}_j
\]

The equation (14.15) has an obvious "continuation" to \(s \in \mathbb{Z}_+ \) with \(s = 1 \) \(N + j_{N+1} j \) where the RHS becomes well-defined and finite. Remarkably, comparison with the matrix model result (13.27) shows that we obtain an identical amplitude (13.27, 13.28) differing only by \"wavefunction renormalization factors" \(f(q) \) (13.12), and the continuation pqj!

are appropriate to the W-matrix. In order for this story to be consistent, we should understand from the W-matrix why the mixed chirality amplitudes vanish. The reason is that in these kinematic regimes, the KPZ exponent is typically fractional. For example, for 2 scattering with \(p_1 + p_2 = k_1 + k_n \) we have \(s = 2 \) \(n + q + p_2 \), even when log factors blow up \(s \) is fractional, there is no log dependence and hence no \"bulk" piece proportional to the volume of the world.

Di Francesco and Kutasov [48] have argued that is is nevertheless possible to use the data of the B-matrix to obtain the remaining W-matrix elements at \(\epsilon = 0 \). The crucial point is that one must use spacetime reasoning [48]. First, note that (14.15) depends (up to wavefunction factors) on the momenta only through a polynomial. Therefore, we can construct a local spacetime field theory of the tachyon field analogous to the macroscopic loop field theory of sec. 11.6 [63]. In [48], it is shown that (14.15) uniquely solves all the interactions in the Lagrangian and that one can proceed to calculate the amplitudes in other

\[\text{Local} \] means we have an in set of local, finite derivative interactions for each interaction involving n fields. In total, the Lagrangian involves an in finite set of interactions.
kinematic regimes at $\theta = 0$ using this eik theory. In all cases where the procedure has been checked (ve- and six-point functions), the amplitudes obtained from this procedure agree with the matrix model amplitudes. Thus, the B-matrix element \((14.11)\) at $\theta = 0$ completely determines the $\theta = 0$ W-matrix. These arguments have not been extended to higher genus and the equality of S-matrices thus remains conjectural (although physically plausible).

Remarks:

1) As we discussed in the previous section the leg factors of the B-matrix give poles corresponding to on-shell intermediate discrete tachyons. On the other hand, for the Euclidean W-matrix the analogous factors are of the form \((13.12)\), and have poles at $q_j \in \mathbb{Z}_+$. In the physical regime of the W-matrix, these correspond to phase factors

$$\frac{(iE)}{(iE)}$$

which do not have poles in the physical regime. This makes perfectly good sense. As we have discussed, the poles of the leg-factors correspond to non-normalizable states with imaginary momentum, they cannot appear in intermediate channels for physical scattering. Thus, we see that at $\theta > 0$ the different nature of the Liouville OPE essentially changes the physics and alters the standard discussion of sec. 14.1. In particular, the W-matrix has the peculiar property, unique among string theories, that the tachyon S-matrix is a unitary scattering matrix in the absence of all other string states.

2) These calculations have been extended to the open string in \([159]\), in which case the amplitudes have a pole structure much more complicated than the closed string bulk amplitudes above. Explaining these amplitudes remains an important challenge for the matrix model approach.

14.4. Algebraic Structures of the 2D String: Chiral Cohomology

We have seen that, at least at $\theta = 0$, the 2D string has a rich spectrum of cohomology. As mentioned in sec. 5.5, this may be taken as an indication that the $D = 2$ string background is a much more symmetric background for string theory. By contrast, the Minkowski background of standard critical strings would seem to be a very asymmetric background, not at all a good place to look for underlying symmetries and principles of string theory. With these motivations in mind, several groups have intensively investigated the algebraic structures defined by the BRST cohomology of $D = 2$ string theory \([60, 66, 67, 131, 155, 160, 161]\).
Quite generally, the operator product algebra of the chiral operators in a conformal
eld theory defines an example of a mathematical object known as a vertex operator algebra
\[162\]. Indeed much of the work on conformal eld theory (especially RCFT) has been an
investigation of these algebraic structures \[163,164\]. In string theory, where there is a
BRST operator \(Q\), additional structures arise. This is nicely illustrated in the example of
the operator product algebra of the 2D string.

