Horizon divergences
of Fields and Strings
in Black Hole backgrounds

J.L.F. Barbon
Joseph Henry Laboratories
Princeton University
Princeton, NJ 08544, USA.
barbon@puhep1.princeton.edu

General arguments based on curved space-time thermodynamics show that any extensive quantity, like the free energy or the entropy of thermal matter, always has a divergent boundary contribution in the presence of event horizons, and this boundary term comes with the Hawking-Bekenstein form. Although the coefficients depend on the particular geometry we show that intensive quantities, like the free energy density, are universal in the vicinity of the horizon. From the point of view of the matter degrees of freedom this divergence is of infrared type rather than ultraviolet, and we use this remark to speculate about the fate of these pathologies in String Theory. Finally we interpret them as instabilities of the Canonical Ensemble with respect to gravitational collapse via the Jeans mechanism.
1. Introduction

The behaviour of quantum fields in black-hole backgrounds is plagued with paradoxes that are commonly viewed as important keys towards a full understanding of Quantum Gravity. They usually hit on non-perturbative or non-linear aspects of gravity which are far beyond the perturbative answers, and very difficult to tackle in short distance modulations like String Theory in its present formulation.

The most famous of such troubles is probably the Hawking information paradox \[1\], according to which it seems impossible to define a unitary S-matrix for scattering processes in the presence of event horizons. This problem has received renewed attention in recent years, specially through the study of two-dimensional toy models \[2\]. In spite of the interesting work done, the whole field is still divided in "schools of thought" regarding this problem, and it seems increasingly evident that some very subtle mechanism is behind this paradox.

In this paper we examine the analytic continuation to imaginary time of the same problem. It was pointed out by 't Hooft \[3\] that the naive canonical ensemble free energy of free fields in the exterior of the Schwarzschild black hole diverges linearly as the radial coordinate approaches the horizon. So, in this case the trouble in defining a reasonable evolution operator appears as a divergence of the trace of the canonical density matrix. In fact, the paradox in the euclidean version is even sharper. While we could get used to live with non-unitary evolution, it seems impossible to accept a divergence in a physical quantity. In this sense, the analogy with the ultraviolet catastrophe of the black body radiation is almost complete.

These horizon divergences are very general, since they follow from simple classical thermodynamical arguments and the Equivalence Principle. Let us consider a system in thermal equilibrium at asymptotic temperature \(T\) in a black-hole background of the form

\[
\text{ds}^2 = g_{00} \text{d}t^2 + h \text{d}x \text{d}x = \left(\frac{\text{d}t}{\sqrt{\text{d}r}}\right)^2 + \frac{1}{r^2} \text{d}r^2 + r^2 \text{d}\Omega^2 \tag{1.1}
\]

The functions \(r\) and \(\text{e}^\chi\) are such that the metric goes to Minkowski space as \(r = 1\) and we have a non-degenerate horizon at finite radial coordinate \(r_0\), i.e. \(r_0\), \(\text{e}^\chi\) with associated Hawking temperature \(T_H = \frac{\hbar}{8\pi g_{00}}\). According to the Equivalence Principle for a system in thermal equilibrium the local temperature times \(\text{e}^\chi\) is constant, and equal to the asymptotic temperature \(T\). So, for the calculation
of any extensive dimensionless quantity like the entropy or F we can divide the system in small boxes such that the metric is locally constant and simply red-shift the local temperature dependences of the at space quantities. For large enough T this gives,

$$Z_F \left(\int_{\mathcal{D}} \mathrm{d}^1 x \frac{p}{\hbar} \frac{T}{g_0} \right)^d$$

