FIXED POINT STRUCTURE OF PADÉ-SUMMATION APPROXIMATIONS TO THE QCD
β-FUNCTION

V. Elias*, F. Chishtie

Department of Applied Mathematics, The University of Western Ontario, London, Ontario N6A 5B7, CANADA
*E-mail: zohar@apmaths.uwo.ca

T.G. Steele

Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C6
E-mail: steelct@sask.usask.ca

Padé-improvement of four-loop β-functions in massive φ⁴ scalar field theory is shown to predict the known five-loop contribution with astonishing (0.2%) accuracy, supporting the applicability of Padé-summations for approximating all-orders MS QCD β-functions, as suggested by Ellis, Karliner, and Samuel. Surprisingly, the most general set of [2|2] approximants consistent with known two-, three-, and four-loop contributions to the QCD β-function with up to six flavours fail to exhibit any zeros that could be interpreted as positive infrared fixed points, regardless of the unknown five-loop term. When they occur, positive zeros of such [2|2] approximants are preceded by singularities, leading to a double-valued β-function that is decoupled entirely from the infrared region, similar to the β-function of SUSY gluodynamics.

Higher order terms of the QCD MS β-function

\[\mu^2 \frac{d \alpha_s}{d \mu^2} = \beta(x), \]
\[\beta(x) = -\sum_{i=0}^{\infty} \beta_i x^{i+2}, \]

where \(x \equiv \alpha_s(\mu)/\pi \) are, upon truncation, known to permit the occurrence of fixed points other than the ultraviolet fixed point at \(x = 0 \); e.g. the positive infrared fixed point (IRFP) which occurs for \(9 \leq n_f \leq 16 \) when the series for \(\beta(x) \) in (1) is truncated after two terms \([\beta_0 = (11 - 2n_f/3)/4; \beta_1 = (102 - 38n_f/3)/16; x_{IRFP} = -\beta_0/\beta_1]\). However, the fixed points arising from such truncation are likely to be spurious, as the candidate-value for \(x_{IRFP} \) is sufficiently large for the highest-order term in the series \(\beta(x_{IRFP}) \) to be comparable in magnitude to lower terms [e.g. \(|\beta_1 x^3| = |\beta_0 x^2| \)].

In a recent paper, Ellis, Karliner and Samuel predicted the coefficient \(\beta_3 \) via Padé approximant methods, and claimed that \(\beta_0-2 \) and their prediction for \(\beta_3 \) yield a Padé summation of the \(M^S \) β-function with a nonzero IRFP consistent with an earlier prediction by Mattingly and Stevenson. This Mattingly-Stevenson scenario leads to the freezing-out of the coupling to a constant value in the infrared region, as shown schematically in Fig. 1.

![Figure 1: Mattingly-Stevenson scenario](image)

whose Maclaurin expansion reproduces the known terms in the infinite series (2):

\[S_{[N|M]}(x) = \frac{1 + a_1 x + \ldots + a_N x^N}{1 + b_1 x + \ldots + b_M x^M} = 1 + R_1 x + R_2 x^2 + R_3 x^3 + \ldots . \]

An IRFP of the β-function would, in this approximation, necessarily be identified with a positive zero of \(\beta_{[N|M]} \); i.e. a positive zero of \(x_{num} \) of \(1 + a_1 x + \ldots + a_N x^N \), the numerator of \(S_{[N|M]} \), provided \(S_{[N|M]} \) remains positive for \(0 \leq x \leq x_{num} \). This latter requirement precludes the existence of a positive zero (\(x_{den} \)) of the denominator 1 + \(b_1 x + \ldots + b_M x^M \) that falls in the interval 0 \(\leq x \leq x_{num} \).