First let us consider the absolute chiral cohomology at the self-dual radius. As we
have described in chapt.\[6\], this is spanned by operators at ghost numbers \(G = 0;1;2\) for
the (+)-states:
\[
\begin{align*}
G = 0 & \quad O_{j;m} \\
G = 1 & \quad aO_{j;m} \quad Y_{j;m}^+ \\
G = 2 & \quad aY_{j;m}^+
\end{align*}
\] (14:16)

\[14:16\]

\[14:17\]

\[14:18\]

together with the (−)-states at ghost numbers 3, 2, 1, which are dual via the tilde-
conjugation.

The operator product of the ground ring operators \(O\ 2\ G\) can be restricted to the
BRST cohomology:
\[
O_1(x)O_2(y) \quad O_3(y) \quad \text{mod} Q; \quad g ;
\] (14:17)

\[14:17\]

\[14:18\]

since the operator product is nonsingular and and ghost number is additive. Thus, the
ground ring operators form a ring. One can show that the BRST reduction of the operator
product algebra is \[6\]:
\[
O_{j; m_1}(x)O_{j; m_2}(y) = O_{j_1 + j_2; m_1 + m_2}(y) \quad \text{mod} Q; \quad g ;
\] (14:18)

\[14:18\]

This result almost follows simply from consideration of ghost and momentum quantum
numbers. The fact that the structure constant is unity requires more detailed analysis
\[6\]. With the identifications \(x \quad O_{1;2;1=2}, y \quad O_{1;2;1=2}\), we identify the chiral ground
ring with the algebra of polynomials in \(x\) and \(y\), denoted \(C[x;y]\).

Of course, the existence of a ring in the OPA of the BRST cohomology does not require
us to restrict to ghost number \(G = 0\). To describe the full operator product algebra, we
rst introduced some geometry.

Geometry of the BRST operator product algebra

An old observation \[165\] is that the BRST cohomology of string theory resembles
cohomological structures of manifolds. The operator product algebra of the 26-dimensional
string has proven too complicated to pursue this line of thought very far, but the 2D string
example has provided some very interesting realizations of that idea [67, 66]. From (14.18), we see that the ground ring is the ring of polynomial functions on the $x; y$ plane. Witten and Zwiebach [66] show that the remaining cohomology can be identified with polynomial vectors and bi-vectors via the introduction of an area-form $! = dx \wedge dy$. Indeed we have the correspondence:

\[
\begin{align*}
O_{jm} & \quad f_{jm} \quad x^{j+m} y^{m} \\
Y_{jm}^+ & \quad V_{jm} \quad \frac{\partial f_{jm}}{\partial y} \frac{\partial}{\partial x} \quad \frac{\partial f_{jm}}{\partial x} \frac{\partial}{\partial y} \\
aO_{jm} & \quad X_{jm} = x^{j+m} y^{m} \quad x \frac{\partial}{\partial x} + y \frac{\partial}{\partial y} \\
aY_{jm}^+ & \quad f_{jm} (x; y) \frac{\partial}{\partial x} \wedge \frac{\partial}{\partial y}
\end{align*}
\]

(14.19)

In the third line, the vector X is an area non-preserving diffeomorphism and satisfies $L_X f_{jm} ! = f_{jm} !$, or, $\theta_i X^i = f_{jm}$. With these identifications, we can elegantly summarize the operator product algebra as the ring structure on $\mathcal{T} = \bigoplus_{i=0}^2 \mathcal{T}$, where \mathcal{T} is the polynomial tangent bundle on the $x; y$ plane [66, 166].

