The E_2 contribution to the $^8B \! \rightarrow \! p + {}^7Be$ Coulomb dissociation cross section

K. Langanke and T. D. Shoppa

W. K. Kellogg Radiation Laboratory, 106-38
California Institute of Technology, Pasadena, California 91125 USA

(August 15, 2013)

Abstract

We have calculated the E_1 and E_2 contributions to the low-energy $^8B + {}^{208}Pb \! \rightarrow \! p + {}^7Be + {}^{208}Pb$ Coulomb dissociation cross sections using the kinematics of a recent experiment at RIKEN. Using a potential model description of the $^7Be(p; ^8B$ reaction, we find that the E_2 contributions cannot a priori be ignored in the analysis of the data. Its inclusion reduces the extracted $^7Be(p; ^8B$ S-factor at solar energies by about 25%.

PACS numbers: 25.70.Dc, 25.70.Jj, 25.40.Lw
The $^7\text{Be}(p;\gamma\beta$ reaction plays a crucial role in the solar neutrino puzzle, as its rate is directly proportional to the flux of those high-energy neutrinos to which the ^{37}Cl and KamLAND detectors are particularly sensitive [1]. While the energy dependence of the low-energy $^7\text{Be}(p;\gamma\beta$ cross section is believed to be sufficiently well known [2], the absolute cross section at solar energies ($E \approx 20\text{ keV}$) is rather uncertain as the two measurements of the cross section that extend lowest in energy disagree by about 25% in magnitude [3, 4].

The recent availability of radioactive beam facilities offers the possibility of resolving this discrepancy indirectly by measuring the Coulomb dissociation of a ^8B nucleus in the field of a heavy-target nucleus like ^{208}Pb. Performing such an experiment at carefully chosen kinematics to minimize nuclear-interaction effects and assuming the break-up as a one-step process in which a single virtual photon is absorbed, the Coulomb dissociation is the inverse of the radiative capture process [5].

Recently an experiment at RIKEN measured the $^8\text{B} + ^{208}\text{Pb} \to p + ^7\text{Be} + ^{208}\text{Pb}$ dissociation cross section at the high incident energy of 46.5 MeV/u [4]. Using the semi-classical formulas of Ref. [5], the Coulomb dissociation cross section was translated into S-factors for the $^7\text{Be}(p;\gamma\beta$ radiative capture process. From this it was concluded that the $^7\text{Be}(p;\gamma\beta$ S-factor at solar energies is likely to be smaller than 20 eV-b, supporting the lower [4] of the two direct $^7\text{Be}(p;\gamma\beta$ measurements.

In Ref. [5] the Coulomb dissociation was analyzed as a pure E1 break-up process, ignoring possible E2 contributions. This assumption is certainly valid for the radiative capture reaction, in which the E1 cross section is estimated to dominate E2 captures by nearly 3 orders of magnitude at low energies [1]. However, as the number of virtual photons strongly favors E2 transitions, the ratio of E2-to-E1 Coulomb dissociation cross sections (σ_{E2}/σ_{E1}) is significantly different, relatively enhancing the importance of E2 transitions. As has been shown in studies of the $^6\text{Li} + ^{208}\text{Pb} \to D + ^{208}\text{Pb}$ [3], $^7\text{Li} + ^{208}\text{Pb} \to t + ^{208}\text{Pb}$ [3], and $^{16}\text{O} + ^{208}\text{Pb} \to ^{12}\text{C} + ^{208}\text{Pb}$ [13] reactions, this enhancement can amount to more than two orders of magnitude, depending on the kinematics of the break-up process.

In the following we will estimate the E2 contribution to the $^8\text{B} + ^{208}\text{Pb} \to p + ^7\text{Be} + ^{208}\text{Pb}$ reaction.
cross section at the kinematics used in the RIKEN experiment. As in the analysis of Ref. [5], we will use the semi-classical formalism of Baur et al. [6] to connect the break-up cross section to the radiative capture cross section. We adopt the E1 and E2 capture cross sections from the 7Be(p; 7B) potential model calculation of K in et al. [7], which has also served as a theoretical guideline in Ref. [8].