One cannot automatically dismiss the possibility of such a denominator zero occurring within the true QCD...
\(\beta \)-function. The \(\beta \)-function of SU(N) SUSY gluodynamics is known \textit{exactly} if no matter fields are present and exhibits precisely such a zero:

\[
\beta(x) = -\frac{3Nv^2}{4} \left[\frac{1}{1 - Nv/2} \right].
\]

(4)

The \(\beta \)-function (4) has been discussed further by Kogan and Shifman. If (4) is incorporated into (1a), the resulting Kogan-Shifman scenario (Fig. 2) for \(x(\mu) \) is indicative of both a strong phase in the ultraviolet region (the upper branch of Fig. 2) as well as the existence of an infrared cut off \((\mu_c) \) on the domain of \(x(\mu) \) that renders the infrared region \(\mu < \mu_c \) inaccessible. \(^a \)

Figure 2: The Kogan-Shifman scenario \([x_{den} = x(\mu_c)]\)

Without use of Padé summation methods, as described above, the known terms of the infinite series representation (2) for the \(\overline{\text{MS}} \) QCD \(\beta \)-function offer little information as to whether the Mattingly-Stevenson (Fig. 1) or Kogan-Shifman (Fig. 2) scenario is appropriate for the evolution of the strong coupling. However, there is reason to believe that Padé summation representations of the \(\beta \)-function [eq. (3a)] may indeed be appropriate for quantum field theoretical calculations. Ellis, Gardi, Karliner, and Samuel have argued that Padé-summations (3) converge to their perturbative series (2) as \(N \) and \(M \) increase for any such series dominated by a finite set of renormalon poles, consistent with the following asymptotic error formula for the difference between \(\hat{R}_{N+M} \) in (2) and the value \(R_{N+M}^{\text{Padé}} \) predicted via use of the \([N|M]\) approximant in (3b):

\[
\delta_{N+M} \equiv \frac{R_{N+M}^{\text{Padé}} - R_{N+M}}{R_{N+M}}
\]

In (5), \(\{a, b, A\} \) are constants to be determined.

To demonstrate the utility of this asymptotic error formula, consider the known \(\beta \)-function for massive \(\phi^4 \) scalar-field theory:

\[
\mathcal{L} = \frac{1}{2} (\partial_\beta \phi)(\partial^\mu \phi) + \frac{1}{2} m^2 \phi^2 + g \left(\frac{16\pi^2}{4!} \right) (\phi^2)^2,
\]

(6)

\[
\beta(\mu) = 1.5g^2 \left[1 - \frac{17}{9}g + 10.8499g^2 - 90.5353g^3 + R_4g^4 + \ldots \right].
\]

(7)

Using the first two terms of (7) to generate a \([0|1]\) approximant, as in (3), one would predict \(R_2^{\text{Padé}} = (-17/9)^2 \), in which case we see from (5) that

\[
\delta_2 = \frac{(-17/9)^2 - 10.8499}{10.8499} = \frac{-A}{1 + (a + b)}.
\]

(8)

Using the first three terms of (7) to generate a \([1|1]\) approximant, one would predict \(R_4^{\text{Padé}} = (10.8499)^2/(-17/9) \), in which case

\[
\delta_3 = \frac{(10.8499)^2/(-17/9) - (-90.5353)}{-90.5353} = \frac{-A}{2 + (a + b)}.
\]

(9)

Equations (8) and (9) are two equations for the unknown constants \(A \) and \((a + b) \), with solutions

\[
A = \frac{1}{\delta_2 - 1/\delta_3} - 1, (a + b) = \frac{\delta_2 - 2\delta_3}{\delta_3 - \delta_2}.
\]

(10)

We can substitute (10) into (5) to determine \(R_4 \).

The first three terms in the series (7) generate a \([2|1]\) approximant whose Maclaurin expansion (3b) predicts

\[
R_4^{\text{Padé}} = (90.5353)^2/(10.8499).
\]

Upon substitution of \(A \), \((a + b) \), and \(R_4^{\text{Padé}} \) into (5) we find that this asymptotic error formula predicts that

\[
R_4 = R_4^{\text{Padé}}/(1 + \delta_4)\]

\[
= R_4^{\text{Padé}}\left[3 + (a + b) \right]/\left[3 + (a + b) - A \right] = 947.8
\]

(11)

The value of \(R_4 \) in (7) has been explicitly calculated to be 949.5, in very close agreement with (11). The series of steps leading from (5) to (11), a methodological recipe first presented in ref. 6, has also been applied to N-component scalar field theory, for which the Lagrangian (6) is modified such that \(\phi \rightarrow \phi_0, \phi^2 \rightarrow \sum_{n=1}^{N} \phi_n^\phi_0^2 \), \(N = \{2,3,4\} \). Agreement with calculated values of \(R_4 \) (\(R_4 \equiv \beta_4/\beta_0 \)) remains within 3.5% for \(N \leq 4 \).