Since we are working at $\lambda = 0$ we must also consider the () states. These may be nicely incorporated into the theory. The full structure has been elucidated by Lian and Zucker in [169] in terms of an algebraic structure they call a Gerstenhaber algebra. Related algebraic structures have also emerged prominently in several recent works on string eld theory and topological string theory. See [167, 168].

Exercise. Explicit Ring Structure

Show that the ring structure in the natural basis is

\[
\begin{align*}
O_{j_1 m_1} O_{j_2 m_2} & = O_{j_1+j_2 m_1+m_2} \\
Y_{j_1 m_1} + Y_{j_2 m_2} & = Y^+_{j_1+j_2 m_1+m_2} + aO_{j_1+j_2 m_1+m_2} \\
Y^+_{j_1 m_1} + Y^+_{j_2 m_2} & = aY^+_{j_1+j_2 m_1+m_2}
\end{align*}
\]

(14.20)

Remarks:

1) There is a dual interpretation replacing polyvectors by differential forms. In this formulation, b_0 essentially plays the role of an exterior derivative. See [63].

2) It is natural to ask for the analog of the ground ring at $c < 1$. This has been discussed in [131, 163]. The operator product ring is $\mathcal{O}(\text{w}) \otimes \mathcal{O}[x; y]$ with relations

181
Lie Algebra of Derivations

Let us investigate more closely some consequences of the above assertions. The operator product algebra of the ghost number $G = 1$ operators is the Lie algebra of vector fields. When restricted to the area-preserving vector fields Y^+_j, this may be identified with the Lie algebra as follows. The operator Y has the structure $Y_{jm} = cW_{jm}$, where W is a ghost-free operator of dimension one, so applying the descent equations to the BRST invariant zero-form $(0) = Y_{jm}$ gives a dimension one operator $(1) = W$. The associated Lie algebra can be deduced by direct calculations of the operator products to be \[W_{jm_1}(z)W_{jm_2}(0) = \frac{2(jm_2 - jm_1)}{z}W_{j_1 + j_2; m_1 + m_2}(0) \quad : (14.21) \]

Again, much of this formula is fixed simply by considering the quantum numbers. The expression \[: (14.21) \] is in agreement with the commutator of polynomial vector fields.

Associated with the Lie algebra of currents are the charges $Q(Y^+_jm) = W_{jm}$. These act on the ground ring as derivations. To prove this, let $O_1(P), O_2(Q)$ be two ground ring operators, and let C be a contour surrounding points P, Q, and C_1, C_2 surround only P and Q, respectively. We have:

\[
\begin{align*}
W_{jm}C_{0_1(P)0_2(Q)} &= \frac{I}{C} W_{jm} O_1(P) O_2(Q) + O_1(P) W_{jm} O_2(Q) : (14.22) \\
\end{align*}
\]

Since the BRST invariant contribution to the operator product is independent of the difference $z(P) - z(Q)$, the action of the charges descends to a derivation on the ground ring. In the geometrical interpretation this is just the action of polynomial vector fields on polynomial functions.

Exercise. Two viewpoints

Show that the second description of the operator algebra of ghost number $G = 0$ and $G = 1$ states is equivalent to the ring structure on T. Use the fact that if $L_W = 0$ is area preserving and $L_V = f!$, then $L_{[V,W]} = W(f)!$.

182
Tachyon Modules: Away from the self-dual radius, there are new BRST cohomology classes $V_q = c e^{i q x} = \mathbb{P}^{j} e^{\mathbb{P}(1 + j \mathbb{P})}$, with $q \in \mathbb{Z}$. The ring of BRST operators acts on these new cohomology classes via operator products. Since the position-dependence of the operators is a BRST commutator, the tachyon operators form a module representing the ring $T[13]$.

