On spherical harmonics for fuzzy spheres in diverse dimensions.

Sanjaye Ramgoolam

Department of Physics
Brown University
Providence, RI 02912
ramgosk@het.brown.edu

We construct spherical harmonics for fuzzy spheres of even and odd dimensions, generalizing the correspondence between finite matrix algebras and fuzzy two-spheres. The finite matrix algebras associated with the various fuzzy spheres have a natural basis which falls in correspondence with tensor constructions of irreducible representations of orthogonal groups $SO(n)$. This basis is useful in describing fluctuations around various D-brane constructions of fuzzy spherical objects. The higher fuzzy spheres are non-associative algebras that appear as projections of associative algebras related to Matrices. The non-associativity (as well as the non-commutativity) disappears in the leading large N limit, ensuring the correct classical limit. Some simple aspects of the combinatorics of the fuzzy four-sphere can be accounted by a heuristic picture of giant fractional instantons.

April 2001
1. Introduction.

Non-commutative spheres have found a variety of physical applications. The non-commutative geometry \[\mathbb{S}^2\] of the fuzzy two-sphere was first described in [1]. The fuzzy four-sphere appeared in [2]. The fuzzy two-sphere was used in [2] in connection with the quantization of the membrane. The fuzzy 4-sphere was used [3] in the context of the Matrix Theory of BFSS [3] to describe time-dependent 4-brane solutions constructed from zero-brane degrees of freedom. Non-commutative spheres were proposed as models of non-commutative space underlying the stringy exclusion principle [4] in [5] and explored further in this context [6] [7] [8] [9]. The fuzzy two-sphere described polarized D0-branes in a background three-form field strength in [6]. Fuzzy spheres of diverse dimensions were found in Matrix theory in [9]. A general construction of odd fuzzy spheres was described in [10] and the fuzzy three sphere was applied to the study of polarization of unstable D0-branes. Other studies of polarization-related effects appear in [11] [12] [13] [14].

In this paper we give a detailed connection between various fuzzy spheres and Matrix Algebras. This allows us to describe fuzzy spherical harmonics which are related to a projection of Matrix algebras. The complete \(SO(m+1)\) decomposition of the Matrix algebras is useful for describing fluctuations of Matrix constructs of fuzzy spherical objects.

Section 2 reviews the fuzzy two-sphere. Section 3 reviews some group theory of \(SO(2k+1)\) which is relevant in describing the fuzzy sphere \(S^{2k}\). Section 4 describes the Matrix Algebra which is related to the fuzzy 4-sphere, and gives its decomposition into representations of \(SO(5)\). Section 4.2 explains that the algebra generated by the coordinates of the fuzzy 4-sphere is isomorphic to the Matrix Algebra. Section 4.3 explains the projection, and the resulting non-associativity of the projected multiplication, that is necessary to get the algebra of functions on the fuzzy 4-sphere \(\mathcal{A}_n(S^4)\), from the Matrix Algebra which we call \(\hat{\mathcal{A}}_n(S^4)\). Section 5 explains the generalization to higher even spheres, giving some details for the case of the fuzzy 6-sphere and the 8-sphere. Section 6 reviews some group theory of \(SO(2k)\) which is necessary in the description of the odd-dimensional fuzzy sphere \(S^{2k-1}\). Section 7 decomposes into \(SO(4)\) representations the Matrix Algebra related to the fuzzy three-sphere. It is useful to distinguish here, \(\hat{\mathcal{A}}_n(S^3)\) which is isomorphic to the Matrix algebra, \(\mathcal{A}_n(S^3)\) which is the projected algebra of the fuzzy spherical harmonics, and \(\hat{\mathcal{A}}_n^{(g)}(S^3)\) which is generated by the coordinates of the fuzzy sphere under the matrix product. \(\hat{\mathcal{A}}_n^{(g)}(S^3)\) is larger than \(\mathcal{A}_n(S^3)\) but smaller than \(\hat{\mathcal{A}}_n(S^3)\). Section 8 generalizes the discussion to higher odd spheres, giving some explicit details for the five-sphere. In section 9, we return to the non-associativity mentioned in section 4.3 and prove
that it vanishes in the leading large N limit. We expect this is a generic feature for all the higher fuzzy spheres. Section 10 discusses the geometric interpretation of the Matrix algebra related to the fuzzy 4-sphere in terms of the physics on the geometrical 4-sphere obtained by projection. We are lead to hints of fractional instantons exhibiting behaviour reminiscent of the giant gravitons of \[25\].

2. Review: The fuzzy 2-sphere

The fuzzy 2-sphere [2] is defined as the algebra generated by the three elements S_3, S_+, S_- obeying the relations of the $SU(2)$ Lie algebra:

\[
\begin{align*}
[S_+, S_-] &= 2S_3 \\
[S_3, S_+] &= S_+ \\
[S_3, S_-] &= -S_-
\end{align*}
\]

(2.1)

together with a constraint on the Casimir:

\[
S_3^2 + \frac{1}{2}(S_+ S_- + S_- S_+) = J(J + 1)
\]

(2.2)

This algebra is infinite dimensional. For example S^l, for any l, are independent elements. It admits, however, a finite dimensional quotient which is isomorphic to the algebra of $N \times N$ matrices where $N = n + 1$ with the definition $n = 2J$. We will call this finite dimensional truncation $\hat{A}_n(S^2)$. As an algebra over the complex numbers this is isomorphic to the algebra of $N \times N$ matrices $Mat_N(C)$.

