Duality for $SU \quad SO$ and $SU \quad Sp$ via Branes

Esperanza Lopez and Barbara Ormsby

Institut für theoretische Physik, TU Wien
Wiedner Hauptstraße 8-10
A-1040 Wien, Austria
elopez@tph16.tuwien.ac.at
bhackl@tph16.tuwien.ac.at

Using a six-orientifold, fourbranes and four vebranes in type IIA string theory we construct $N = 1$ supersymmetric gauge theories in four dimensions with product group $SU(M) \quad SO(N)$ or $SU(M) \quad Sp(2N)$, a bifundamental flavor and quarks. We obtain the Seiberg dual for these theories and rederive it via branes. To obtain the complete dual group via branes we have to add semi-infinite fourbranes. We propose that the theory derived from branes has a meson deformation switched on. This deformation implies higgsing in the dual theory. The addition of the semi-infinite fourbranes compensates this effect.
1 Introduction

Dirichlet branes have proved to be an extremely useful tool for obtaining non-perturbative information about gauge theories. A variety of brane constructions are available, which allow to induce a wide spectrum of gauge theories in the world-volume of the Dirichlet branes. We will be interested in configurations of Dirichlet fourbranes ending on Neveu-Schwarz vebranes in Type IIA string theory. These configurations can be organized such that some supersymmetry is preserved \[1\]. When all the vebranes are parallel, 1-4 of the initial supersymmetries survives and the theory describing the low energy effective action on the branes is an $N = 2$ four-dimensional gauge theory. One can reduce further to $N = 1$ by rotating the vebranes in the orthogonal directions an SU (2) angle \[2\]. Quantum corrections can be incorporated in this picture by lifting the brane configuration to M-theory \[3\]. Then the singular intersections of vebranes and fourbranes are smoothed out and we obtain a single M-vebrane wrapped around a Riemann surface with four uncompact world-volume dimensions. For configurations preserving 1/4 of the supersymmetry this Riemann surface coincides with the Seiberg-Witten curve describing the Coulomb branch of $N = 2$ gauge theories \[4\]. Even in the Type IIA framework, the brane construction of gauge theories allows to derive very non-trivial information. The Seiberg dual of a given $N = 1$ gauge theory \[5\] can be obtained from certain brane moves \[6\].

We will derive the Seiberg dual for an $N = 1$ $SU(M)$ $SO(N)$ or $SU(M)$ $Sp(2N)$ gauge theory with a bifundamental flavor and quarks. This case has not yet been analyzed. We will obtain the dual theory by edd theory considerations and then by brane moves. This case offers a nice check for the brane approach to gauge theories. In order to obtain many of the known dual pairs, a superpotential must be added to the electric theory which truncates the set of chiral operators. On the other hand, the only possible obstruction to perform the mentioned brane moves is when we have to cross parallel branes. We will in our case a one to one correspondence between configurations with several parallel branes and situations in which the superpotential does not truncate the chiral ring. This will be the subject of sections 2 and 3.

In \[7\] the Seiberg dual for an $SU(N_1)$ $SU(N_2)$ $SU(N_3)$ was rederived via branes. They observed that branes predicted a smaller dual group. However the mismatch could be cured by adding a number of fourbranes to the dual configuration without modifying the linking numbers. We will encounter a similar problem. We will propose that the addition of fourbranes can be understood as a reverse of higgsing. In section 4 we will nd a deformation of the electric theory which higgses the dual magnetic theory to the result derived from branes. We justify why such a deformation should be switched on by analyzing brane moves which correspond to dualize a single factor group. We treat in detail the case $SU(M)$ $SO(N)$ and in section 5 extend brie y
2 Brane Configuration

Our next ingredient is an orientifold sixplane extending in the \((x_0;x_1;x_2;x_3; x_7;x_8;x_9)\) directions. Thus the brane configurations which we will consider must be \(Z_2\) symmetric in the \((x_4;x_5;x_6)\) directions. We will use four NS-vebranes with world-volume along \((x_0;x_1;x_2;x_3; x_4;x_5)\) and four branes suspended between them expanding in \((x_0;x_1;x_2;x_3)\) and with finite extent in the \(x_6\) direction. In order to obtain gauge theories with \(N = 1\) supersymmetry in the macroscopic dimensions of the fourbranes, we rotate the \(N = 1\) NS-vebranes an \(SU(2)\) angle from \((x_4;x_5)\) towards \((x_8;x_9)\). The leftmost vebrane A will be tilted at an angle \(\theta_2\), the interior vebrane B at an angle \(\theta_1\). We place \(M\) fourbranes between the A and B vebranes and \(N\) fourbranes between B and its mirror C. In addition there will be \(F\) sixbranes parallel to the A vebrane and \(G\) sixbranes parallel to the B vebrane in the \((x_0;x_1;x_2;x_3;x_7)\) space and extending in \((x_0;x_1;x_2;x_3;x_7)\). The rest of the configuration is determined by the \(Z_2\) action of the orientifold (see Fig. 1).