First let us determine the action of the ground ring. An easy free-field calculation, using the explicit formulae for $x; y$ given in chapter 5, shows

$$
\begin{align*}
O_{1=2; 1=2} & \quad \Delta = q V_{q+1} \quad q > 0 \\
O_{1=2; 1=2} & \quad \Delta = 0 \quad q > 0 \\
O_{1=2; 1=2} & \quad \Delta = 0 \quad q > 0 \\
O_{1=2; 1=2} & \quad \Delta = q V_q \quad q > 0 \\
\end{align*}
$$

(14.23)

So irreducible representations are classified by $\text{Sign}(q)$ and $q \mod 1$. The remaining ring action is somewhat complicated, but can be largely obtained by considering the $X; j$ quantum numbers. For example, $Y_{j,m}^+$ is a state with $p_x = (p + 2m) = \mathbb{P}^{Z}$ and $ip = \mathbb{P}^{Z} = pj + 2j \quad 2$. Thus the resulting state can only lie on the tachyon dispersion line if $p + 2m = pj + 2j \quad 2$. Therefore, for example, we can immediately conclude that

$$
Y_{j,m}^+ \quad \Delta = 0 ;
$$

(14.24)

for $p \in \frac{1}{2} \mathbb{Z}$, if $p + 2m < 0, p > 0$, or if $p + 2m > 0, p < 0$. If $p + 2m$ and p have the same sign, then we still require $jn = j \quad 1$ for a nonzero product. In the latter case, the nonvanishing product is most simply described as

$$
W_{jj}^1 V_p = \frac{1}{(2j + 1)} (p)_{2j + 1} V_{p+2(j+1)}
$$

(14.25)

for $p > 0$, with a similar formula for W_{jj}^1 for $p < 0$ (and $(p)_m = (p + m)_m = (p)$ is the Pochhammer symbol). Thus, when the \mathbb{W} algebra generated by the currents $W_{j,m}^+$ acts on the tachyon module, only the Vir^{+} subalgebra $\mathbb{W} = \mathbb{W}$ acts nontrivially on V_p.

14.5. Algebraic Structures of the 2D String: Closed String Cohomology

The algebraic structures for the closed string case are quite similar. The only subtlety occurs in combining left and right-moving structures.

Consider first the ground ring for the self-dual compactification. The ghost number $G = 0$ cohomology classes are spanned by $R_{jm}^{m} = 0_{jm}^{m} O_{jm}^{m}$. We must use the same
spin \(j \) even at the self-dual radius, since left- and right-moving Liouville monomials must match. The geometric interpretation of this ring emerges when one writes ground ring elements as \(x^n y^m e^{-n/m} \). Equating left and right Liouville monomials we have \(n + m = n + m \).

The ground ring is therefore always generated by polynomials in the expressions \(a_1 = xx, a_2 = yy, a_3 = xy, a_4 = yx \). Note that the \(a_i \)'s obey the relation \(a_1 a_2 = a_3 a_4 \), defining a three-dimensional quadrilateral cone \(Q \). At finite radius we only have ground ring generators \(R_{j, n} \) and the ground ring again becomes the ring of polynomials on the \(x, y \) plane.

In a manner analogous to the previous section, one can consider the other algebraic structures and their geometric interpretations in terms of the cone \(Q \). For example, the symmetries associated to the ghost number \(G = 1 \) cohomology are the volume-preserving diffeomorphisms of \(Q \). Further results may be found in [66].

As in the chiral case, the ground ring and discrete charges act on the tachyon operators \(V_p \). Indeed, recall from sec. 4.5 that we may apply the descent equations to the ghost number one BRST classes \(J_{jm} = Y_{jm}^+ 0_{j, 1m} \) and its holomorphic conjugate. The first step in the descent equations gives a current

\[
^{(1)}_{jm} = W_{jm}^+ 0_{j, 1m} dz \quad \partial W_{jm}^+ \frac{X}{dz} ; \quad (14.26)
\]

where \(\mathcal{K} = b_1 \mathcal{D} b_1 \mathcal{I} \). This is an unusual current: although it has dimension \((1;0)\), it is not purely holomorphic. Moreover, its charge is only conserved up to BRST exact states. Nevertheless, we can let these discrete currents act on tachyons. The story is very similar to the chiral case. In BRST cohomology, the only nonzero actions occur for \(p > 0, J_{j1}; 1 \) or \(p < 0, J_{j1}; j \). In this case we have \(A_{j1}; 1 = \frac{1}{(2j+1)!} L_{2j} \) we end that, for \(p > 0 \):

\[
[L_n; V_p] = p V_{p+n} ; \quad (14.27)
\]

So, again \(Vir^+ \) (see (12.29)) acts.

