The M 2-brane Soliton on the M 5-brane with Constant 3-Form

Yoji Michishita

Department of Physics, Kyoto University, Kyoto 606-8502, Japan

August, 2000

Abstract

We obtain a BPS soliton of the effective theory of the M 5-brane worldvolume with constant 3-form representing M 2-branes ending on the M 5-brane. The dimensional reduction of this solution agrees with the known results on D-branes.
Recently physics on the D-brane in constant NS-NS 2-form (B) background is extensively studied. The worldvolume theory on the D-brane is described by either ordinary gauge theory or noncommutative gauge theory [1]. Furthermore the lift to M-theory is considered [2, 3, 4]. It is the theory on the M 5-brane with constant 3-form. In this theory M 2-branes ending on the M 5-brane play important roles. The worldvolume theory on the D-brane with constant B has various solitons, which are interpreted as fundamental strings or D-branes ending on it. They are tilted with some angle determined by B. Therefore it is natural to consider such a kind of solitons on the M 5-brane i.e. M 2-branes ending on the M 5-brane with constant 3-form. The purpose of this paper is to obtain the BPS solution of the equations of motion representing such a configuration. The case without 3-form is considered in [5], and on special Lagrangian submanifolds with constant 3-form in [3].

There are several different formulations for the effective theory of M 5-brane: the covariant field equations from the superembedding approach [1], the noncovariant Lagrangian [3], the covariant Lagrangian with an auxiliary field [6], the formulation constructed in [7], etc. The first one leads to the same field equations as those from the third one [6] and the second one is equivalent to the third one with the appropriate gauge fixing [3]. The fourth one is also shown to be equivalent to the others [4]. Therefore we can use any of these formulations for seeking solutions of the field equations. In this paper we use the first formulation.

First we will explain the notation. On the M 5-brane worldvolume tangent space indices are denoted by a; b; : : : = 0; 1; 2; : : : ; 5 and world indices by m; n; : : : = 0; 1; 2; : : : ; 5. Indices of the target space are denoted by the same symbols with underline. The bosonic fields on the M 5-brane are X and A_mn, where X is the embedding map from the worldvolume into the 1+10 dimensional spacetime and A_mn is the 2-form which satisfies the non-linear selfduality condition explained below. The field strength of A_mn is always appeared in the combination H_mnp = 3θ_m A_n[p] + C_mnp because of the gauge invariance for the bulk 3-form C_mnp. (C_mnp is the pullback of C_mnp.)

In this paper, we mainly consider the case where the bulk metric is flat and C_mnp is constant, and fermions on the M 5-brane are taken to be zero since we are interested in classical solutions. The induced worldvolume metric g_mn and vielbein e^a_m are defined by

\[g_{mn} = a_b e^a_m e^b_n = \theta_m X \frac{\partial}{\partial x^a} X \frac{\partial}{\partial x^b} a_{\alpha} \frac{\partial}{\partial E_{\alpha}} E^\beta; \]

(1)

We introduce the auxiliary 3-form h_{abc} satisfying the following selfdual condition.

\[h_{abc} = \frac{1}{6} a_{\alpha \beta \gamma} h_{\alpha \beta \gamma} \]

(2)
H_{mnp} is related to h_{abc} by $H_{mnp} = e^a_m (m^1)^b e^c_p h_{bcp}$ and $m^b_a = 2 h_{abc} h^{bcd}$. The supersymmetry of the M 5-brane worldvolume theory is $= (1 +)$ and

$$= \frac{1}{6!} \left[p_{a b c d e f} \right] h_{a b c d e f} + \frac{1}{3} h_{a b c} h^{a b c};$$

(3)

where e^a_m are the $10+1$ dimensional gamma matrices. Hereafter we take the static gauge $X^0; 5X^0; 5$ and other X^m are taken zero except X^6. The equations of motion for X and $A_{m n}$ are given by

$$G_{m n} r_m r_n X = 0;$$

(4)

$$G_{m n} r_m H_{n p q} = 0;$$

(5)

where $G_{m n} = e^a_m (m^2)^b e^b_n$, and r_m is the covariant derivative with the Christoffel symbol $\Gamma_{m n} = \partial_m X^a \partial_n X^b \partial_p X^c g^{ap}$. If we take H_{mnp} constant, then in the generic case we can take all the components except h_{012} and h_{345} zero by choosing appropriate coordinate $[1,3]$. Let us consider the case where the M 5-brane lies in the directions $X^0; X^1$, and X^6. See Fig. 1. Hence

$$= 012345 + 2h (012 345);$$

(6)

The unbroken supersymmetry parameter satisfies

$$= :$$

(7)