For an orientifold sixplane of positive Ramond charge, this configuration gives rise to an \(N = 1\) gauge theory with product group \(SU(M) \times SO(N)\) and the following matter content: fields \(X\) and \(\phi\) forming a \(\text{bifundamental representation,} \quad F\) flavors \(Q, \phi\) transforming in the fundamental representation of \(SU(M)\) and \(2G\) chiral fields \(Q^0\) in the vector representation of \(SO(N)\). For an orientifold sixplane of negative Ramond charge we obtain a gauge theory with group \(SU(M) \times Sp(2N)\) and the same matter content. We will concentrate on the product group \(SU(M) \times SO(N)\). The analysis of \(SU(M) \times Sp(2N)\)

![Figure 1: The brane configuration corresponding to an N = 1 SU(M) SO(N) theory.](image)
will be very similar and we will just make some remarks referring to it in section 5.

We want to determine the superpotential associated to our gauge theory. A convenient approach is to take as reference the superpotential for a brane configuration with additional massless tensor matter, add the mass term for the tensor fields implied by the 5-brane rotation and integrate out this field. We will do the analysis separately for the tensor fields coming from the SU(M) and SO(N) sectors. The fourbranes suspended between the A and B vebranes give rise to the SU(M) factor group. When \(\theta = 2 \) there is an additional massless SU(M) adjoint field, whose expectation values move along the world-volume of the vebranes. For arbitrary angles the superpotential for the SU sector will be \(W = H^2 + \frac{1}{M} (T X H H)^2 \).

Integrating out we get a superpotential

\[
W_{SU} = \frac{1}{4 \tan (\frac{\theta}{2})} \text{Tr}(X H H)^2 + \frac{1}{M} (T X H H)^2 ;
\]

(1)

Fourbranes between the B and the C vebranes give rise to the SO(N) factor group. When \(\theta = 0 \) we have an additional massless chiral field in the adjoint representation, \(A \). When \(\theta = 2 \) the B vebrane and its dual are also parallel and we get additional massless matter, transforming this time in the symmetric representation of SO(N), \(S \).

The bifundamental field couples to both \(A \) and \(S \), which for arbitrary \(\theta \) are massive. The associated superpotential for the SO sector is

\[
W = X^A H + X^S H + \text{Tr}_1^2 \frac{1}{4 \tan (\frac{\theta}{2})} \text{Tr}(X H H)^2 ;
\]

(2)

where \(\tan (\frac{\theta}{2}) = 0 \). Since the 2G SO(N) chiral vector fields come from sixbranes parallel to the vebranes, we will again suppose that there is no coupling between them and \(A \), \(S \). We will present a more careful discussion of this point in section 4. Integrating out both tensor fields we get

\[
W_{SO} = \frac{1}{4 \tan (\frac{\theta}{2})} \text{Tr}(X H H)^2 + \frac{1}{4 \sin (\frac{\theta}{2})} \text{Tr}(X H H)^2 ;
\]

(3)

The full answer for the superpotential is then

\[
W = W_{SU} + W_{SO} = a \text{Tr}(X H H)^2 + b \text{Tr}(X H H)^2 + c (T X H H)^2 ;
\]

(4)

where

\[
a = \frac{1}{4} \left(\frac{1}{\tan (\frac{\theta}{2})} + \frac{1}{\tan (\frac{\theta}{2})} \right) ; \quad b = \frac{1}{4 \sin (\frac{\theta}{2})} ; \quad c = \frac{1}{4M \tan (\frac{\theta}{2})} ;
\]

(5)

\[1\text{The mass for } S \text{ is } \tan (\frac{\theta}{2}) = 1 = 0.\]
Using the F-term equations for the superpotential

\[
\begin{align*}
ax \bar{x} x + bx \bar{x} x + cx \text{ Tr} x \bar{x} & = 0; \\
ax \bar{x} x & = 0;
\end{align*}
\] (6)

we can deduce the chiral mesons of the theory. For generic values of the coefficients \(a\) and \(b\) we get: \(M = Q \varnothing, M_1 = Q \bar{x} x \varnothing, M_2 = Q \bar{x} x x \varnothing, M_0 = Q \bar{Q} \varnothing, M_1 = Q \bar{x} x \bar{Q} \varnothing, M_2 = Q \bar{x} x x \bar{Q} \varnothing, P_0 = Q \bar{x} \bar{Q} \varnothing, P_1 = Q \bar{x} x \bar{Q} \varnothing, P_2 = Q \varnothing x \varnothing, P_1 = Q \varnothing x x \varnothing.\) For particular values of \(a\) and \(b\) the F-term equations can fail to truncate the chiral mesons to a finite set. This situation occurs when \(a = 0\); then mesons containing \((\bar{x} x)^k\) are allowed for any \(k\). Using (3) this corresponds to \(i = 2\), i.e., when the A and C vebranes are parallel. In order to discard mesons containing the combination \(\bar{x} x x \bar{x} x\) it was necessary to use