String theory \(W \) and identities as applied to 2D string theory have been described in 66, 68, 131, 161, 155.

Further extensions of this formalism and likely directions for future progress, including applications in physical contexts, are deferred to [13].

15. Achievements, Disappointments, Future Prospects

Quantum gravity has been a theoretical challenge for 70 years. String theory has been evolving for 25 years. In the past 34 years, some new ideas have been applied to these old problems. It is time to assess the harvest of this recent effort.
Exercise. Missing lessons

Determine which of the lessons below are covered quite elegantly in portions of text that have been omitted from these lecture notes [0] but will be restored for the book version [19].

15.1. Lessons

From the quantum gravity point of view, the main lessons we have learned from the matrix model are:

Euclidean Quantum Gravity makes sense, at least in two dimensions.

The nature of quantum states in Euclidean quantum gravity, and their interpretation within the quantum mechanical framework is surprising, and requires the introduction of non-normalizable wavefunctions as well as normalizable wavefunctions.

The Wheeler-DeWitt constraint is violated in topology-changing processes.

The contributions of singular geometries to the path integral of quantum gravity are important.

There is a phase of topological gravity which can be connected to phases of nontopological gravity.

From the string theory point of view, the main lessons we have learned from the matrix model are:

Nonperturbative definitions of string physics, at least in some target spaces, exist.

There are backgrounds with large unbroken symmetries, e.g., \mathbb{H}_1 and volume preserving di eomorphism algebras.

The large order behavior of perturbation theory at order g has the typically "stringy" $(2g)!$ growth.

In solvable string theories, there is a beautiful mathematical framework (KP, low, W-constraints, etc.) that relates string physics in different backgrounds.

With current understanding, it is fundamentally impossible to achieve complete background independence: There is always dependence on boundary and initial conditions associated with non-normalizable states.

There is a phase of string theory which is topological, and can be connected to nontopological phases with local physics (such as string scattering in two dimensions).
15.2. Disappointments

From the quantum gravity point of view, our main disappointments thus far are:

It is not yet obvious how to apply our new insights into quantum gravity in two dimensions to treat the case of quantum gravity in four dimensions.

Even in two dimensions, the matrix model results have not yet provided solutions to fundamental problems of quantum gravity, such as the ultimate nature of singularities, whether Hawking radiation violates fundamental principles of quantum mechanics, and related paradoxes.

Some nonperturbative aspects of gravity have been investigated, but no clear lessons have been drawn and there remain many important open problems.

From the string theory point of view, our main disappointments thus far are:

The spacetime physics for $c < 1$ conformal matter coupled to quantum gravity, while not fully elucidated, seems rather uneventful due to the lack of a time dimension, i.e. due to the lack of fully developed spacetime field theory.

Spacetime physics of the $c = 1$ matter coupled to quantum gravity is essentially that of a free boson. We have as yet no understanding of the infinite tower of string states or of backreaction. It may be that strings propagating in two target space directions, i.e. with no transverse dimensions, is not representative of strings propagating in higher dimensions. Even for strings in two target space dimensions, we have not progressed so far beyond the $c = 1$ model point of view to a conceptually new formulation.

The biggest disappointments have been from the standpoint of nonperturbative physics:

There are stable non-perturbative solutions for the minimal $(2,5)$ model (Yang-Lee edge singularity), and higher non-unitary models coupled to quantum gravity, but again the dynamics is limited due to the lack of time coordinate and consequent lack of spacetime interpretation.

For the $c < 1$ unitary models coupled to quantum gravity, there is no nonperturbative theory.