In addition, let us consider a M 2-brane ending on the M 5-brane, and investigate the BPS configuration. From the case of the solitons on D-branes, we can expect that the M 2-brane is tilted. Therefore we assume that it lies in the directions $X^0; X^1$, and $X^6 + \sin X^2$. See Fig. 1. Hence

$$= 1^0 (\cos \sin 2) 1^0 :$$

(8)

(Note that the supersymmetry of the M 2-brane, and therefore the unbroken supersymmetry, are independent of the 3-form.) Here $1 = 1$ corresponds to the charge of the M 2-brane, i.e. M 2 or anti-M 2. It is well known that $= 0$ without the 3-form is a BPS configuration. Then

$$= [2 h \sin + 2 h \cos 26 + (2 h + \sin) 345 + 1 \cos 23456] :$$

(9)

There is a nongeneric case where $h_{012} = h_{512} = h_{034} = h_{534} = h_{1,3}$. We can obtain this from the generic case by infinite boost in the 0-5 direction and taking the limit $\hbar \to 0$.

[2]
Figure 1: the M 2-brane ending on the M 5-brane

If we impose the condition
$$f = 2^{23456};$$
(10)
and $$2 = 1$$, then

$$= [(2 1 h \sin 1 2 \cos) + (2 1 2 h \cos 2h + 1 \sin)]^{345}:$$
(11)

Hence there are some unbroken supersymmetries if we require

$$h = \frac{1}{2} \frac{2\sin}{2\cos};$$
(12)

Thus the independent conditions for are eq.(8) and (10) and eq.(11) is derived from them. This configuration preserves $\frac{1}{4}$ supersymmetry. If we require that $$h \neq 0$$ corresponds to $$h = 0$$ we obtain $$1 2 = 1$$. The non-zero component of $$H_{\mu \nu \rho}$$ is

$$H_{012} = \frac{1}{4} \sin;$$
(13)

$$H_{345} = \frac{1}{4} \tan;$$
(14)

Next we consider a probe M 2-brane in the background representing the M 5-brane with constant 3-form found in [13]:

$$ds_{11} = k^{1-3} f^{1-3} [f 1 ((dx)^{(0)} + (dx)^{(1)} + (dx)^{(2)}) + k 1 ((dx)^{(3)} + (dx)^{(4)} + (dx)^{(5)})$$
$$+ (dx)^{(6)} + 1 (dx)^{(7)});$$

$$dC = \frac{1}{4} (\sin\alpha dx^1 \wedge dx^0 \wedge dx^1 \wedge dx^2 \tan dx^1 \wedge dx^3 \wedge dx^4 \wedge dx^5$$
$$+ \frac{1}{4!} \cos i j k = f dx^4 dx^1 dx^k dx^1);$$

$$f = 1 + \frac{R^3}{r^3}; \quad k = \sin^2 + \cos^2 f;$$

$$i; j; = 6; 7; \quad 10;$$
(15)
and investigate the BPS configuration of the M 2-brane to compare with the previous result. We take the following ansatz for the embedding map from the M 2-brane worldvolume into the 1+10-dimensional spacetime.

\[
\begin{align*}
X^0 &= 0; \\
X^1 &= 1; \\
\sin X^2 + \cos X^6 &= 2; \\
\cos X^2 \sin X^6 &= 0; \\
X^{3\nu}; A^0 &= 0;
\end{align*}
\]

(16)

Then the bosonic part of the effective action of the M 2-brane is

\[
S = T_{M2} \int d^3 \{ \det(\Omega_m X \Omega_n X^{\nu} \rho_{mnp}) \}_{\nu} \Omega_m X \Omega_n X^{\nu} \rho_{mnp} \}
\]

(17)

Here we use \(C_{012}^{\frac{1}{4}} \sin k^1 \) and \(C_{345}^{\frac{1}{4}} \tan k^1 \). If we take \(q = 1 \), then

\[
S = T_{M2} \int d^3 \cos^2;
\]

(18)

and the M 2-brane has no potential term for fluctuations. This shows that this configuration is BPS. We identify the value of \(C_{012}^{\frac{1}{4}} \sin k^1 \) and \(C_{345}^{\frac{1}{4}} \tan k^1 \) at the infinity of the space transverse to the M 5-brane with 3-form flux on the M 5-brane, as was done in [14]:

\[
H_{012} = \frac{1}{4} \sin = \frac{1}{4} \sin; \quad H_{345} = \frac{1}{4} \tan = \frac{1}{4} \tan
\]

(19)

This value and the configuration of M 2-brane (16) near the infinity of the space transverse to the M 5-brane are consistent with the previous result in the flat background.