(1.2)

and we see the origin of the divergence in the standard red-shift of the tem perature. Even if we arrange for a small local curvature at the horizon the consideration of canonical equilibrium at any finite T leads to in finite energy densities at the horizon. It is useful to rewrite (1.2) in the form

$$F T^{d-1} V_d$$

(1.3)

where V is the so-called optical volume, computed out of the optical metric defined as $\bar{g} = g = (g_0)^4$. This conformally related metric is useful because it allows us to talk about divergences of the optical volume instead of local temperatures. In particular, from (1.3) we expect the boundary in nities to depend mainly on geometrical details of the manifold near the horizon. Indeed, expanding the metric around r_0 we have the estimate,

$$F \frac{A_H^{d-2}}{T_H^{d-1}}$$

(1.4)

where A_H denotes the horizon area. We see that we recover quite generally the Hawking-Bekenstein form with an explicit cut off in proper distance, usually taken of the order of the Planck length (in the two-dimensional case we get a logarithmic divergence). This formula is also true for a thermal ensemble of gravitons, and (1.4) can be viewed as a quantum correction to the Hawking-Gibbons classical term, following from the leading instanton contribution to the Euclidean path integral in the gravitational sector. These boundary terms have the same form as the so-called geometric entropy that results from tracing over degrees of freedom inside certain boundary [3]. On the other hand, there is a growing feeling that one should resist temptation of talking about the "inside" when asking "outside" questions [3][8]. For this reason we will try to discuss these divergences in terms of exterior data only.

In the remainder of this paper we shall state (1.2) in a more detailed way. In the next section we show that a WKB approximation to the canonical ensemble partition sum allows us to calculate the free energy density, which becomes equal to the red-shifted at space result when we approach the horizon. This convinces that the boundary in nity is
governed only by the divergence of the optical volume. From the point of view of the
spectrum of the matter theory, the partition sum divergence looks of infrared type, and
this allows us to speculate that the one loop string free energy is not safe from this disease.
This is interesting in relation to the program outlined by Susskind et al. [3], according to
which perturbative String Theory would play an important role in the resolution of the
horizon problems. Finally, we interpret these divergences as yet another (although more
drastic) instability of the Canonical Ensemble with respect to gravitational collapse.

2. WKB estimates

In this section we prove (1.2) for the case of a scalar field in the exterior of the black
hole (1.1) in the WKB approximation. Our aim is to compute the thermal free energy
density as
\[F = \frac{1}{\log \text{Tr} e^H} = \frac{1}{d^4} \int \frac{d^4 x}{\mathbf{P} - \mathbf{h} \mathbf{f}(;x)} \]
(2.1)

To one loop, after standard Bose oscillator algebra we have:
\[F_{1\text{loop}} = \frac{1}{\int} \log (1 - \mathbf{e}^{! \cdot !}) \]
(2.2)
The sum runs over single particle states of \(H = \int \mathbf{P} ! \mathbf{a}^{\dagger} \mathbf{a} \), the usual normal ordered
Hamiltonian determined by the frequency modes with respect to the Schwarzschild-like
coordinate \(t \),
\[\Theta_t ! = ! \mathbf{e}^{! \cdot !} \]
(2.3)
where \(\mathbf{e} \) solves the generalized Klein-Gordon equation in the space-time \(\mathbf{e} = (1.1) \)
\[(\mathbf{r}^2 \quad m^2 \quad R(x)) Y (\mathbf{r}) = 0 \]
(2.4)

In solving for the energy spectrum it proves convenient to decompose according to the
symmetries in the form
\[n; (x) = \int \frac{1}{2!} f_{n; (x)} \mathbf{e}^{! \cdot n; t} \mathbf{r}^{! \cdot d} \]
(2.5)
Here \(n \) is a radial quantum number and \(\mathbf{e} \) summarizes the angular quantum numbers.
\(Y (\mathbf{r}) \) is a normalized eigenfunction of the angular Laplacian (spherical harmonic in \(d = 4 \)
and integer exponential in \(d = 3 \)). If we further change the radial variable to
\[x = \frac{Z_x r}{g_{rr}} \frac{Z_x}{g_0} \frac{1}{(r)} \]
(2.6)
then the Klein-Gordon inner product has the form

\[h_n; j_n; \delta K_G = \int_{t=\text{const}} Z \left[\frac{1}{2} \right] e^{i\phi} \times \int_{x=0}^{x=\delta} (x)f_n; (x)\delta f_n; (x) \]

where D is the image of the exterior radial domain \((r_0; +1)\) under the mapping (2.6) to a \(\text{\textit{tortoise-like}}\) coordinate system. So the Klein-Gordon inner product is normalized once the \(f^0\)s are \(L^2\) normalized on \(D\). This suggests that, under this change of variables, the equation (2.7) becomes a Schrödinger problem.

