Abstract

We study the realisation of global symmetries in a polynomial (or "linearized") form formulation of the non-linear sigma model. We show that there are global symmetries whose corresponding Noether currents are the topological currents in the usual formulation. The usual (Noether) conserved currents associated with the internal symmetry group are reproduced, but part of them become non-local in terms of the dynamical variables of the polynomial formulation.

Key words: sigma model, topological currents, non-local currents.

Submitted to: Physics Letters B
Symmetries in a Polynomial Formulation of the Non-Linear Model

C.D. Fosco

University of Oxford
Department of Physics, Theoretical Physics
1 Keble Road, Oxford OX1 3NP, UK

and

R.C. Trinchero

Centro Atomico Bariloche and Instituto Balseiro
8400 – S.C. de Bariloche
Argentina

August 15, 2013
Among the many interesting properties of the non-linear model \([1]\), not the least in important is the fact that the dynamical variables belong to a manifold with non-trivial geometry \([2]\), thus providing a non-linear realisation \([3]\) of the corresponding symmetry group. As a consequence, either the Lagrangian becomes non-polynomial in terms of unconstrained variables, or it becomes polynomial but in terms of variables which satisfy a non-linear constraint. Sometimes it is desirable to have a polynomial or 'linearized' representation of the model, i.e. an equivalent description where the symmetry is linearly realised, because then the constraints imposed by the W and identities on the counterterms are more easy to deal with \([4]\). It is then natural to wonder what becomes, in the polynomial formulation, of the topological currents in the non-linear formulation, whose existence depends essentially on the non-linear constraint. We shall show that in the polynomial formulation there are global symmetries whose Noether currents correspond to the topological currents of the non-linear formulation. The situation is thus somewhat analogous to that in the Sine-Gordon-Thirring correspondence, where the topological current in the former is mapped to a Noether current in the latter.

We begin by briefly outlining how to obtain a polynomial representation. There is a simple way to do that for the case of the \(O(N)\) models, where the field is a \(N\)-component vector, constrained to have constant modulus. In this case, a polynomial representation is constructed by introducing a Lagrange multiplier for that constraint. Note, however, that this is not trivially generalizable to the general case, where the manifold is defined by a more complex constraint, like the \(SU(N)\) groups. Here we will instead use the approach of refs.\([4]\) and \([5]\), where a polynomial representation for the \(SU(N)\) model in 3+1 dimensions was obtained. The usual presentation \([6]\) of this model is in terms of an \(SU(N)\) field \(U(x)\), with the Lagrangian

\[
L = \frac{1}{2}g^2 \text{tr}(\partial U \partial U^*) \; ;
\]

(1)
where \(g \) is a coupling constant with dimensions of mass (the constant \(f \) in its application to Chiral Perturbation Theory). The polynomial description \([3,4]\) of this model was constructed in terms of a non-Abelian (SU(N)) vector field \(L \) and a non-Abelian antisymmetric tensor field \(\epsilon L \), with the Lagrangian

\[
L = \frac{1}{2} g^2 \text{tr}(L L) + g \text{tr}(F(L))
\]

where \(F = \partial L \partial L + [L, L] \). The Lagrange multiplier imposes the constraint \(F(L) = 0 \), which is equivalent \([7]\) to \(L = U \partial U^\dagger \), where \(U \) is an element of SU(N). When this is substituted back in \((2) \), \((4) \) is obtained \([8]\). Note that one can always nd locally a \(U \) such that \(L = U \partial U^\dagger \) if \(F = 0 \), but of course in general more than one coordinate chart will be necessary to specify \(U \) completely.

There is a technical problem when the spacetime dimension is higher than 2: there is a gauge symmetry under transformations of the antisymmetric field \(\epsilon L \). We will not reproduce here the gauge fixing procedure (discussed in ref. \([4]\)), because we will discuss only global symmetries of the antisymmetric field \(\epsilon L \), and it is clear that it is not necessary to x the gauge in order to study them or their corresponding charges.