\[
(a^2 - b^2)\bar{x} x x \bar{x} x = c(b \sqrt{a})\bar{x} x \text{ Tr} \bar{x} x; \tag{7}
\]

which can be easily deduced from the F-term equations. Analogous relations hold for \(\bar{x} x x \bar{x} x, x \bar{x} x \bar{x} x\) and \(x x \bar{x} x\). These relations are trivial identities when \(a = b\). When \(a = b\) they simply imply that the product of some mesons with \(\text{Tr} x \bar{x} x\) is not a chiral primary. From (5), \(a = b\) implies \(i = 2\) and \(a = b\) implies \(i = 2\). These two situations correspond to the leftmost vebrane A and its mirror D being parallel. When the A and B vebranes are parallel, or B and C are parallel, we get additional tensor fields becoming massless and the set of chiral mesons also changes. Thus the stated set of chiral mesons is only valid when there are no parallel vebranes.

In the next sections we will be interested in obtaining the Seiberg dual for our \(N = 1\) \(SU(M) \times SO(N)\) theory. We will derive it first from the theory methods and then from brane moves. The brane theory derivation will be valid only when the set of chiral mesons is that stated above. On the other hand, the brane moves necessary to recover the dual theory will involve reversing the order of all vebranes and sixbranes and this process is only well-defined when there are no parallel vebranes in our configuration. Notice that in our set-up parallel vebranes in piled sixbranes parallel to more than one vebrane. Since the derived nine set of chiral mesons is valid if and only if there are no parallel vebranes, we have an additional check for the validity of the brane derivation of Seiberg dualities.

The anomaly-free global symmetry group of our theory is

\[
\begin{align*}
SU(F)_L & \quad SU(F)_R \quad SU(2G) \quad U(1)_R \quad U(1)_B \quad U(1)_Y
\end{align*}
\] (8)

The brane diagram of Fig. 4 does not exhibit the full \(SU(2G)\) anomaly symmetry. By bringing sixbranes over vebranes we could obtain at most \(SU(G)\) \(\times SU(G)\). However (4) is the global symmetry group for the superpotential (1) and thus it is the group we should consider in deriving the Seiberg dual
theory. Another restriction of the brane construction is that we always get an even number of SO vectors, 2G. The results of next section are valid for the general case where the SO factor has G0 vectors just by substituting 2G by G0. The transformation properties of the matter fields under the gauge and global symmetry groups are summarized in Table 3.

<table>
<thead>
<tr>
<th>SU (N)</th>
<th>SO (F)</th>
<th>SU (F)</th>
<th>SU (2G)</th>
<th>U (1)</th>
<th>U (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>M</td>
<td>1</td>
<td>F</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Φ</td>
<td>M</td>
<td>1</td>
<td>1</td>
<td>F</td>
<td>1</td>
</tr>
<tr>
<td>Q0</td>
<td>1</td>
<td>N</td>
<td>1</td>
<td>1</td>
<td>2G</td>
</tr>
<tr>
<td>X</td>
<td>M</td>
<td>N</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Φ</td>
<td>M</td>
<td>N</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 1: Matter content of the electric theory.

3 Dual Theory

We propose that the dual theory has gauge group $SU(F) \times SO(\Phi)$ with $F = 4G + 4$ and $\Phi = 8G + 4F$ + N + 8. The matter content is given by fields Y and Φ forming a four-index bispinor in the bifundamental representation, $F = \Phi$ transforming in the fundamental representation of $SU(F)$ and $2G = \Phi$ transforming in the vector representation of $SO(\Phi)$. In addition there will be singlets M_i, M_0 with $i = 0, 1, 2, P_j, P_0$ with $j = 0, 1$ and R_1, R_0 in one to one correspondence with the chiral mesons of the electric theory. The matter fields transform under the symmetries as indicated in Table 3.

The dual superpotential is

$$W = Tr(Y \Phi) + Tr(Y \Phi Y + (Tr Y \Phi)^2 + M_0 \Phi(Y \Phi Y)^2 + M_1 \Phi \Phi Y \Phi Y$$

$$+ M_2 \Phi Y \Phi Y + M_0 \Phi \Phi Y \Phi Y \Phi Y + M_1 Q \Phi \Phi Q \Phi Q + M_2 Q \Phi Q \Phi Q$$

$$+ P_1 \Phi Q \Phi Q + P_0 \Phi \Phi Y \Phi Y + P_1 \Phi \Phi Y \Phi Y + R_1 \Phi \Phi Y \Phi Y$$

(9)

where for simplicity we have ignored (dimensionful) coefficients in front of each term.

The usual test for the duality ansatz are the t'Hooft anomaly matching conditions for the global symmetry group. The anomalous couplings with the fermions of the electric theory must match those computed with the fermions of the magnetic theory. Indeed we find for both theories
Table 2: Matter content of the magnetic theory.