The RIKEN experiment [6] has measured the double differential cross section for the 8B + 208Pb → 7Be + 208Pb Coulomb dissociation reaction as a function of the Rutherford scattering angle \(R \) and the center-of-mass energy in the p + 7Be system, \(E_{17} \). One has [5]

\[
\frac{d^2 \sigma}{d R dE_{17}} = \sum_{J_f} \frac{Z_{PB} \, a}{\hbar \nu_f} \, a^2 \, b \, (E_{17} ; J_f) \, \frac{d \sigma_{PB}(R ; J_f)}{d R} ;
\]

where

\[
a = \frac{Z_B \, Z_{PB} \, \rho^2}{\nu_f} ;
\]

is the half-distance of closest approach and

\[
\frac{1}{\nu_f} = \frac{1}{\nu_i} \cdot \left(\frac{1}{\nu_i} + \frac{1}{\nu_f} \right) ;
\]

is the adiabaticity parameter. Here, \(\nu_i, \nu_f \) denote the relative velocities between projectile and target in the initial and final channels, while \(Z_k \) is the atomic number of the fragment \(k \). The reduced mass \(\mu \) is defined between the 8B and the 208Pb nuclei. The quantity \(\frac{d \sigma_{PB}(R ; J_f)}{d R} \) can be calculated in the straight-line approximation from the formulae given in Ref. [11].

Finally, the B(E1) matrix elements are related to the respective partial \(^7\text{Be}(p; 7\text{B}) \) cross sections via

\[
\begin{aligned}
\sum_{J_f} J_f & \langle p + 7\text{Be} \mid 8\text{B} \rangle = \\
\frac{16}{[(2 J_f + 1)!!]} \frac{3(+ 1)}{\hbar c} \frac{E}{2 \, 17E_{17} B(E_{17} ; J_f)} \frac{h^2}{2} & \frac{h^2}{2 \, 17E_{17} B(E_{17} ; J_f)} ;
\end{aligned}
\]

where \(J_i, J_f \) are the total angular momenta of the initial and final states in the Coulomb dissociation reaction, \(E_{17} \) is the reduced mass of the \(p + 7\text{Be} \) system, and \(E \) denotes the
photon energy. We have calculated the B(E) matrix elements from the partial 7Be(p; 9B E1 and E2 cross sections as given in Ref. [1]. This E1 cross section agrees well with the measured 7Be(p; 9B data. Due to the lack of better experimental constraints, the initial scattering states for the E2 cross section have been calculated by using the same l-independent radial optical potential fitted to the M1 resonance at 633 keV. It should be noted that the E2 cross section is not tested directly against experimental data and might thus be viewed as somewhat uncertain. Nevertheless the potential model estimate given in Ref. [1] is probably accurate enough to determine whether E2 contributions can be ignored in the 8B + 208Pb → p + 7Be + 208Pb cross sections.

The authors of Ref. [1] have studied the 8B + 208Pb → p + 7Be + 208Pb reaction at various relative energies E_{17} between 600 keV and about 2 MeV and at Rutherford scattering angles R. In Fig. 1 we show the ratio of virtual photon numbers for E2 and E1 transitions in the 8B + 208Pb → p + 7Be + 208Pb reaction covering the experimental energy range and at some typical R-values. We observe that the E2=E1 enhancement increases with angles, while it decreases with relative energy. While the enhancement is smaller than 100 at all experimentally relevant energies at the smallest angles data have been taken, it already amounts to more than 100 at $R = 2$ for the astrophysically important energy range $E_{17} = 1$ MeV. Considering that the ratio of partial E1 to E2 7Be(p; 9B cross sections is estimated [1] to be less than about a factor 1000, we expect that the E2 contribution to the 8B + 208Pb → p + 7Be + 208Pb cross section cannot be ignored at angles $R = 4$ and energies $E_{17} = 1$ MeV. This conjecture is confirmed in Fig. 1 where we have plotted ($\alpha_{E2} = \alpha_{E1}$). The maximum of this ratio at around $E_{17} = 633$ keV is related to the lowest 1$^+$ resonance in 8B. The main electromagnetic decay of this state is by M1 transition to the 8B ground state with $J = 2^+$. While an E1 Coulomb excitation of this resonance is forbidden by parity, an E2 excitation is allowed leading to a particularly large E2 contribution around the resonance energy. With the partial E1 and E2 cross sections of Ref. [1], one finds that the E2 process dominates the total 8B + 208Pb → p + 7Be + 208Pb cross section at angles $R = 4$.