Before proceeding, we note that the essential difference with the usual linearization approach (the one used in the O(N) models) is that the field \(U \) does not appear explicitly in the Lagrangian (this is not a problem regarding matrix elements for the scattering of 'pions', because they can be obtained by applying a reduction process to the Green's functions with \(L \) legs \([9]\)). However, it is still possible to relate the shell Green's functions of the fields \(\epsilon L \) to the corresponding ones of the fields \(L \). One should only realize that

\[
L = U \partial U^\dagger \quad D U = 0; \quad D \partial + L;
\]

\(^1\)For a complete derivation of the equivalence between the theories defined by \((1) \) and \((2) \) within the path integral framework, see ref \([4]\).
and then U can be obtained at the point x by parallel transporting its value at spatial infinity, which we x to be equal to the unit matrix3:

$$
U(x) = \text{P} \exp\left[\int_{C_x} \text{d}y \ L(y) \right]; \tag{4}
$$

where P is the path-ordering operator4, and the line-integral in the exponent is over a curve C_x, which is any regular path starting at spatial infinity, and ending at x. Clearly, the condition $F = 0$ guarantees that U is in fact invariant under deformations of C_x which leave its endpoints unchanged. Note that spatial infinity is a unique point, and that its time argument is irrelevant because of the time-independence of the boundary conditions. We can also construct products of two or more fields in a similar way, for example

$$
U(x_2) U^{-1}(x_1) = \text{P} \exp\left[\int_{C_{x_1} \to y} \text{d}y \ L(y) \right]; \tag{5}
$$

where $C_{x_1 \to y}$ is a continuous path from x_1 to x_2. This shows how U field correlation functions can in principle be calculated using only the L field Lagrangian3; one has to evaluate, for example, the Wilson line3 in the theory defined by2. We also see here a qualitative difference between this formulation and the usual one. It will show up whenever the manifold where the fields are defined admits any loop not deformable to a point. In this case, we can write the rhs of3 using two different paths $C_{x_1 \to x_2}$ and $C^0_{x_1 \to x_2}$ in the rhs. As the result should be the same for different paths, we obtain the condition:

$$
\text{P} \exp\left[\int_{\gamma} \text{d}y \ L(y) \right] I = 1 \tag{6}
$$

where $C = C_{x_1 \to x_2} C^0_{x_1 \to x_2}$. This imposes a quantization condition on the L, which can be non-zero even when $F = 0$ locally. The non-trivial topology can appear not only because of some a priori non simply-connected spacetime manifold.

3We identify (as usual) all the points at spatial infinity.

4We identify (as usual) all the points at spatial infinity.
It is also present when we have vortices, as in the U(1) model in 2 Euclidean dimensions. There the manifold has holes at the vortices' centers, because they should be excluded in order to keep the action finite, and also because the spin is ill-defined there. In this case, (6) implies that the flux of each vortex is an integer multiple of 2.

Let us show now how a global symmetry in the polynomial theory can correspond to a topological current in the non-linear theory. The simplest non-trivial example is the U(1) model in 1+1 dimensions; in this case the Lagrangian (4) can be written as

\[L = \frac{1}{2} g^2 L^2 L + \frac{1}{2} g^2 F(L) ; \]

(7)

where we have taken advantage of the fact that in 1+1 dimensions one can write any antisymmetric as \(\frac{i}{2} \), where \(i \) is a pseudoscalar field. Note then that under the global transformation:

\[(x) ! (x) + \]

(8)

where \(i \) is a constant, the corresponding variation in \(L \) is a total derivative:

\[L = 0 ; \quad = g L ; \]

(9)

and it is straightforward to see that the corresponding Noether current and charge are, respectively:

\[J = \frac{g}{2} L ; Q = \frac{1}{2} \int_0^2 \partial_1 x^1 (x^0, x^1) ; \]

(10)

The fact that \(Q \) is a topological invariant is already seen from (10) and \(F = 0 \), because it is the integral over a one dimensional manifold of a closed 1-form (De Rham's theorem, see [4]). If we wish to compare this charge with the usual expression in terms of an (in general multivalued) angle, we realize that \(F = 0 \) is equivalent
to \(L = \frac{1}{g} \theta \) (where \(\theta \) is the angle which determines the direction of the continuum spin, and the \(\frac{1}{g} \) factor is in order to have standard dimensions for \(L \) and \(g \), and so \(\theta \) becomes

\[
Q = \frac{1}{2} \int_{-L}^{+L} \text{d}x^1 \theta_1 (x^0; x^1) = N \tag{11}
\]

where \(N \) clearly measures the winding number of the mappings from the (assumed periodic) space \(S^1 \) to the spin space \(S^1 \). And this result coincides with the usual topological charge of the model, but note that in the standard treatment the topological current is not a Noether current, but must instead be constructed using topological arguments. Its conservation is deduced from the fact that the time evolution is a continuous deformation of the configuration, and the winding number is invariant under such a transformation.