Now we solve the equations of motion of the M 5-brane to obtain the BPS solution representing the above configuration in the flat background. We consider the same ansatz as in [5]:

\[
\begin{align*}
h_{01a} &= v_a; \\
h_{a\beta\gamma} &= \delta^{\alpha\beta\gamma} v^\alpha v^\beta v^\gamma; \quad a = 0, 1, 2, 3, 4
\end{align*}
\]

(20)

with the other components of \(h_{abc} \) vanishing, and \(X \) and \(v_a \) are independent of \(^0 \) and \(^1 \). Here primed indices run 2; \(^3 \). Then

\[
m_{\alpha}^{\beta} = \frac{1}{\rho} \frac{1 + 4\rho^2}{1 + 4\rho^2} \frac{1}{X} \left(1 + 4\rho^2 \right) v_{\alpha} v_{\beta} v_{\gamma}
\]

(21)
\[g_{m,n} = \begin{bmatrix} 0 & 1 \\ 1 & \gamma \end{bmatrix} \wedge \begin{bmatrix} m \wedge 0 + 2 \wedge 0 \wedge X & \wedge 0 \wedge 0 \wedge \gamma \end{bmatrix} \wedge \gamma \] \quad (22)

\[e_m^a = \begin{bmatrix} 0 & 1 \\ 1 & \gamma \end{bmatrix} \wedge \begin{bmatrix} m \wedge 0 + 2 \wedge 0 \wedge \gamma \end{bmatrix} \wedge \gamma \] \quad (23)

\[e_n^a = \begin{bmatrix} 0 & 1 \\ 1 & \gamma \end{bmatrix} \wedge \begin{bmatrix} m \wedge 0 + 2 \wedge 0 \wedge X \end{bmatrix} \wedge \gamma \] \quad (24)

\[G^{m,n} = \begin{bmatrix} 0 & 1 \\ 1 & \gamma \end{bmatrix} \wedge \begin{bmatrix} 1 + 4v^2 \\ 1 + 4v^2 \end{bmatrix} \wedge \begin{bmatrix} (1 + 4v^2)^2 & 1 \\ 1 & 4v^2 \end{bmatrix} \wedge \begin{bmatrix} m \wedge 0 + 2 \wedge 0 \wedge \gamma \end{bmatrix} \wedge \gamma \] \quad (25)

From \(g_{m,n} = e_m^a e_n^a \) and \(g^{m,n} = e_m^a e_n^a \) we can determine \(c \) and \(c^0 \): \(c = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 0 & 1 + (\gamma X) \end{bmatrix} \),
\(c^0 = \begin{bmatrix} 0 & (\gamma X)^2 (1 + \frac{1}{1 + (\gamma X)^2}) \end{bmatrix} \) and \((\gamma X)^2 \begin{bmatrix} 1 + (\gamma X)^2 \end{bmatrix} \). We take the branch which is smoothly connected to the case \(X = 0 \): \(c = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 0 & 1 + (\gamma X) \end{bmatrix} \), \(c^0 = \begin{bmatrix} 0 & (\gamma X)^2 (1 + \frac{1}{1 + (\gamma X)^2}) \end{bmatrix} \). The nonvanishing components of \(H_{m,n,p} \) are

\[H_{01m} = \frac{1}{\gamma} \begin{bmatrix} 1 + 4v^2 \end{bmatrix} \wedge \begin{bmatrix} 0 & e_m^a v_c^e \end{bmatrix} \wedge \gamma \] \quad (26)

\[H_{m,n} = \frac{1}{\gamma} \begin{bmatrix} 1 + 4v^2 \end{bmatrix} \wedge \begin{bmatrix} 0 & e_m^a v_c^e \end{bmatrix} \wedge \gamma \] \quad (27)

Let us consider the BPS condition. The unbroken supersymmetry parameter \(s \) satisfies and

\[\begin{align*}
&= \frac{1}{1 + (\gamma X)^2} \begin{bmatrix} 02345 \end{bmatrix} \wedge \begin{bmatrix} 2345 \end{bmatrix} + 2(v_\wedge 0 + c^0(v_\wedge X) v_c^e \wedge a^0) \\
&+ 2(v_\wedge 0 a^0 \wedge 2345 + 2c^0((\gamma X)^2 v_\wedge 0 \wedge 019 + 1 + (\gamma X)^2) v_c^e \wedge a^0) \\
&+ 2(v_\wedge 0 a^0 \wedge 2345 + 2c^0((\gamma X)^2 v_\wedge 0 \wedge 019 + 1 + (\gamma X)^2) v_c^e \wedge a^0) \\
\end{align*} \] \quad (28)

where \((v_\wedge X) = v_\wedge 0 v_\wedge a^0 \wedge 2345 \). should satisfy eq.(1) and (2). We impose the condition (3) and (10) as in the discussion above and require that eq.(1) is satisfied.