For $c = 1$ matter coupled to quantum gravity, we have the opposite problem: there are infinitely many nonperturbative completions of the $c = 1 S$-matrix, i.e., there are infinitely many λ-parameters.

Our lessons on background dependence are sobering: there are infinitely many superselection sectors.
15.3. Future prospects and Open Problems

Singularity is almost invariably a clue. | Sherlock Holmes

Each paragraph in the text marked with the \dangerous bend sign represents an opportunity.

The quantum Liouville theory remains unsolved, and is still needed to calculate answers to many physics questions, so major surprises remain possible.

We need a better understanding of backgrounds. At present, we seem to have an infinite dimensional manifold of solutions to string theory, and an infinitely large class of superselection sectors. Are all these solutions related by some symmetry?

Can we use these backgrounds to understand anything about time-dependence in string theory?

Natural nonperturbative definitions of 2D string theory and 2D gravity are still lacking! One might have hoped that imposing some physical criterion such as unitarity would strongly constrain the possible nonperturbative definitions of the theory, but this does not occur in the case of the $c = 1$ model coupled to gravity. There we found in nitely many nonperturbative completions all of which seem perfectly natural from the matrix model point of view, and we thus obtain little guidance in this regard.

Can the comprehensive picture of the $c < 1$ backgrounds, unified via the KP formalism, be generalized to the case of 2D string backgrounds? Is there e.g. a multiparameter space of theories which encompasses both the black hole and $c = 1$ spacetimes? Finding a unified picture of all 2D or $c = 1$ backgrounds remains an interesting open problem.

We need to find new ways of cancelling the tachyonic divergences of string theory, i.e., of making sense of the integrals over moduli spaces. This is essentially the problem of going beyond the $c = 1$ barrier.

Does the $c = 1$ model teach us how to understand better the covariant closed string kth theory of 44^R?

One of the great open puzzles in the subject is the absence of backreaction on the metric and other \textquotedblleft special state\textquotedblright degrees of freedom, and in particular, the role of 2D black holes in $c = 1$ string theory.

Are there interesting supersymmetric extensions of the theories we consider here (i.e. with potentially interesting spacetime properties such as the construction of $L7])$?

Acknowledgments

187
Appendix A. Special functions

A.1. Parabolic cylinder functions

Unfortunately, there are four notations commonly used for parabolic cylinder functions [71,72]. Our wavefunctions \((a;x) \) are the \(-\) function normalized even and odd solutions of \(\left(\frac{d^2}{dx^2} + \frac{x^2}{4} \right) = a \). In terms of degenerate hypergeometric \(_1F_1(\; ; ;x) \) and Whittaker functions \(M_{\alpha;\nu}(x), D_{\alpha}(x) \), we have even and odd parity wavefunctions:

\[
(a;x) = \frac{1}{4} \left(\frac{1}{1 + e^{2x}} \right)^{\frac{1}{2}} (W(a;x) + W(a;\;x))
\]

\[
= \frac{1}{4} \left(\frac{1}{1 + e^{2x}} \right)^{\frac{1}{2}} \left(\frac{1+4+i\alpha=2}{(3+4+i\alpha=2)} \right)^{\frac{1}{2}} e^{ix^2=4} _1F_1(1=4 \; i\alpha=2;1=2;ix^2=2) \quad (A.1)
\]

\[
= e^{\frac{i}{2}} e^a \frac{4}{j} (1+4+i\alpha=2) \frac{1}{M \; i\alpha=2; 1=4(ix^2=2)} \; ;
\]

\[
(a;x) = \frac{1}{4} \left(\frac{1}{1 + e^{2x}} \right)^{\frac{1}{2}} (W(a;x) - W(a;\;x))
\]

\[
= \frac{1}{4} \left(\frac{1}{1 + e^{2x}} \right)^{\frac{1}{2}} \left(\frac{3+4+i\alpha=2}{(1+4+i\alpha=2)} \right)^{\frac{1}{2}} xe^{ix^2=4} _1F_1(3=4 \; i\alpha=2;3=2;ix^2=2) \quad (A.2)
\]

\[
= e^{\frac{3i}{2}} e^a \frac{4}{j} (3+4+i\alpha=2) \frac{x}{M \; i\alpha=2;3=4(ix^2=2)} ;
\]
A.2. Asymptotics