The next example we consider is the group \(SU(2) \) in 3+1 dimensions. The relevant global symmetry transformation is also a transformation of the Lagrange multiplier only:

\[
\theta \rightarrow \theta + \varphi
\]

where \(F^a L \rightarrow \frac{1}{2} \theta F^a L \). Note that again the variation of \(L \) is a total derivative,

\[
L = gF^a F = \theta \tag{13}
\]

The Noether construction implies that \(J \) becomes proportional to the conserved current \(J \), thus

\[
J = (L @ L + \frac{2}{3} L L L) \tag{14}
\]

When this current is evaluated using the constraint equation \(F = 0 \), we can write it in the equivalent forms:

\[
J = L L L
\]
which is the well known topological current of the model. The second expression in (15) was introduced to compare with the usual non-polynomial treatment in terms of U, but of course one already knows from the 1st equation in (15) that Q is a topological invariant, because it is the integral over S^3 of a closed 3-form. In the Skyrme model\footnote{Note that the only modification to write the Skyrme model within the polynomial formulation is to add the stabilization term (a function of L only) to L, which is clearly not affected by the transformation (12), and the full Lagrangian becomes invariant.} it is (proportional to) the baryonic current, and its charge is proportional to the winding number of the mappings from S^3 (space) to S^3 (internal).

We now consider the realisation of the remaining symmetries, associated with the invariance under $SU(N)$ left and right transformations. In the usual formulation, these correspond to left and right multiplication of U by a constant $SU(N)$ matrix \cite{6}. The corresponding Noether currents are

$$ L = U \circ U^1 \quad R = U^1 \circ U; \quad (16) $$

and they are conserved as a consequence of the equations of motion. In the polynomial version, the (infinitesimal) left transformation is realised by the following transformation of the fields:

$$ L(x) = [u; L(x)]; \quad \dot{x} = [u; \dot{x}] \quad (17) $$

where u is a constant matrix of the Lie algebra of the group. Naturally enough, the conserved current due to this symmetry is L, but note that there is no transformation of the fields due to a right transformation. One might have expected this since R is not completely independent of L, but they enjoy the relationships:

$$ R(x) = U(x)L(x)U^1(x) \circ R = U^1 \circ L \ U; \quad (18) $$
and so their conservation is not independent. Anyway, it is desirable to have an expression for \(R \) in terms of the fields of the polynomial formulation alone, because we would like them to provide a complete description of the configurations. This can be done since we know how to write \(U \) (Equation (4)) in terms of \(L \). Using (4) in (13), the desired expression of \(R \) in terms of \(L \) is obtained:

\[
R(x) = P f L(x) \exp \left[\sum_{D_x} \int L(y) \right] g;
\]

where \(D_x \) is now a regular curve which starts at 1, passes through \(x \), and comes back to 1. Note that in this way we have obtained a closed expression for the right current in terms of the left one plus the curve \(D_x \) and the value of \(U \) at infinity. An interesting picture for the manifestation of the chiral symmetry breaking then emerges: although \(L \) and \(R \) are invariant under the right transformations, \(U \) is not, because it depends on the 'vacuum' value of \(U \) at 1 (which we have taken to be 1), and this will change under a right transformation. Clearly \(U \) will enjoy then the same transformation properties as in the usual formulation. Thus, although the original fields in the polynomial formulation do not show the existence of the chiral symmetry breaking, we could construct a non-local function of them plus the vacuum value of \(U \) which does that. Then the complete state of the system is characterized by \(L \) and \(U(1) \) in our picture, and the vacuum is just given by the simultaneous conditions: \(L = 0 \) and \(U(1) = U_0 \), where \(U_0 \) is a constant \(SU(N) \) matrix. Then it cannot be invariant under \(SU(N)_L \) \(SU(N)_R \) and the symmetry is broken down to the diagonal subgroup, as usual.

Particularizing to the case of 1+1 dimensions, and a non-Abelian group, the conserved charges associated to \(L \) and \(R \) are written as:

\[
Q_L = \int_{-1}^{1} dx L_0(x);
Q_R = \frac{x^1}{n!} \left(\frac{1}{1} \right)^n \int_{-1}^{1} dx \int_{-1}^{1} dy_1 \int_{-1}^{1} dy_{n} P \left[L_0(x) L_1(y_1) \cdots L_0(y_n) \right];
\]

(20)
where we have only shown the space arguments, the time arguments being the same for all the fields. Obviously, we have taken here a path D_x which starts at 1, passes through x, and then goes to 1 (which is identified with $+1$). P orders the fields according to their spatial arguments only, since we have chosen a constant-time path. (20) shows that the polynomial description contains non-local charges. In general, there will be an infinite number of different paths, all leading to the same charge, because of the path-independence of U.