It admits an action of the universal enveloping algebra of $SU(2)$, by taking commutators. Under this action of $U(SU(2))$, the $\hat{A}_n(S^2)$ decomposes as a direct sum of representations of integer spin s with unit multiplicity with s ranging over integers s from 1 to $n = N - 1$.

\[
\hat{A}_n = \bigoplus_{s=0}^{n} V_s
\]

(2.3)

Writing $S_1 = \frac{1}{2}(S_+ + S_-)$ and $S_2 = \frac{1}{2i}(S_+ - S_-)$, representations of spin s correspond to matrices of the form

\[
f_{a_1, a_2, \ldots, a_n} s^{a_1} S^{a_2} \cdots S^{a_n},
\]

where the indices $a_1 \cdots a_n$ run from 1 to 3, and f is a traceless symmetric tensor.
3. Review: Some group theory of $SO(2k+1)$

The following is a review of useful facts which can be found in standard group theory books e.g \[26\][27][28]. Representations of $SO(2k+1)$ can be put in $1−1$ correspondence with Young diagrams, labelled by row lengths $(r_1,r_2,\cdots r_k)$, which obey the constraints $r_1 \geq r_2 \geq \cdots \geq r_k$. We will often denote this vector of row lengths by \vec{r}. It also useful to describe the Young diagrams by column lengths $\vec{c} = (c_1,c_2,\cdots)$. The column lengths satisfy the restrictions $c_1 \geq c_2 \geq c_3 \cdots$ and $c_1 \leq k$. Let B be the number of boxes in the Young diagram, i.e the sum of row lengths or the sum of column lengths. As far as classical $SO(2k+1)$ group theory is concerned there is no cutoff on the number of columns. In the application to fuzzy spheres, we will often have a cutoff n on the number of columns, or equivalently on the length of the first row.

The Young diagram describes an irreducible representation which arises from a subspace of the vector space of tensor products of B copies of the $(2k+1)$ dimensional fundamental representation F. Let f_μ be a set of basis vectors for this representation, with μ running from 1 to $2k+1$. A basis vector in this tensor space is of the form $f_\mu_1 \otimes f_\mu_2 \otimes \cdots \otimes f_\mu_B$, and a general vector is a sum with coefficients $A(\mu_1,\cdots,\mu_B)$, of the form

$$\sum_{\mu_1,\cdots,\mu_B} A(\mu_1,\cdots,\mu_B) f_{\mu_1} \otimes f_{\mu_2} \otimes \cdots \otimes f_{\mu_B}.$$

On these tensors we can define contraction operations

$$\sum_{\mu_1,\mu_2=1}^n A(\mu_1,\cdots,\mu_B)$$

which yield tensors of rank lower by two, where (i,j) are any pair of distinct integers from 1 to B. The subset of tensors with the property that any contraction gives zero are traceless tensors, a generalization of traceless matrices.

The vectors of the irreducible representation are obtained by applying, to the traceless tensors of rank B, a symmetrization procedure corresponding to the Young diagram. This involves symmetrizing along the rows of the Young Diagram and antisymmetrizing along the columns of the Young Diagram. We can describe this more explicitly as follows. Let us consider A as a function of indices μ^i_j, labelled by two parameters rather than one. This means that instead of writing $A(\mu_1,\mu_2,\cdots,\mu_B)$, we will write $A(\mu^i_j)$. Fixing the label i corresponds to fixing a row, i.e μ^i_j run over $j = 1 \cdots r_i$ up to the length of the i’th row. For example μ^1_j has j running over 1 to r_1, μ^2_j has j running over 1 to r_2 and so forth.
Fixing the label j fixes the column. For example, μ_1^i has the label i running from 1 to c_1, μ_2^i has i running from 1 to c_2, and so forth.

The symmetric group $S_{c_1} \times S_{c_2} \cdots \times S_{c_r}$ acts on the lower labels j in μ_j^i keeping the label i fixed. We will call this S_R, the symmetric group which acts along the rows. The symmetric group $S_{c_1} \times S_{c_2} \cdots \times S_{c_r}$ acts on the upper labels i in μ_j^i while keeping the j fixed. We will call this S_C, the symmetric group which acts along the columns. The group $S_C \times S_R$ is a subgroup of S_B. The Young symmetrizer is a sum

$$\frac{1}{|S_R|} \frac{1}{|S_C|} \sum_{\sigma \in S_R} \sum_{\tau \in S_C} (-1)^\tau \sigma \tau$$

(3.1)

$(-1)^\tau$ is +1 if the permutation τ is even and -1 if it is odd. The factors in the denominator $|S_R|$ and $|S_C|$ are the dimensions of S_R and S_C respectively, i.e $|S_R| = r_1! \cdots r_k!$ and $|S_C| = c_1! \cdots c_r!$, respectively. Equation (3.1) expresses the fact that we symmetrize over the rows and antisymmetrize over columns.