Define

\[
\begin{align*}
\frac{1}{4} + \frac{1}{2} \arg \left(\frac{1}{2} + i \right) \\
\begin{cases}
\arg(1 + e^2) & e = 0 \\
\arg(1 + e^2) + e & e = 2e + 0 \quad (e)
\end{cases}
\end{align*}
\]

(A.3)

\[
\begin{align*}
k(\) &= 1 + e^2 \quad e = 0 \\
k(\) &= p \frac{1 + e^2}{1 + e^2} + e = 2e + 0 \quad (e)
\end{align*}
\]

The asymptotic properties of the wavefunctions [172] are:

1) $2^{n}
\begin{align*}
+ (\ ;) & \quad \frac{e^{2}}{(2)^{1/2} 1/4} \cosh \sqrt{p} \quad (A.4) \\
(\ ;) & \quad \frac{e^{2}}{(2)^{1/2} 1/4} \sinh \sqrt{p}
\end{align*}

2) $2^{n}
\begin{align*}
+ (\ ;) & \quad \frac{1}{(4)^{1/2} 1/4} \cos \sqrt{p} \quad (A.5) \\
(\ ;) & \quad \frac{1}{(4)^{1/2} 1/4} \sin \sqrt{p}
\end{align*}

3) $j
\begin{align*}
(\ ;) & \quad \frac{1}{(2)^{1/2} 1/4} \sqrt{p} \quad (A.6) \\
k(\) & \quad 2^{n} \log + (\) \\
1 & \quad k(\) \sin 2^{n} \log + (\)
\end{align*}

4) $X
\begin{align*}
(\ ;) & \quad \frac{1}{(2)^{1/2} 1/4} \sqrt{p} \quad (A.7) \\
k(\) & \quad 4^{n} \log + (\) \\
1 & \quad k(\) \sin 4^{n} \log + (\)
\end{align*}
References

[15] For a recent review see V. Kazakov, Bosonic strings and string field theories in one-dimensional target space, LPTENS 90/30, published in proceedings of 1990 Cargese workshop.

G. Segal, “The definition of conformal field theory,” unpublished.

R. Dijkgraaf, \textit{Topological field theory and 2d quantum gravity"}, in proceedings of Jerusalem winter school (90/91).

F. David, \textit{What is the intrinsic geometry of two-dimensional quantum gravity?"} Nucl.
H. Kawai, N. Kawamoto, T. Mogami and Y. Watabiki, \"Transfer matrix formalism for two-dimensional quantum gravity and fractal structures of space-time,\" INS-969 (hep-th/9302132).
[120] T. Banks, unpublished. In this work Banks showed how to derive the linear equation for the cosmological constant wavefunction in pure gravity from the non-linear equation.
and Eigenstates for Integrable Collective Field Theories" [hep-th/9202065]; "Interacting Theory of Collective and Topological Fields in 2 Dimensions" [hep-th/9209036].

[149] Edward Witten, "Two-dimensional string theory and black holes" (hep-th/9206063), Lecture given at Conf. on Topics in Quantum Gravity, Cincinnati, OH, Apr 3\(\frac{1}{4}\), 1992.
[154] J. Minahan and A. Polychronakos, "Equivalence of Two Dimensional QCD and the c = 1 Matrix Model" (hep-th/9303153);

[168] G. Segal, Lectures at the Isaac Newton Institute, August 1992, and lectures at Yale University, March 1993.

[169] M. H. Sarmadi, "The ring structure of chiral operators for minimal models coupled to 2D gravity," IC/92/301