This startling agreement suggests that Padé methodology may also be applicable to the QCD \(\beta \)-function, particularly in the \(n_f = 0 \) gluodynamic limit where
1. such methods are expected to be most accurate.

2. comparison with the Kogan-Shifman scenario for
SUSY gluodynamics is most relevant.

For $n_f = 0$, the 4-loop $\overline{\text{MS}}$ QCD β-function, as defined by (1a), is given by

$$
\beta(x) = -\frac{11}{4} x^2 \left[1 + 2.31818 + 8.11648 x^2 + 41.5383 x^3 + \sum_{k=4}^{\infty} R_k x^k \right].
$$

(12)

The coefficients R_k are presently not known for $k \geq 4$.

The first three terms in the series (12) are sufficient in themselves to determine the Padé approximants $S_{1[1]}$ and $S_{2[1]}$, as defined in (3). These approximants are

$$
\beta_{[2;1]}(x) = -\frac{11}{4} x^2 \left[1 - 2.7936 x - 3.7475 x^2 \right],
$$

(13)

$$
\beta_{[1;2]}(x) = -\frac{11}{4} x^2 \left[1 - 5.9672 x - 1 - 8.2854 x + 11.091 x^2 \right].
$$

(14)

In both (13) and (14), the (first) positive denominator zero precedes the positive numerator zero: for (13), $x_{\text{num}} = 0.264 > x_{\text{den}} = 0.195$; for (14), $x_{\text{num}} = 0.168 > x_{\text{den}} = 0.151$. Consequently, x_{num} cannot be identified with the Mattingly-Stevenson IRFP in either case, as this zero is separated from the small x-region by a singularity past which the β-function switches sign. Indeed the ordering $0 < x_{\text{den}} < x_{\text{num}}$ is suggestive of a Kogan-Shifman scenario in which x_{num}, if taken seriously, is an ultraviolet fixed point (UVFP) characterizing the strong phase [i.e., the upper branch of Fig 2].

We can apply the asymptotic error formula (5) to the series (12) in precisely the same way we applied it to (7). We then obtain an estimate $R_4 = 302.2$, analogous to (11). Using this value of R_4 in conjunction with the known terms of (12), it is possible to obtain a $[2;2]$-approximant β-function

$$
\beta_{[2;2]}(x) = -\frac{11}{4} x^2 \left[1 - 9.6296 x + 4.3327 x^2 \right].
$$

(15)

The first positive numerator zero $x_{\text{num}} = 0.1092$ is again larger than the first positive denominator zero

$$
x_{\text{den}} = 0.1063,
$$

precluding the identification of x_{num} as the IRFP of the Mattingly-Stevenson scenario (Fig. 1). Instead, the β-function (15) is consistent with the Kogan-Shifman scenario of Fig. 2, with x_{num} again identified as a nonzero UVFP for the strong phase.