\[\begin{align*}
&= \frac{1}{1 + (\gamma X)^2} \begin{bmatrix} 1 + 4v^2 \end{bmatrix} \wedge \begin{bmatrix} 02345 \end{bmatrix} \wedge \begin{bmatrix} 2345 \end{bmatrix} + 2(v_\wedge 0 + c^0(v_\wedge X) v_c^e \wedge a^0) \\
&+ 2(v_\wedge 0 a^0 \wedge 2345 + 2c^0((\gamma X)^2 v_\wedge 0 \wedge 019 + 1 + (\gamma X)^2) v_c^e \wedge a^0) \\
&+ 2(v_\wedge 0 a^0 \wedge 2345 + 2c^0((\gamma X)^2 v_\wedge 0 \wedge 019 + 1 + (\gamma X)^2) v_c^e \wedge a^0) \\
\end{align*} \] \quad (29)
Here we run 3; 4; 5. To satisfy Eq. (7), we take the coefficient of and zero and obtain the following BPS equations.

\[
v_2 = \frac{1}{2} \left(\frac{\sin + \cos \theta X}{1 + \sin \theta X} + \frac{\sin \theta X}{1 + \sin \theta X} \right);
\]

\[
v = \frac{1}{2} \left(\frac{\cos + \frac{1}{\sin \theta X}}{1 + \frac{1}{\sin \theta X}} \right) \frac{1}{1 + \frac{1}{\sin \theta X}} \frac{\sin \theta X}{1 + \frac{1}{\sin \theta X}} \theta X:
\]

then by straightforward calculation

\[
= ;
\]

i.e., Eq. (7) is satisfied.

The nonzero components of \(H_{mnp} \) under the BPS condition are

\[
H_{012} = \frac{1}{4} (\sin + \cos \theta X);
\]

\[
H_{01} = \frac{1}{4} \cos \theta X;
\]

\[
H = \frac{2}{4} \theta X + \frac{1}{\cos \sin \theta X};
\]

\[
H_2 = \frac{2}{4} \theta X:
\]

And

\[
G = 4 \left(\frac{(\cos + \sin \theta X)^2}{[1 \cos + \sin \theta X + 2 \frac{1}{1 + \sin \theta X^2}]^2} \right);
\]

\[
G^2 = 4 \theta X \left(\frac{\sin (\cos + \sin \theta X)}{[1 \cos + 1 \sin \theta X + 2 \frac{1}{1 + \sin \theta X^2}]^2} \right);
\]

\[
G^{22} = 4 \left(\frac{1 \sin^2 \theta X \theta X}{[1 \cos + 1 \sin \theta X + 2 \frac{1}{1 + \sin \theta X^2}]^2} \right);
\]
The equation of motion for X is
\[
G^m_{\hat{n}\hat{p}} r_m \circ \theta_{\hat{n}} \circ X = \frac{1}{1 + (\theta X)^2} G^m_{\hat{n}\hat{p}} \circ \theta_{\hat{n}} \circ X = 0: \tag{40}
\]
This equation is rewritten as follows.
\[
\theta \circ \theta \circ X + \theta \circ \theta^2 \circ X + \theta_2 \frac{\sin (1 + (\theta X)_i)}{\cos \sin \theta X} = 0: \tag{41}
\]
Using eq. (41), the nontrivial components of the equation of motion for H_{mnp} are
\[
G^m_{\hat{n}\hat{p}} r_m \circ H_{n01} = G^m_{\hat{n}\hat{p}} \circ \theta_m \circ H_{n01} = 0; \tag{42}
\]
\[
G^m_{\hat{n}\hat{p}} r_m \circ H_{n\hat{p}\hat{q}\hat{r}} = G^m_{\hat{n}\hat{p}} (\theta_m \circ H_{n\hat{p}\hat{q}\hat{r}} \circ \theta_p \circ X \circ \theta_q \circ X g^{-2 \hat{p} \hat{q}} H_{n\hat{r}\hat{m}\hat{p}} \circ \theta_m \circ \theta_q \circ X \circ \theta_p \circ X g^{-2 \hat{p} \hat{q}} H_{n\hat{r}\hat{m}\hat{p}}) = 0; \tag{43}
\]
It can be shown that these are satisfied by using eq. (40) or (41) further. Furthermore the Bianchi identity
\[
\theta_{\hat{m}} H_{npq} = 0 \tag{44}
\]
is also satisfied. Hence all we should do is to solve eq. (40) or (41).