\[\frac{1}{2} \frac{d^2}{dx^2} + V(x)f_n; (x) = \frac{i}{2} f_n; (x) \]

where \(V\) is the effective potential:

\[V(x) = \frac{d}{4} \int \left[\frac{0(r)}{r} + \frac{\delta}{2r^2} + \frac{\delta}{2} + m^2 + R(r) \right] \]

Here prime denotes \(d=dr\) and the \(x\)-dependence is implicit via (2.6). \(\lambda\) is the eigenvalue of the angular Laplacian \((l(l+1))\) for \(d=4\) and \(l^2\) for \(d=3\). It turns out that only certain universal features of this eigenvalue problem are important for us. First of all, the new domain \(D\) is non-compact and inside, \(x \in (1; +1)\) and asymptotically \(x\) as \(r \to 1\) but behaves logarithmically near the horizon,

\[r = \frac{e^{2\pi x}}{x_0} \]

so that, in these coordinates, the horizon appears as an open boundary. Second, the asymptotics of the potential are,

\[V(x) \to \frac{m^2}{2} \text{ as } r \to 1 \]

while near the horizon it decreases exponentially,

\[V(x) \to C \frac{e^{2\pi x}}{x_0} \text{ as } r \to r_0 \]

where the constant \(C\) depends on details of the \(\text{\textit{track}}\) and the background. Since we are interested only in the positive definite spectrum, according to (2.8), we obtain continuous spectrum for the \(\text{\textit{track}}\) even if we cut off at large volume putting the system inside a box. If
we regulate the non-compact boundary at the horizon by imposing some Dirichlet condition at \(x = \text{Hoof's brick-wall model} \), the lowest positive eigenvalue goes to zero as we remove this cut-off independently of the mass of our field. Thus from the point of view of the field energy levels \(\lambda_n \), the problem seems of infrared nature.

Since in both asymptotic regions the potential looks at, we expect the WKB approximation to give accurate results. To compute the free energy density we start from the extensive quantity,

\[
F = \frac{1}{\pi} \int X X \log(1 e^{i \theta})
\]

After replacing the radial sum by integrals and integrating by parts we have,

\[
F = X Z \int d! \frac{n}{e^{i \theta} 1}
\]

with \(n \) given by the WKB ansatz:

\[
n(\lambda) \frac{1}{\pi} \int X Z \int dx \frac{e^{i \theta}}{2V(x)}
\]

and the integrals run over the values that keep the argument of the square root positive (under this approximation one can see that the boundary terms in the previous manipulations vanish). Now, since for \(x < 0, V(x) \) is almost independent of \(x \), we may permute the angular sum with the integrals to get,

\[
F = X Z \int p \frac{d!}{e^{i \theta} 1} \int dx \frac{e^{i \theta}}{2V(x)}
\]

where \(V_s(x) \) denotes the s wave potential \((\lambda = 0) \). Next we approximate again the sum by an integral:

\[
X \int p \frac{d^2}{e^{i \theta} 1} \int d x \frac{e^{i \theta}}{2V_s(x)}
\]

For example, \(C_4 = 14 \) and \(C_3 = 143 \). Finally, permuting \(x \) and \(i \) integrals and transforming back to standard exterior coordinates we recognize the free energy density given by the expression,

\[
f_{WKB}(r) = \frac{C_{d} p}{(r_0)^{d+1}} \int_{1}^{2} \frac{dz^2}{2V_s(r)^{d+1}} \int_{1}^{2} \frac{e^2}{1} (2.13)
\]
For the "bulk" contribution, far away from the horizon, we obtain the standard result (with the correct numerical factors),

\[f(r \rightarrow \infty) = C_d, T^d T^d \frac{Z}{m} \left(\frac{z^2}{e^z - 1} \right) \]

and close to the horizon we get a universal expression in the sense that it is independent of the curvature coupling or the mass,

\[f(r \rightarrow r_0) = C_d, T^d T^d \frac{Z}{m} \left(\frac{z^2}{e^z - 1} \right) \]