Curiously, the ordering $0 < x_{\text{den}} < x_{\text{num}}$ characterizes $[2;2]$-approximant β-functions even if R_4 is allowed to be arbitrary. The most general such β-function that reproduces the first four terms of (12) [the first three being known] is

$$
\beta_{[2;2]}(x) = -\frac{11}{4} x^2 \times
\left\{ 1 + (13.403 - 0.076215 R_4) x - (22.915 - 0.090166 R_4) x^2 \right\}
\frac{1 + (11.084 - 0.076215 R_4) x - (56.727 - 0.26685 R_4) x^2}{1 + (11.084 - 0.076215 R_4) x - (56.727 - 0.26685 R_4) x^2}.
$$

(16)

It is easy to verify the first positive numerator zero of (16) is always larger than the first positive denominator zero [Fig. 1], although these zeros become asymptotically close as $R_4 \to +\infty$. Thus, we see that the first positive zero of any $[2;2]$ Padé approximant whose Maclaurin expansion reproduces the known terms of eq. (12) cannot be identified as an IRFP, nor is such Padé-summation indicative of a Fig. 1 scenario for the $\overline{\text{MS}}$ $n_f = 0$ β-function.

Remarkably, the same set of conclusions can be drawn for the physically interesting case of three light flavours. When $n_f = 3$, the 4-loop $\overline{\text{MS}}$ QCD β-function is given by

$$
\beta(x) = -\frac{9 x^2}{4} \left[1 - (16/9) x + 4.471065 x^2 + 20.99027 x^3 + \sum_{k=4}^{\infty} R_k x^k \right],
$$

(17)

with R_k not presently known for $k \geq 4$. The known terms in (17) determine $[2;1]$ and $[1;2]$ Padé-summation representations of the $n_f = 3$ β-function,

$$
\beta_{[2;1]}(x) = -\frac{9 x^2}{4} \left[1 - 2.91691 x - 3.87504 x^2 \right],
$$

(18)

$$
\beta_{[1;2]}(x) = -\frac{9 x^2}{4} \left[1 - 8.17337 x - 9.95115 x + 13.2199 x^2 \right].
$$

(19)

The positive zero of $\beta_{[2;1]}(x)$ ($x = 0.2559$) occurs after the pole at $x = 0.2130$; the positive zero of $\beta_{[2;1]}(x)$ at $x = 0.1223$ similarly occurs after a pole at $x = 0.1194$. The most general $[2;2]$ approximant consistent with (17) is

$$
\beta_{[2;2]}(x) = -\frac{9 x^2}{4} \times
\left\{ 1 + (7.1945 - 0.10261 R_4) x - (11.329 - 0.075643 R_4) x^2 \right\}
\frac{1 + (5.4168 - 0.10261 R_4) x - (25.430 - 0.25806 R_4) x^2}{1 + (5.4168 - 0.10261 R_4) x - (25.430 - 0.25806 R_4) x^2}.
$$

The Maclaurin expansion of (20) reproduces the series in (17), including its (unknown) $R_4 x^4$ term. As was the case in (16), the first positive zero of the denominator of (20) is always seen to precede the first positive zero of the numerator, regardless of R_4. Thus the $[1;2]$, $[2;1]$ and most general possible $[2;2]$-approximant representations of the $n_f = 3$ $\overline{\text{MS}}$ β-function uphold the ordering
$0 < x_{\text{den}} < x_{\text{num}}$, an ordering that precludes the identification of x_{num} with the IRFP of the Mattingly-Stevenson scenario. Moreover, $2|2|$-approximant β-functions for arbitrary R_4 have been constructed analogous to (16) and (20) for $n_f = \{4, 5, 6\}$, and for each of these, the $0 < x_{\text{den}} < x_{\text{num}}$ ordering persists regardless of R_4. A range for R_4 for which an ordering compatible with Fig. 1 ($0 < x_{\text{num}} < x_{\text{den}}$) is possible does not occur until $n_f = 7$.

As noted above, the ordering $0 < x_{\text{den}} < x_{\text{num}}$ suggests the occurrence of a double-valued QCD coupling constant, as is the case in SUSY gluodynamics (Fig. 2). Such a scenario is seen to decouple the infrared region $\mu < \mu_c$ from the domain of α_s, provided α_s is understood to be real. Such a scenario is also indicative of a strong phase at short distances, with possible implications for dynamical electroweak symmetry breaking, suggesting that QCD may even furnish its own “technicolour.”

Acknowledgements

VE and TGS are grateful for research support from NSERC, the Natural Sciences and Engineering Research Council of Canada.

References