<table>
<thead>
<tr>
<th>q</th>
<th>SU (F)</th>
<th>SO (F)</th>
<th>SU (F) _L</th>
<th>SU (F) _R</th>
<th>SU (2G)</th>
<th>U (1) _R</th>
<th>U (1) _B</th>
<th>U (1) _X</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>(\bar{\phi}^{})</td>
<td>1</td>
<td>(F)</td>
<td>1</td>
<td>1</td>
<td>(\bar{\phi} + M \frac{2\phi}{F})</td>
<td>(\bar{\phi} + M \frac{2\phi}{F})</td>
<td>(\bar{\phi} + M \frac{2\phi}{F})</td>
</tr>
<tr>
<td>q'</td>
<td>(\bar{\phi}^{})</td>
<td>1</td>
<td>1</td>
<td>(\bar{F})</td>
<td>1</td>
<td>(\bar{\phi} + M \frac{2\phi}{F})</td>
<td>(\bar{\phi} + M \frac{2\phi}{F})</td>
<td>(\bar{\phi} + M \frac{2\phi}{F})</td>
</tr>
<tr>
<td>(q^0)</td>
<td>1</td>
<td>(\mathbb{M})</td>
<td>1</td>
<td>(\bar{F})</td>
<td>(\frac{2\phi}{F})</td>
<td>(\bar{\phi} + M \frac{2\phi}{F})</td>
<td>(\bar{\phi} + M \frac{2\phi}{F})</td>
<td>(\bar{\phi} + M \frac{2\phi}{F})</td>
</tr>
<tr>
<td>M _0</td>
<td>1</td>
<td>1</td>
<td>F</td>
<td>F</td>
<td>1</td>
<td>(2 + \frac{2\phi}{F})</td>
<td>(2 + \frac{2\phi}{F})</td>
<td>(2 + \frac{2\phi}{F})</td>
</tr>
<tr>
<td>M _1</td>
<td>1</td>
<td>1</td>
<td>F</td>
<td>F</td>
<td>1</td>
<td>(2 + \frac{2\phi}{F})</td>
<td>(2 + \frac{2\phi}{F})</td>
<td>(2 + \frac{2\phi}{F})</td>
</tr>
<tr>
<td>M _2</td>
<td>1</td>
<td>1</td>
<td>F</td>
<td>F</td>
<td>1</td>
<td>(2 + \frac{2\phi}{F})</td>
<td>(2 + \frac{2\phi}{F})</td>
<td>(2 + \frac{2\phi}{F})</td>
</tr>
<tr>
<td>M _0 _0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>sym</td>
<td>(2 + \frac{2\phi}{F})</td>
<td>(2 + \frac{2\phi}{F})</td>
<td>(2 + \frac{2\phi}{F})</td>
</tr>
<tr>
<td>M _0 _1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>sym</td>
<td>(2 + \frac{2\phi}{F})</td>
<td>(2 + \frac{2\phi}{F})</td>
<td>(2 + \frac{2\phi}{F})</td>
</tr>
<tr>
<td>M _0 _2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>sym</td>
<td>(2 + \frac{2\phi}{F})</td>
<td>(2 + \frac{2\phi}{F})</td>
<td>(2 + \frac{2\phi}{F})</td>
</tr>
<tr>
<td>P _0</td>
<td>1</td>
<td>1</td>
<td>F</td>
<td>1</td>
<td>2G</td>
<td>(\frac{3}{2} + \frac{2\phi}{F})</td>
<td>(\frac{3}{2} + \frac{2\phi}{F})</td>
<td>(\frac{3}{2} + \frac{2\phi}{F})</td>
</tr>
<tr>
<td>P _1</td>
<td>1</td>
<td>1</td>
<td>F</td>
<td>1</td>
<td>2G</td>
<td>(\frac{3}{2} + \frac{2\phi}{F})</td>
<td>(\frac{3}{2} + \frac{2\phi}{F})</td>
<td>(\frac{3}{2} + \frac{2\phi}{F})</td>
</tr>
<tr>
<td>R _0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>F</td>
<td>2G</td>
<td>(\frac{3}{2} + \frac{2\phi}{F})</td>
<td>(\frac{3}{2} + \frac{2\phi}{F})</td>
<td>(\frac{3}{2} + \frac{2\phi}{F})</td>
</tr>
<tr>
<td>R _1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>F</td>
<td>2G</td>
<td>(\frac{3}{2} + \frac{2\phi}{F})</td>
<td>(\frac{3}{2} + \frac{2\phi}{F})</td>
<td>(\frac{3}{2} + \frac{2\phi}{F})</td>
</tr>
</tbody>
</table>

\[
U(1)_R \quad M^2 + MN \quad \frac{N^2}{2} + \frac{3N}{2} + 1 \\
U(1)_R^3 \quad 2M \quad (\frac{2M}{2F})^3 \quad 2G \quad N \left(\frac{N-M^2}{2G}\right)^3 \quad \frac{1}{4}M \quad N \\
+ M^2 \quad 1 + \frac{N \left(\frac{N}{2}-1\right)}{2} \\
SU(F)^3 \quad M \quad d_3(F) \\
SU(F)^2 U(1)_R \quad M \quad \frac{2N}{2F} \quad d_2(F) \\
SU(F)^2 U(1)_B \quad d_2(F) \\
SU(F)^2 U(1)_X \quad 0 \\
SU(2G)^3 \quad N \quad d_3(2G)
\]
SU(2G) U(1)_k