Despite possible uncertainties in the potential model calculation, the E2 contribution
will contribute significantly to the total Coulomb break-up cross section in the vicinity of the resonance and has to be taken into account in the data analysis. A precise measurement of the Coulomb dissociation cross section at the resonance energy and at angles $\theta > 2$ will determine the strength of the partial E_2 capture cross section at this energy and thus place an important constraint on the theoretical modeling of this cross section. Of course, it would be desirable to measure the triple-differential Coulomb dissociation cross section
\[\frac{d^3\rho}{d\Omega_{17}dE_{17}} \]
where Ω_{17} denotes the angle between the proton and the ^7Be nucleus out of the scattering plane. This quantity is sensitive to the interference of E_1 and E_2 Coulomb break-up transitions [12].

In Ref. [3] the $^7\text{Be}(p; \ ^8\text{B})$ S-factors at different relative energies (binned into intervals of 200 keV width) have been determined by fitting the double-differential $^8\text{B} + ^{208}\text{Pb} \rightarrow ^7\text{Be} + ^{208}\text{Pb}$ yield as a function of Rutherford scattering angle (binned into intervals of width 1 degree). As mentioned above, only E_1 Coulomb break-up has been considered. We will now discuss how significantly E_2 break-up might contribute to the data of Ref. [3]. As we do not know the detector efficiency function, a direct calculation of the yields is not possible. Assuming that the detector efficiency is the same for E_1 and E_2 contributions, we take the yield curves in Fig. 2 of Ref. [3] and multiply by $(\rho_{E_1} + \rho_{E_2}) = \rho_{E_1}$. Here we have averaged the cross sections over the same angular and energy bins as in Ref. [3]. We find that the ratio is rather robust against this averaging. The relative importance of the E_2 contribution can be seen as the difference between the dashed ($E_1 + E_2$) and dotted (E_1) curves in Fig. 2. As expected, E_2 Coulomb break-up is most important at the energy interval centered around $E_{17} = 0.6$ MeV, which covers the 1^+ resonance at 633 keV. Here we find a noticeable change of the yield curve in both magnitude and shape. At the higher energies, the effect of the E_2 break-up is less pronounced than at the resonance energy leading to no significant change in the yield pattern.