This formula can be considered as a check of (1.2). The interesting lesson for us is that, when propagating very close to the horizon all fields behave as massless, and possible curvature couplings become irrelevant (for fermions only some numerical factors change, and higher spin or extra quantum numbers like flavor, etc amount simply to an integer prefactor). So, technically, the disease seems to be infrared and this puts into question the regularity of strings under these circumstances. These present a very good ultraviolet behaviour, but their infrared problems are at least as severe as in Field Theory.

There are a few minor changes in this analysis for two interesting particular cases. Namely, Rindler space and the 3d black-hole of Banados et al. [10]. Both spaces fail to approach Minkowski space at large \(r \). In the first case the effective potential grows exponentially at infinity and there is no need for external infrared cutoff (external box). The 3d black-hole approaches anti-De Sitter at long distances and the effective potential grows quadratically with \(r \) unless we consider the tachyon, for which one gets an unstable potential at long distances. However, no modifications arise in these examples for the horizon region.

3. Euclidean Formalism

Before discussing Strings it is useful to obtain, first quantized path integral representations for the Field Theory case. These are defined starting from the Euclidean formalism.

Naively we would write the total free energy as

\[F(\mathcal{A}) = \frac{1}{2} \log \det(D e^{\mathcal{A}}) = \frac{1}{2} \log \det(r_E^2 + m^2 + R) \]

(3.1)
The euclidean action

$$S(\phi) = \frac{1}{2} \int_0^Z d\phi \int_0^Z \mathcal{D}g \left(\frac{r^2}{E} + m^2 + R \right)$$ \hspace{0.5cm} (3.2)$$

is defined on the euclidean section of (1.1)

$$ds^2_E = g_{00} dt^2 + h \ dx \ dx$$ \hspace{0.5cm} (3.3)$$

with periodic identification. Ultraviolet divergences in (3.1) amount to mass renormalization or norm al ordering (subtraction of the zero point energy). However (3.3) leads to a paradox because the eigenvalue problem of the scalar Laplacian in the euclidean manifold (3.3) is perfectly well defined once we impose a radial cut-off at long distances. It seems that there is no room for the infrared divergences discussed in the previous section. This is especially clear for the particular case $\phi = 1=T$, where even the conical singularity at $r = r_0$ is absent. For example, we may think of the 2d euclidean black hole (the cigar metric). If we cut off at large r we have a smooth compact manifold with disc topology in which the Laplacian has discrete eigenvalues without any further Dirichlet condition imposed. Hence we must conclude that our divergent free energies of the previous section are not given by (3.4).

In fact, the resolution of this paradox is both easy and instructive. Let us start from (2.2) and apply some well known algebraic tricks. For example, we can write

$$F(\phi) = \frac{1}{2} \log \left(1 + \exp \left(\frac{1}{2} \ \frac{4 \pi^2 m^2}{2} \right) \right) = \frac{1}{2} \sum_{m,n} \log Y_{m,n} + \frac{1}{2} \sum_{n} X_n \ \ \ \ (3.4)$$

The right hand side of this equation is understood in the sense of zeta function regularization. It has "log det" form after subtraction of the zero point energy (cosmological constant Λ). So, instead of (3.3) we have

$$F(\phi) = \frac{1}{2} \log \det \left(g_{00} \left(\frac{r^2}{E} + m^2 + R \right) \right)$$ \hspace{0.5cm} (3.5)$$

where the differential operator has eigenfunctions,

$$m_{n,\tau} = \frac{\epsilon^2 \ i m}{\tau^2} \ \ f_{n,\tau}(r) Y(\phi) \hspace{0.5cm} (3.6)$$