U(1)_k^2 U(1)_k

U(1)_k^2 U(1)_k

U(1)_k^2 U(1)_k

where \(d_3(F) \) and \(d_2(F) \) are the cubic and quadratic SU(F) Casimirs of the fundamental representation. It is interesting to observe that the dual theory for SU(M) SO(N) has much higher rank than the dual of an SU(M) SU(N) theory with analogous matter content [10].

4 Brane moves

The electric brane configuration is shown in Fig. 1. To find the dual theory, we reverse the order of the sixbranes as well as the vebranes using the linking number conservation argument given in [1]. The orientifold plane is treated according to its Ramond charge, i.e. as a set of four sixbranes. With these rules we get the configuration shown in Fig. 2. We obtain a gauge group SU(M^0) SO(N^0) with \(M^0 = 4F + 2G \) and \(N^0 = 4G + 4F \) which does not coincide with that derived in the previous section. This mismatch can be cured by adding 4G full fourbranes to the dual configuration as shown in Fig. 3. This does not affect the linking numbers. An analogous problem was encountered in [1] when deriving the Seiberg dual for an SU(N) SU(N) SU(N) gauge theory from brane moves. The brane configuration for that case is very similar to ours, it contains also four vebranes. The number of fourbranes they had to add was twice the number of sixbranes placed between the second and the third vebrane. We get the same result.

In the rest of this section we want to propose an explanation for the
necessity of adding full fourbranes to recover the conjectured dual theory. We will show that there exists a deformation of the electric theory that higgses the dual theory proposed in section 3 down to the result derived from brane moves. Deformations of the electric theory superpotential associated to mesons correspond generically to higgsing in the dual theory. Particular cases of meson deformation are those generated by M_0 and M_3, which give masses to the quarks Q and Q' of the electric theory. They have a simple geometric interpretation which corresponds to change the position of the sixbranes in the orthogonal directions to the vebranes. However deformations of the superpotential generated by higher mesons do not have a clear geometric interpretation. Thus from the brane configuration used to derive the electric theory, we can not determine a priori if some of these deformations are swtiched on.

In the dualbrane configuration of Fig. 2 we have 3F fourbranes suspended between the A vebrane and its set of parallel sixbranes. The fourbranes slide in the two directions shared by the vebrane and the sixbranes. This can be understood as giving expectation values to the diagonal components of the M_i mesons, with $i = 0; 1; 2$ [6]. There are G fourbranes connecting the B vebrane and its set of parallel sixbranes. This number is sufficient to provide the $2G$ exs q_0 transforming in the vector representation of $SO(N)$, but it seems that some of the M_i mesons are missing. Based on this heuristic argument we will consider that the superpotential associated to the electric brane configuration of Fig. 3 is actually $W + W$, with W given by (4) and W a certain deformation generated by the mesons M_0 and M_2. The superpotential of the dual theory will thus be

$$W = \text{Tr}(Y \Phi)^2 + \text{Tr} Y \Phi Y + (\text{Tr} Y \Phi)^2 + M_0 q_0 \Phi q_0^0 + M_2 q_0 \Phi q_2 + m_1 M_0 + m_2 M_2 + \ldots;$$

(10)

where the dots stand for the other terms in (3).

\[2\] See also [12] for a reinterpretation of the additional fourbranes using a different approach.
The dual group SU (\(\mathfrak{g}\)) \(\times\) SO (\(\mathfrak{g}\)) differs from that obtained from brane moves by \(\mathfrak{g} = \mathfrak{g}^0 + 2G, \mathfrak{g} = \mathfrak{g}^0 + 4G\). It will be sufficient to show that there exists a higgsing from SU (\(\mathfrak{g}\)) \(\times\) SO (\(\mathfrak{g}\)) to SU (\(\mathfrak{g}\)) \(\times\) SO (2) without changing the matter content. Then by iterating this process 2G times we will arrive at the desired result. With this in mind we now study the superpotential (10) when \((m_1) = (m_2) = 1, \ldots\), where and are SU (2G) avor indices. The F-term equations for \(M^0_1\) and \(M^0_2\) are

\[
q^0 Y q^0 = 1; 1 \; ; \; q^0 q^0 = 1; 1
\]