As the E_1 and E_2 break-up parts add in the double-differential cross section (1), the presence of the E_2 component in the data will reduce the partial E_1 cross section compared to the one deduced in Ref. [3], which ignored possible E_2 contributions. We have fitted...
the data of Ref. [6] to our (E1 + E2) yield curves by multiplying the calculated yields with a parameter (E17) which has been determined by 2-m minimization. As our yields are normalized to the E1 yields of Ref. [6], the partial E1 7Be(p; 7B S-factor extracted from the data scales by the same parameter. We find that at the resonance (E17 = 0.6 MeV) the data agree noticeably better with our (E1 + E2) yield curve than with a pure E1 pattern (Fig. 2); the 2 between the two tests is reduced by 30%. Thus, the experimental data at this energy show the presence of the 1" resonance. We obtain a best-fit value of (0.6) = 0.66 0.08. At the two other energies our t procedure results in (0.8) = 0.82 0.16 and (1.0) = 0.77 0.17, while the 2-values are about the same for pure E1 and our (E1 + E2) yields pattern. The values of the parameter (E17) translates into the partial E1 7Be(p; 7B S-factors of 11.2 1 eV-b, 11.5 2.5 eV-b, and 12.3 3 eV-b at E17 = 0.6, 0.8, and 1.0 MeV, respectively. Using the rather reliably known energy dependence of the 7Be(p; 7B S-factor [7,13], these values extrapolate to S (20 keV) = 12 3 eV-b. This value is about 25% smaller than the S-factor derived from the same data in Ref. [4], and it is only 55% (62%) of the S-factor adopted in the most recent version of Bahcall's [14] (Turck-Chieze's [15]) Standard Solar Model. We note that such a low value of S (20 keV) brings the predicted flux of high-energy neutrinos in agreement with the observation of Kamionkande III [16]. Thus, it is obviously very important to determine the role the E2 Coulomb break-up plays in the 8B + 208Pb ! p + 7Be + 208Pb dissociation process at low energies.

The S-factor extracted here from the 8B + 208Pb ! p + 7Be + 208Pb data is noticeably smaller and inhomogeneous (within 2 standard deviations) with the one recently derived from the various direct measurements of the 7Be(p; 7B reaction [3]. As it is important to resolve this apparent difference between the two methods, a precise direct capture experiment at one energy to pin down the overall normalization of the direct capture results is highly desirable. A confirmation of the Coulomb dissociation data and a verification of its assumed relation to the capture cross section is also desirable.

In summary, we have shown that the E2 component in the 8B + 208Pb ! p + 7Be + 208Pb break-up can have a sizeable effect at low energies, in contrast to the assumption of a previous
analysis of $^6\text{B} + ^{208}\text{Pb}$ → $^7\text{Be} + ^{208}\text{Pb}$ data, which ignored the E\,2 contributions [6]. If our conjecture is confirmed, the data of Ref. [6] result in a $^7\text{Be}(p; ^9\text{B})$ S-factor at solar energies of 12 3 eV\,-\,b. This value is noticeably smaller than the S-factors obtained in direct capture measurements [8,9] and, if correct, will obviously have important consequences for the understanding of the solar neutrino puzzle. Our present estimate for the E\,2 cross section is based on a simple potential model and clearly calls for an improved treatment. A more reliable microscopic calculation based on the framework of the multichannel resonating group model is currently in progress [17]. However, due to its potential importance for the solar neutrino problem, an experimental determination of the E\,2 contribution is indispensable. This can be done by measuring the triple-differential cross section $\frac{d^3\sigma}{d^2p_1dp_2}$, which is sensitive to the interference of E\,1 and E\,2 components and should show sizeable effects of the E\,2 break-up amplitudes, even if it is somewhat smaller than estimated in the presently adopted potential model.

ACKNOWLEDGMENTS

The authors thank B. W. Filipponi and S. E. Koonin for helpful comments on the manuscript. This work has been supported in part by the National Science Foundation (Grants No. PHY 90-13248 and PHY 91-15574).
REFERENCES

FIGURES

FIG. 1. E_2/E_1 ratio of virtual photon numbers (upper panel) and of partial double differential cross sections (lower panel) for the $^8B + ^{208}Pb \rightarrow p + ^7Be + ^{208}Pb$ break-up process as a function of energy E_{17} and for various Rutherford angles.

FIG. 2. Comparison of the E_1 (dotted curve) to the total $E_1 + E_2$ (dashed curve) Coulomb dissociation yield as a function of the Rutherford angle at three different energies E_{17}. The data and the E_1 contributions are from Ref. [6]. The solid curve shows the best-fit to the data, including E_1 and E_2 contributions, as described in the text.
This figure "fig1-1.png" is available in "png" format from:

http://arxiv.org/ps/nucl-th/9402003v1
This figure "fig1-2.png" is available in "png" format from:

http://arxiv.org/ps/nucl-th/9402003v1