Solving eq. (41) seems very difficult. However, since we expect that the M 2-brane is tilted, we can simplify this equation by using the rotated coordinate (X , z^2), as was done in [15]. (X , z^2) is related to (X , z) as follows.
\[
X = \begin{bmatrix}
\cos \\
\sin
\end{bmatrix}
\begin{bmatrix}
X \cr z
\end{bmatrix}, \tag{45}
\]
We denote the derivatives with respect to z and θ by θ_z and θ. Then
\[
\theta_z z = \frac{1}{\cos + \sin \theta X}; \tag{46}
\]
\[
\theta z = \frac{\sin \theta \circ X}{\cos + \sin \theta \circ X}; \tag{47}
\]
Eq. (41) is rewritten as follows.
\[
\theta \circ \theta \circ X + \theta \circ \theta^2 \circ X = 0; \tag{48}
\]
This can be easily solved. The solution with the boundary condition that the M 5-brane worldvolume lies in the direction $X^0 \mu \nu \rho \sigma \tau$ at the infinity is
\[
X = \begin{bmatrix}
X_1 \\
X_2
\end{bmatrix}
\begin{bmatrix}
Q_1 \\
Q_2
\end{bmatrix}
\begin{bmatrix}
(z^2 + (\theta X)^2) \\
(z^2 + (\theta X)^2)
\end{bmatrix} + \tan z: \tag{49}
\]
We can interpret this solution as tilted M 2-branes emanating from \((z_i; \theta_i)\). See Fig. 2. From this solution we can obtain the values of \(h_{abc}\) at the infinity of the worldvolume:

\[
\begin{align*}
 h_{012} &= \frac{1}{2} \frac{2 \sin \theta_{12}}{2 \cos \theta_{12}}, \\
 h_{345} &= \frac{1}{2} \frac{2 \sin \theta_{23}}{2 \cos \theta_{23}}, \\
 H_{012} &= \frac{1}{4} \sin \theta_{12}, \\
 H_{345} &= \frac{1}{4} \tan \theta_{23},
\end{align*}
\]

with the other components vanishing. These values agree with eqs. (12), (13), and (14). The coefficients \(Q_i\) are given in (56) below.

There is the critical value for \(H_{012}\), i.e., \(H_{012} = \frac{1}{4} \theta_{12}\). At this value = \(\frac{\pi}{2}\) and the M 2-brane is parallel to the M 5-brane.

Next we consider the dimensional reduction of this solution. If we compactify the direction \(m\) along the M 5-brane, we have a D 4-brane in type IIA string theory and [4]

\[
H_{mnp} = \frac{1}{4} (F_{np} + B_{np});
\]

where \(F_{np}\) is the field strength of the gauge field on the D 4-brane and \(B_{np}\) is (pullback of) the NS-NS 2-form. If we compactify the direction perpendicular to the M 5-brane, we obtain a NS5-brane in a constant RR 3-form. Let us consider three cases. The first case is the double dimensional reduction along the direction \(X^1\). We obtain the configuration that tilted F-strings ending on a D 4-brane in constant \(B_{02}\). The relationship between the constant NS-NS 2-form and the angle is

\[
B_{02} = \frac{1}{4} \sin \theta_{12};
\]
and the solution is in the same form as eq. (49). This result agrees with that of [16]. We can determine the coefficient Q from the argument in [16]:

$$Q = \frac{4^3 \alpha^2 g_s}{3} = \frac{4^3 r^3 p}{3};$$

(56)

where g_s is the string coupling constant, r is the 11-dimensional Planck length and r_3 is the volume of S^3. The second case is the double-dimensional reduction along the direction X^5. We obtain the configuration that tilted D2-branes ending on a D4-brane in constant B_{34}:

$$B_{34} = 2 \tan \; ;$$

(57)

and the solution is in the same form as eq. (49). This result agrees with that of [15].

The third case is the dimensional reduction along the direction X^{10}. We obtain the configuration that tilted D2-branes ending on a NS5-brane in constant RR 3-form. The geometry of the solution is the same as in the 11-dimensional case.

Acknowledgments

I would like to thank S. Mori yama and P. K. Townsend for helpful discussions, and the organizers of the Summer Institute 2000, Japan, in which a part of this work was carried out.

References

[14] D. S. Berman and P. Sundell \textit{Flowing to a noncommutative (OM) ve brane via its supergravity dual"}, hep-th/0007052