Assuming that all the singlet \(\Phi\) fields have zero expectation value, the F-term equations, (9) and (11), and the D-term equations are solved by

\[
\text{h} \phi_i = \text{e}^\phi \frac{i}{\phi} \left(a_1 i_1 + i_1 a_1 \right);
\]

\[
\text{h}^0_i \phi = \frac{1}{3} \left(2 a_1 i_1 \right);
\]

where \(a = 1; \ldots; \mathfrak{g}\) and \(i = 1; \ldots; \mathfrak{g}\) are the SU and SO indices respectively. These expectation values break the gauge group to SU (\(\mathfrak{g}\)) \(\times\) SO (2) as expected. It remains to analyze the matter content of the higgsed theory. We get a bifundamental avor for the higgsed theory from the fields \(Y, \phi\). The D-term equations allow also to recover from \(Y, \phi\) an SO (2) vector and an SU (1) avor in the fundamental representation. Substituting the expectation values (12) one can see that the superpotential gives mass to this additional SU avor, but not to the SO vector. Thus the higgsed theory has the same content of charged matter as the initial one, i.e., a bifundamental avor, \(F\) fundamental avors of SU (1) and 2G vector fields of SO (2).

We have considered a deformation generated by both \(M^0_1\) and \(M^0_2\). It is easy to see that setting \(m_2 = 0\) does not alter the previous result, it only changes the particular expectation value of \(q^0\). Thus it is a deformation generated by \(M^0_2\) that seems to be necessarily switched on in the brane construction. In order to obtain a better understanding of this point, let us perform a brane move associated to dualize the SU (M) factor group considering SO (N) as a subgroup. This is done by moving the sixbranes parallel to the A brane over B and then exchanging A and B as depicted in Fig. 3. We have not moved the two groups of sixbranes in the central part of the diagram, which give rise to 2G SO (N) vector fields, \(Q^0\). We observe that now the 2G central sixbranes are not parallel to the vevbranes that define the SO (N) group, i.e., A and D. We perform now a further move corresponding to dualize the SO (N) factor group keeping SU as a spectator. This is done by bringing the sixbranes to the left of the orientifold in Fig. 3 over the D brane, the sixbranes to the right of the orientifold over the A brane.
Figure 4: Brane configuration after interchanging A and B vebranes.

and then exchanging A and D. The fourbranes created in this process between the two sets of G sixbranes and the A and D vebranes cannot slide along the world-volume of the vebrane, since the mentioned vebranes and sixbranes are not parallel. In terms of the dual SO theory this means that the singlet field associated with the SO (N) meson Q^0 must be massive. A mass term for this singlet can only be obtained when the superpotential of the electric SO (N) theory contains a quartic term in the fields Q^0. An interesting remark is that Fig. 4 realizes only an SU (G) subgroup of the SU (2G) flavor symmetry for the Q^0, and not SU (G) SU (G) as Fig. 4 suggests.

Figure 5: Brane configuration after interchanging B and C vebranes.

Let us compare the previous situation with that obtained by dualizing instead the SO (N) group in the configuration of Fig. 4. Then the fourbranes created between the two sets of G sixbranes and the B and C vebranes can slide along the world-volume of the vebrane, since the central sixbranes have been assumed to be parallel to B and C (see Fig. 4). In the dual SO theory there must be a massless singlet. Therefore a quartic term in Q^0 will not be present in the electric theory. However, according to the previous paragraph,

3 There is a subtlety here. The mentioned singlet transform s in the symmetric rep-
the superpotential for the configuration in Fig. 8 should be such that when we dualize the $SU(M)$ factor group the resulting dual superpotential does indeed contain a quartic term in the fields Q^0.

This is precisely achieved by adding to the superpotential (4) a deformation generated by the meson M_1^0:

$$W = (X \Phi)^2 + m Q^0 X \Phi Q^0; \quad (13)$$

where we have denoted all the terms appearing in (4) as $(X \Phi)^2$. Dualizing the $SU(M)$ factor group we get an $SU(F + N M)$ gauge theory with a bifundamental flavor, F SU quark flavors and $2G + 2F$ SO vector fields. The additional $2F$ SO vectors have their origin in the $SU(M)$ chiral mesons $Q \Phi$ and $Q \Phi'$. We will denote them by q_1^0 and q_2^0 respectively. The SO (N) fields q_1^0 and q_2^0 do have a representation in the brane diagram of Fig. 6. Since the set of F sixbranes is parallel to the A vebrane, the fourbranes suspended between them can be moved arbitrarily far away from the intersection between the F sixbranes and the N central fourbranes. Thus the strings joining the F sixbranes and the N central fourbranes will give rise to the $2F$ additional SO vector fields. This conclusion is of course not valid when the F sixbranes and the A vebrane are not parallel [11]. The dual $SU(F + N M)$ theory contains also a singlet field M_0 and a field M_X transforming as the direct sum of the adjoint and the symmetric representations of SO (N). These fields are in correspondence with the $SU(M)$ chiral mesons $Q \Phi$ and $X \Phi$. The quartic superpotential for the bifundamental fields in (13) translates into a mass term for M_X in the dual theory

$$W = (M_X)^2 + m Q^0 M X Q^0 + M_0 q q + q_1^0 q + q_2^0 \Phi q + M_X Y \Phi; \quad (14)$$

Integrating out this field, we get

$$W = (Y \Phi + m Q^0)^2 + M_0 q q + q_1^0 q + q_2^0 \Phi q; \quad (15)$$

which contains a quartic term for the fields Q^0.