We end this paper by proposing two different extensions of the polynomial formulation. The first one is to the case of the so-called $O(2N + 1)$ models, defined by the following Lagrangian and constraint:

$$ L = \frac{1}{2} \frac{\partial^2}{\partial t} \left(\mathbf{x} \right) \mathbf{x} \; ;
\left(\mathbf{x} \right) \mathbf{x} = 1; $$(21)

where \mathbf{x} is a $2N + 1$-component vector and \mathbf{x}^T its transpose. The configuration space thus defined is the sphere S^{2N}, which is not a Lie group, and so the polynomial formulation is not easily implemented. However, remembering that this configuration space is isomorphic to the manifold $SO(2N + 1)$, we can write (\mathbf{x}) as:

$$ (\mathbf{x}) = O(\mathbf{x}) \mathbf{v}; $$

(22)

where $O(\mathbf{x})$ is a $\text{SO}(2N + 1)$ field, and \mathbf{v} is a constant, $2N + 1$ component, normalized vector. It is then easy to rewrite the original Lagrangian (23) as

$$ L = \frac{1}{2} \text{tr}[O^\text{T} \left(\mathbf{x} \right) \mathbf{x}]; $$

(23)

where is the (rank-one) projector:

$$ = \mathbf{v} \mathbf{v} \left(\mathbf{v} \mathbf{v}^\text{T} \right)^2 = 1; $$(24)

\footnote{If the path chosen for the construction of Q_R were not a constant-time one, of course the charge should still be the same (at least on-shell), but an independent proof of its conservation (i.e. not using the path-independence property of U) would be non-trivial, since Q_R would have explicit time-dependence.}
Then the construction applied to the case of SU(N) groups can be used here, with the only difference of having a projector in the 'mass term' for the gauge field.

The nal generalization goes as follows. Let us consider the Lagrangian of Equation (2) for the case of an Abelian group. It describes the dynamics of a 1-form field \(L = L \ dx \) which is a pure gauge: \(F = dL = 0 \); where \(d \) is the exterior derivative operator (we use the notation of ref. [3]). Then (2) can be written as:

\[
L = \frac{1}{2} g^2 (L;L) + g(;dL);
\]

where \((A;B) = \frac{1}{g} A \cdot B^{-1} q \) for any pair of (equal order) form \(sA, B \). Obviously, is a 2-form field. The generalization is then simply to use the Lagrangian (25) for a p-form field \(L \), with \(p > 1 \). Then will be a p+1 form field, because \(d \) increases the order of the form by one. The symmetry of the antisymmetric field appears here as transformation:

\[
! + ! ;
\]

where \(! \) is the adjoint of \(d \) with respect to the scalar product \((;) \). It is easy to see that the equations of motion for (25) imply

\[
dL = 0 \quad L = 0
\]

and then

\[
L = 0 ; = \frac{1}{2} (d + d):
\]

The operator \(L \) is the Laplacian for the p-form field \(L \). Let us apply this procedure to a 2-form field \(L \). The Lagrangian of Eq. (29) reads in this case:

\[
L = \frac{1}{2} g^2 \frac{1}{2!} L \quad + \frac{1}{3!} g \quad F (L);
\]

where

\[
F = @ + @ + @:
\]
The Lagrange multiplier imposes the Bianchi identity on L, and then this can be written as the exterior derivative of some 1-form A; i.e. $L = \partial A \wedge \partial A$; so we see that the theory reduces to the Maxwell Lagrangian for the field A. If we don’t introduce A, we have a first order formulation of the Maxwell theory. We conclude with the construction for this example of the analogue of the Wilson line we considered in Eq. (3). As L is now a 2-form, we can integrate it over a (open) surface S, with boundary ∂S, and exponentiate it:

$$Z(S) = \exp[i \int_S L];$$

(31)

but as $L = \partial A$, we can apply Stokes’ theorem to that integral, and we see that depends only on ∂S:

$$Z(\partial S) = \exp[i \int_{\partial S} A];$$

(32)

The argument leading to the condition (6) can be extended to this case also; we have only to express ∂S as the boundary of two different surfaces, and we get the condition:

$$\exp(i \int_S L) = 1;$$

(33)

where S is the closed surface constructed from the two different open surfaces whose boundary is ∂S, and they are patched at their boundaries. In the case when a single point is excluded from the spacetime manifold, (33) leads to the Dirac quantization condition for the monopole:

$$\exp(i \int_S L) = 2 \text{ integer};$$

(34)

1 Acknowledgements

C.D.F. acknowledges Prof. I.J.R. Aitchison for carefully reading the manuscript.

Clearly the electric charge can be introduced by a redefinition of the field A! eA.

10
References

[1] For early references, see for example: M. Gell-Mann and M. Levy; Nuovo Cimento 16, 705 (1960);
 S. Weinberg; Phys. Rev. 166, 1568 (1968);