The difference between (3.1) and (3.5) is simply the g_{00} factor in front ensuring that the "time" component of the eigenvalues is of the form $4 \pi^2 m^2 = \tau^2$. As for the Field Theory
path integral representation, the euclidean action remains the same, but the measure is regularized with respect to the inner product

\[
\hbar \int_{1}^{2} i = \int d^3x \frac{h}{g_{00}} \xi_{1}^{(x)} \xi_{2}^{(x)}
\]

This leads to the formal measure

\[
D \prod x \frac{d \xi(x)}{2} \frac{h}{g_{00}}^{1/4}(x)
\]

Now we can see the origin of the horizon singularities. The euclidean manifold is compact but the inner product (3.7) is ill-defined at the horizon. The modes must oscillate wildly at \(r = r_0 \) if we want (3.7) to be finite. In fact, the spatial section is precisely the Klein-Gordon inner product previously introduced and that, in turn, explains the form of the eigenfunctions in (3.3). On the other hand, in (3.4) the determinant is defined with respect to the generally covariant inner product, with the standard volume element \(d^3x x^P \), which is perfectly regular at \(r = r_0 \).

The first-quantized path integral follows most easily from the expression (3.4). Using the integral representation of the logarithm:

\[
F(x) = \int_{B}^{A} \frac{1}{2} \int_{0}^{1} ds \prod_{m,n} X \xi_{m,n}^{(s)} e^{s(\frac{1}{2} \frac{d^2}{dx^2} \frac{d^2}{dx^2} + 2 V_s(x))}
\]

and recalling (2.3) we have

\[
F(x) = \int_{B}^{A} \frac{1}{2} \int_{0}^{1} ds \prod_{m,n} X \xi_{m,n}^{(s)} e^{s(\frac{d^2}{dx^2} + 2 V_s(x))}
\]

where \(r^2 \) stands for the angular Laplacian and \(V_s(x) \) is the s-wave effective potential.

Now, going to a path integral representation and formally changing variables to \((r; \theta) \) we get,

\[
F(x) = \int_{B}^{A} \frac{1}{2} \int_{0}^{1} ds \prod_{m,n} I \prod_{m,n} X \xi_{m,n}^{(s)} e^{s(\frac{d^2}{dx^2} + 2 V_s(x))}
\]

where the world-line action is

\[
S[x(\cdot)] = \frac{1}{4} \int_{0}^{Z} d \frac{d g}{dx} \frac{d g}{dx} + 2 \int_{0}^{Z} d V_s(r(\cdot))
\]

and the measure \(D \xi(x) \prod_{m,n} X \xi_{m,n}^{(s)} \)

Here \(g = g = g_{00} \) is the (euclidean) optical metric defined in the introduction, and we recover the rule heuristically stated in
The calculation of extensive quantities in the Canonical Ensemble makes use of the optical metric as effective geometry.

Note that, since \(g_{00} = 1 \) the \(- \) dependent part of the path integral is easy to compute by the standard soliton decomposition: \(= m_0 s + \phi^0 + \phi^0 = 0 \). The result agrees with (3.3) after Poisson resummation,

\[
X \quad e^{\frac{2 \phi^2}{4s}} = 2^p s \quad e^{\frac{2 \phi^2}{2s}}
\]

Incidentally, dropping the \(m = 0 \) term in the left hand side amounts to the vacuum energy subtraction, and we can write the expression,

\[
F(\sigma) = Z \quad \frac{ds}{s^2} \quad \frac{X}{m} \quad e^{-\frac{\phi^2}{2s}} (s)
\]

where

\[
(s) = \frac{1}{2} r \quad \frac{sX}{2} \quad e^{-\frac{s^2}{n^2}}
\]

This form is useful in discussing the relation between strings and point particles at this level.

Going back to (3.3) we see that vanishing eigenvalues \(\lambda \) give rise to divergences at large proper times, formally similar to the \(1 \) infrared divergences one encounters in String Theories.