We can obtain more information about the matrix m by considering again the situation of Fig. 3, which corresponds to dualize the SO (N) factor group. The resulting dual group is $SU(M)$ SO $(2M + 2G N + 4)$ [11-12]. The brane diagram implies that there are $F + G$ SU (M) quarks. The additional SU quarks can only have their origin in the SO (N) chiral mesons $Q \Phi$, $Q \Phi'$. We denote them by q and q' respectively; they form $2G$ SU (M) avors. The term $m Q^0 X \Phi Q^0$ in (13) translates in the dual $SU(M)$ SO $(2M + 2G N + 4)$ theory into a mass term for q and q':

$$m q q': \quad (16)$$

representation of SU $(2G)$, but only an SU (G) subgroup of SU $(2G)$ is realized in the brane diagram. We cannot rule out the presence of a restricted quartic term in Q^0 which would lift some components of the dual singlet reducing it to an SU (G) adjoint.
Thus m has to be such that it gives mass to G of the new flavors. A way of choosing m with the above property and preserving an SU(G) subgroup of the SU(2G) flavor symmetry is

$$
\begin{align*}
 m^{+G_i} &= 1; \cdots; G_i \\
 0 &\text{ otherwise}
\end{align*}
$$

(17)

Notice that this expression for m makes sense because the meson M_0^0 transforms as the direct sum of the symmetric and antisymmetric representations of SU(2G). A check for the proposed structure of m is the following. When substituted in (15) and after dualizing further the SO(N) group, it must induce mass terms for all the components of the singlet associated with the SO(N) meson Q^0_i. Remembering that the term in parenthesis in (15) was a short way of denoting several terms as in (4), we obtain

$$
\begin{align*}
 m_0^0 Q_i^0 Q_j^0 M^+ & M^{+G} M^{r+G} \\
 m Q_i^0 Q_j^0 M & M^{r+G} M^{+G} \\
 m_0^0 Q_i^0 Q_j^0 & M^+ M^{r+G} M^{+G}
\end{align*}
$$

(18)

with $^;^ = 1; \cdots; G$, which indeed gives mass to all components of M.

The previous arguments can be applied to more generic brane configurations than those considered here. They suggest that, for configurations with several vebranes and sixbranes, the superpotential includes generically quartic couplings between quarks and bifundamental fields. The presence of such terms does not sound surprising for brane configurations with sixbranes not parallel to the adjacent vebranes. Our main result is that for configurations in which the sixbranes are parallel to one of the adjacent vebranes, the superpotential also contains a term $Q \bar{X} X \mathcal{O}$ coupling the quarks coming from the sixbranes and the bifundamental field coming from the parallel vebrane. In particular, for configurations with more than three vebranes, such terms are unavoidable. These terms translate in the dual theory into terms linear in the singlet fields, which have the effect of higgsing. Besides the case treated in this paper, this explains why the brane approach to SU(N_1) SU(N_2) SU(N_3) predicts a dual group of smaller rank than that derived by field theory arguments (1).

We would like to end this section with one additional comment. We have argued that the brane construction of our SU(M) SO(N) theory corresponds to the modified superpotential (13) instead of (4). However, the brane moves necessary to derive the dual theory have a field theory interpretation independent of what the concrete superpotential is. They can be seen as successive, separate dualizations of the SU and SO gauge groups. In particular, the brane moves that bring us from Fig.1 to Fig.4 correspond to dualize first SU, then SO, then again SU and finally again SO (or alternatively first SO, then SU and then again SO and SU). We can apply this chain of dualities to the SU(M) SO(N) theory with the
undeformed superpotential (4). After each step, fields transforming in tensor representations appear. They are massive due to the quartic term in the bifundamental fields in the superpotential and can be integrated out. Thus we only need to use the known dualities for SU and SO groups with matter in the fundamental and vector representation respectively [1], [2]. We have checked that the dual theory derived in this way coincides with the one proposed in section 3, which is a very strong test for our conjectured dual theory. These calculations are straightforward but rather lengthy and we will not include them here. However the first step, corresponding to dualize the SU(M) group, has been explicitly analyzed above with the modified superpotential.

5 SU(M) Sp(2N)

We state briefly some results for the brane set-up in Fig. 1 with an orientifold sixplane of negative Ramond charge. In this case we obtain an N = 1 theory with gauge group SU(M) Sp(2N) and the same matter content as before. The superpotential derived from the brane configuration is

\[W = a \text{Tr}(X \Phi)^2 + b \text{Tr}(X \Phi X) + c \text{Tr}(X \Phi)^2; \tag{19} \]

where

\[a = \frac{1}{4} \frac{1}{\tan(\frac{1}{2})} + \frac{1}{\tan 2}; \quad b = \frac{1}{4 \sin^2 \frac{1}{2}}; \quad c = \frac{1}{4M \tan(\frac{1}{2})} \tag{20} \]

The mesons are the ones given in section 3 and also the global symmetry group. The transformation properties of the matter fields under the gauge and global symmetry groups are listed in Table 3.

<table>
<thead>
<tr>
<th></th>
<th>SU(M)</th>
<th>Sp(2N)</th>
<th>SU(F)$_L$</th>
<th>SU(F)$_R$</th>
<th>SU(2G)</th>
<th>U(1)$_R$</th>
<th>U(1)$_B$</th>
<th>U(1)$_X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>M</td>
<td>1</td>
<td>F</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$\frac{M-N}{F}$</td>
<td>0</td>
</tr>
<tr>
<td>Φ</td>
<td>M</td>
<td>1</td>
<td>1</td>
<td>F</td>
<td>1</td>
<td>1</td>
<td>$\frac{M-N}{F}$</td>
<td>0</td>
</tr>
<tr>
<td>ψ</td>
<td>1</td>
<td>2N</td>
<td>1</td>
<td>1</td>
<td>2G</td>
<td>1</td>
<td>$\frac{2N+M}{2G}$</td>
<td>0</td>
</tr>
<tr>
<td>X</td>
<td>M</td>
<td>2N</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ψ</td>
<td>M</td>
<td>2N</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>0</td>
<td>$\frac{1}{M}$</td>
</tr>
</tbody>
</table>

Table 3: Matter content of the electric theory.

The dual theory has gauge group SU(M) Sp(2N) with $\mathbf{M} = 4F + 4G$ $\mathbf{M} = 4$ and $\mathbf{N} = 2F + 4G$ $\mathbf{N} = 4$. The field content of the dual theory and the transformation under the symmetries are indicated in Table 4. Note

We thank the referee for suggesting this test to us.
that the mesons M^0_0 and M^0_2 are now in the antisymmetric representation of SU (2G). The dual theory has a superpotential as in (3). As in the previous case the dual theory can be obtained from the known dualities for SU and Sp groups [5], [13] by dualizing first the SU factor, then the Sp factor and then SU and Sp again (or alternatively first Sp, then SU and then again Sp and SU).

When we try to recover the dual theory from brane moves we get a smaller dualgroup SU (\tilde{M}^0) Sp(2$\tilde{\Psi}$) with $\tilde{M}^0 = \tilde{M}^0_{2G}, \tilde{\Psi}^0 = \tilde{\Psi}^0_{2G}$. We can cure this mismatch by adding 4G full fourbranes to the dual configuration. All the arguments presented in the previous section to explain this problem extend to the SU Sp case. We can understand the addition of the fourbranes as a reverse of higgsing in the dual theory, induced by adding to the superpotential (14) of the electric theory a deformation generated by the meson M^0_1.

Acknowledgements

We thank K. Landsteiner for discussions. The work of E. L. is supported by a Lisem eimer Fellowship, M 456-TPH. The work of B. O. is supported by the Österreische Nationalbank Jubiläum sfonds under contract 6584/4.

<table>
<thead>
<tr>
<th>SU (\tilde{M}^0)</th>
<th>Sp(2$\tilde{\Psi}$)</th>
<th>SU (F)$_L$</th>
<th>SU (F)$_R$</th>
<th>SU (2G)</th>
<th>U (1)$_R$</th>
<th>U (1)$_L$</th>
<th>U (1)$_X$</th>
</tr>
</thead>
<tbody>
<tr>
<td>q</td>
<td>\tilde{M}^0</td>
<td>1</td>
<td>F</td>
<td>1</td>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>q'</td>
<td>\tilde{M}^0</td>
<td>1</td>
<td>1</td>
<td>F</td>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
<tr>
<td>q^0</td>
<td>1</td>
<td>2\tilde{M}</td>
<td>1</td>
<td>1</td>
<td>2$\tilde{\Psi}$</td>
<td>1</td>
<td>$\frac{2}{5}$</td>
</tr>
<tr>
<td>q'</td>
<td>\tilde{M}^0</td>
<td>2$\tilde{\Psi}$</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>$\frac{1}{2}$</td>
<td>$\frac{1}{2}$</td>
</tr>
</tbody>
</table>

Table 4: Matter content of the magnetic theory.

\(^5\) The dualities for SU and Sp with matter in the fundamental representation are derived in [5], [13] for zero superpotential. We have however a non-zero superpotential which induces different global symmetries from those of the $W = 0$ case. Thus we have explicitly checked the 't Hooft anomalous matching conditions, which are indeed satisfied.
References

16