4. Strings

The string analog of (3.10) would be some modular integral of the form

\[
F(\sigma) = Z \quad \frac{d^2}{2} \quad Z_{gh} (\; ; \;) \quad DX \quad e^{\Phi(\sigma)}
\]

where \(F \) denotes the genus one fundamental modular domain: \(= 1 + 1 \), \(1 = 2 \), \(1 = 2 \), \(0 \), \(j > 1 \). \(Z_{gh} \) is the ghost partition function and the sigma model partition function computes the sum over all embeddings of the at torus onto the optical target space with action:

\[
S(\sigma) = \frac{1}{2} Z \quad g \quad \Omega \quad \Omega + T(\sigma) + (X)R^{(2)} + \cdot \cdot \cdot
\]
Here g is the optical metric and we have included a possible dilaton term and a tachyon background such that the field equations of motion reproduce the potential $V_s(r)$.

It is clear that the presence of the tachyon background renders the previous sigma-model path integral as a purely form expression. Tachyon backgrounds are very difficult to handle even at leading order in a low energy expansion (0 expansion). However, at least for the one loop free energy there is a physical recipe that gives the right answer in all those cases that the path integral is computable. Since the one loop them al partition function reduces to counting states with the tree level spectrum as weights, we hope that the them al free energy of a string ensemble equals the sum of the free energies for the els in the string spectrum. This is technically termed as the "analog model" for finite temperature computations, and it is known to give the same answer as the path integral below the Hagedorn temperature [1]. (Above T_{Hag} the partition sum itself does not converge.)

In fact, this result sounds strange at first sight because there are at least two features of the string one loop path integral that seem especially "stringy". Namely, the integration region in moduli space avoids the ultraviolet 2 region by a sort of modular invariant cutoff procedure, and further the string has extra "winding" states without point particle counterpart. Interestingly enough, it turns out that these two features cancel each other provided the integrand over moduli space is modular invariant. In our case [4,1] it is precisely the use of the optical sigma-model what allows us to prove such cancellation, due to the fact that the "tem poral" partition function factorizes as a free scalar eld ($g_{00} = 1$):

$$S(X) = \frac{1}{2} \sum_{\hat{m} \neq 0} \hat{S}_{1} (r; \hat{m})$$

As in the point particle case, the dependent part of the integrand over the moduli space equals the space result to all orders in perturbation theory. For genus one we have,

$$Z(\hat{m}) = \left(\begin{array}{c} \hat{m} \end{array} \right) ^{2} \left(\begin{array}{c} \hat{m} \end{array} \right) ^{1}$$

where $\left(\begin{array}{c} \hat{m} \end{array} \right) ^{n} = \prod_{n=1}^{1} \left(\begin{array}{c} \hat{m} \end{array} \right) ^{n}$ is the Dedekind eta function and is the Riemann theta function coming from the soliton sum,

$$(\begin{array}{c} \hat{m} \end{array} \hat{n}) = \sum_{n=1}^{\infty} e^{2 \pi \hat{m} j \hat{n}}$$
Here \(m \) and \(n \) are winding numbers of the torus homology cycles:

\[
\begin{align*}
I_a & = n, & I_b & = m \\
\end{align*}
\]

As in the point-particle case we can subtract the vacuum energy (here U.V. finite) by constraining \(m,n \neq 0 \) in the winding sum \(s \), and we get,

\[
F(Z) = \frac{d^2}{d^2 s} \sum_{1 \leq s, \ m \neq 0} e^{\frac{s}{2}} X e^{\frac{2}{n} + m} \tag{4.3}
\]

where \((s;\)\) is the integrand of the cosmological constant for the optical sigma model (including the ghost piece). Now, if we assume that \(m\) is modular invariant we can extend the modular integration over \(F \) to the strip \(S: \ 2 > 0 \), by extending the integrand by cosets of the translation subgroup \(! + 1\), using the remarkable identity \((= + is)\).

\[
\begin{align*}
Z_1 & = 2, & Z_{1=2} & = 2, & X & = 2, \\
\end{align*}
\]

Now, on the left-hand side we have a "proper time" integral of the same form as in (3.12). The integral is spectator here, but it enforces the level matching on the right-hand side. Symbolically,

\[
Z_{1=2} = 2, \quad (L, L) \quad \tag{4.4}
\]

and we see that indeed the winding modes act as a modular invariant regulator of the U.V. region. For well-defined models these manipulations require good behaviour of \((\)\), which basically means absence of infrared divergences as \(\ 2 \ 1 \). So, one is led in general to supersymmetric strings, for which a number of complications in handling the spin structures arise, but the general idea of trading the sum over windings by the U.V. region in moduli space remains true. One should note that these tricks require in general \(m \neq 0 \). For example, modular invariant extensions of the cosmological constant as calculated in the analog model are very formal, since the latter is always U.V. divergent in field theory.

Of course we do not have a Conformal Field Theory expression for \((s;\)\) in the optical background, but the fact that we were able to prove the first step towards an analog model version is encouraging. Had we started from the path integral in the physical metric the dependence would not be explicit. Indeed, from the point of view of Statistical Mechanics the analog model provides the definition based on "counting" and hence it can be regarded as more fundamental than the path integral one. So in our case we may take

11
the analog model as a definition and consider the previous comments as heuristic evidence that a path integral representation makes use of the optical background.

An explicit construction of \((\; ; \;)\) along the lines of the analog model for some particular cases might not be completely out of reach. Given the string spectrum for some exact background one should start from the sum of the field free energies and try to apply \((4.4)\) backwards. There are two cases where the basic ingredients are known. One is the two-dimensional black-hole where we have basically one massless field and we may use the "exact" background. In other words, the tachyon wave functions are given in terms of functions over \(Sl(2;R)\) [12], and the harmonic analysis on the group should provide the analogs of the modular covariant Dedekind functions \((\;)\) as building blocks of.

The other case is Rindler space, very interesting from the physical point of view because all horizons look locally like Rindler's. Since Rindler space is a reparametrization of Minkowski space, the appropriate Conformal Field Theory should follow by field reductions from some free field formulation. In particular the point particle world-line action \((3.11)\) has the form,

\[
S_R[x(\;)]=\frac{1}{4} \int \left(\frac{d^2}{d\tau^2} + \frac{d^2}{d\sigma^2} + 4 \frac{d^2}{d\tau d\sigma} + m^2 e^{4T_H x} \right)
\]

i.e., exponential barrier quantum mechanics, which is related to the free case by Backlund transformation. For the string case the optical sigma model is of Liouville type and it is known that the Backlund transformation sends the theory onto a free one. This machinery might be enough to produce a modular invariant one loop free energy for strings in Rindler space starting from the analog model expression as a sum of fields. Such modular invariant formulas are important in order to generalize the answer to higher orders in string perturbation theory.

Yet another possibility is to follow the work of de Vega and Sanchez [13], and start from the light-cone quantization of strings in Rindler space (in space the light-cone computation of the free energy leads directly to the analog model [14]). Interestingly enough, these authors make use of the horizon cut-off in order to regulate the stretching effect of the string as it approaches the horizon.

In any case, independently of the particular way in which these technicalities are worked out, the physics of any string ensemble based on the analog model seems clear. The horizon divergences of each term would add up for the string free energy, at least until
the Hagedorn temperature is reached locally. What happens beyond T_{Hag} is presently a matter of personal taste. If we adopt a Kosterlitz-Thouless scenario for the phase transition [15], the compact coordinate of length is disordered by the vortices and all dependence would disappear (see [16]). Under these circumstances T_{Hag} acts as a maximum temperature because nothing similar to "temperature" seems to remain. In this scenario strings are probably regular at the horizon but it is difficult to state anything more precise. This scenario has the additional problem that it applies to two-dimensional strings which do not really have Hagedorn transition (they are essentially two-dimensional eld theory plus the sporadic \"discrete\" states).

On the other hand, in the Atick-Witten scenario [17], a first order phase transition is triggered by a tachyonic winding mode. It is argued that in the new phase the free energy scales (to all orders in perturbation theory) as

$$F(T) \propto T^2$$

i.e., like in a two-dimensional eld theory. Hence, according to this situation as the local temperature raises above T_{Hag} we switch to the law (4.5) and we get logarithmic horizon divergences in any dimension. It is interesting to remark that (4.5) is compatible with the extension by duality, which again holds in our case thanks to the decoupling of the \"time\" eld in the optical background.

5. Discussion

In this paper we have emphasized the infrared interpretation of horizon divergences in Field Theory. We think that the correct interpretation of these infinities as ultraviolet problems involves considering the full dynamics, including the gravitational alone. In perturbative String Theory the space-time background is fixed and the physics of the divergences seems similar as long as the Hagedorn transition is not reached. Beyond this point the appropriate phase of String Theory is not known and the result depends on the particular scenario we hold. For example, in the Atick-Witten view we would still obtain horizon divergences, although of logarithmic type in any dimension.

However, there are reasons to believe that String perturbation theory alone is not enough to handle these divergences. In fact, it seems that violent processes take place at the horizon once we switch the gravitational back-reaction. First of all, it is well
known that the Canonical Ensemble is ill-defined in the presence of gravity because of the Jeans instability, according to which self-gravitating matter/energy becomes unstable under long wavelength fluctuations for large enough volumes. Nevertheless, a pragmatic attitude would be to consider small enough volumes to be free from the Jeans collapse, but still large enough to be thermodynamical. But this condition is not met in the vicinity of the horizon, due to the infinite blue-shift of local temperatures. The Jeans length is estimated as:

\[l_J = \frac{1}{(G \rho)^{1/2}} \frac{2 \pi}{l_p} \left(\frac{\rho}{g_0} \right)^{3/2} \]

where \(\hbar c \equiv k_b T \) and \(l_p \) is the Planck length. If we adjust room temperature far away from the horizon we have

\[l_J \sim 10^5 \frac{s}{R_s} \text{ cm} \]

where \(s \) is the (small) proper distance to the horizon and \(R_s \) stands for the Schwarzschild radius. So we see that for supermassive black holes we can arrange the Jeans length at the horizon to be \(1 \text{ cm} \). Of course the Hawking temperature of such a black hole would be very small and this is the statement that violent black hole condensation takes place at the boundary between two phases with very different temperatures. If the asymptotic temperature is taken to be the Hawking temperature then the Jeans mechanism occurs at Planckian distances from the horizon.

On top of these effects one could also add the nucleation of Planck size black holes discussed by Gross et al. [18], which also becomes unsuppressed as the temperature approaches Planck value. The main lesson here is that independently of how massive is our black hole (how it is at the horizon) in certain physical situations like thermal equilibrium, the back reaction becomes completely uncontrollable at the horizon. The type of processes involved seem to be rather non-perturbative and this makes unlikely that they are described by String perturbation theory.

It is very amusing to analytically continue these answers back to real time in the context of the information paradox. Here the analog of holding finite temperature at infinity is the constraint of measuring finite energy out states at late times, and the analog of the divergent local temperatures is given by the divergent frequencies needed at intermediate stages in the semi-classical analysis. So, if we admit that the requirement of thermal equilibrium makes the horizon highly unstable even in the semi-classical limit, we would suspect that S-matrix questions make no sense as long as we keep the standard
Penrose diagram for the background. This is strongly reminiscent of recent ideas in [8], who formulate S-matrix problems in Penrose diagrams without horizons. In any case, it seems clear that the instabilities of gravitational thermodynamics are closely related to the information paradox, and this makes the study of two-dimensional almost-solvable models doubly interesting.

6. Acknowledgements

I am indebted to K. Demeter and H. Verlinde for discussions. This work is supported by NSF PHY 90-21984 grant.

7. Note Added

The infrared problem and the subtleties involved in the computation of determinants (section 3) were also noticed in ref. [19], in the context of Schwinger pair production near horizons.
References