Now the space of traceless tensors still has an action of S_B, and hence of $S_R \times S_C$. The symmetrization operation applied to traceless tensors $A(\mu_j^i)$ yields an irreducible representation of $SO(2k+1)$. The dimension of the representation can be written neatly in terms of the following quantities,

$$l_i = r_i + k - i + \frac{1}{2}$$
$$m_i = k - i + \frac{1}{2}$$

(3.2)

where i runs from 1 to k. The dimension of the representation is

$$D(\vec{r}) = \prod_{i<\ell} \frac{l_i^2 - l_\ell^2}{m_i^2 - m_\ell^2} \prod_i \frac{l_i}{m_i}$$

(3.3)

and is derived in [24], for example.

For the representations constructed from tensor products of the vector of $SO(2k+1)$, the r_i are all integers. Vectors \vec{r} with half-integer entries are weight vectors corresponding to spinor representations. The dimensions of spinor representations can be obtained by substituting in (3.3) vectors \vec{r} with half-integral values of r_i. For example the fundamental spinor is labelled by $\vec{r} = (\frac{1}{2}, \frac{1}{2}, \cdots, \frac{1}{2})$. The n’th symmetric tensor power of the spinor is labelled by $\vec{r} = (\frac{n}{2}, \frac{n}{2}, \cdots, \frac{n}{2})$.

4
4. The fuzzy 4-sphere

We here recall some facts about the fuzzy 4-sphere, which is discussed in detail in [3][5]. For the fuzzy S^4, the matrices G^μ satisfying $\sum_\mu G^\mu G^\mu = R^2$ act on vectors in the irreducible representation of $Spin(5)$ obtained by symmetrizing the nth tensor power of the 4-dimensional spinor representation

$$G^\mu = (\Gamma^\mu \otimes 1 \otimes 1 \cdots \otimes 1 + 1 \otimes 1 \otimes \Gamma^\mu \otimes 1 \cdots \otimes 1 + 1 \otimes \cdots \otimes 1 \otimes \Gamma^\mu)_{sym} \quad (4.1)$$

The index μ runs from 1 to 5. It is convenient to rewrite this as

$$G^\mu = P_n \sum_k \rho_k(\Gamma^\mu) P_n \quad (4.2)$$

where the right hand side is a set of operators acting on the n-fold tensor product $V \otimes V \otimes \cdots \otimes V$. The expression $\rho_k(\Gamma^\mu)$ is the action of Γ^μ on the kth factor of the tensor product.

$$\rho_k(A) |e_{i_1} e_{i_2} \cdots e_{i_k} \cdots e_{i_n} > = A_{i_k}^{j_k} |e_{i_1} e_{i_2} \cdots e_{j_k} \cdots e_{i_n} > \quad (4.3)$$

The symmetrization operator P_n is given by $P_n = \sum_{\sigma \in S_n} \frac{1}{n!} \sigma$ where σ acts as:

$$\sigma |e_{i_1} e_{i_2} \cdots e_{i_n} > = |e_{i_{\sigma(1)}} e_{i_{\sigma(2)}} \cdots e_{i_{\sigma(n)}} > \quad (4.4)$$

The symmetric nth tensor power of the spinor, $Sym(V^{\otimes n})$ is an irreducible representation with dimension $N = \frac{1}{6}(n+1)(n+2)(n+3)$. This can be checked by using the weight vector $\vec{r} = \frac{1}{2}(n, n)$ in the dimension formula (3.3).

By taking various products of the G^μ we generate a class of $N \times N$ matrices. Among these matrices are generators of $SO(5)$. These take the form

$$G^{\mu\nu} = \sum_{r=1}^{n} \rho_r([\Gamma^\mu, \Gamma^\nu]). \quad (4.5)$$

They act on the full set of matrices generated by the G^μ through the commutator action. As observed in [13][3][14] the operators G^μ and $G^{\mu\nu}$ close into the Lie algebra of $SO(6)$. We will find the decomposition of the Matrix algebra into representations of $SO(5)$. By summing up the dimensions of the representations appearing in the decomposition we will find that the G^μ matrices actually generate the full set of $N \times N$ matrices.

This is easily accomplished by observing that there is a simple relation between the matrices generated by multiplying the G’s and the Young diagram characterization of the

5
irreducible representations. We will give a few examples to build up to a correspondence between Young diagrams and the matrices generated by the G’s.

The G^μ transform as a vector of $SO(5)$, the representation $\bar{r} = (1,0)$. Now consider products of two G’s:

$$G^{\mu_1}G^{\mu_2} = \sum_{s_1,s_2=1}^{n} \rho_{s_1}(\Gamma^{\mu_1})\rho_{s_2}(\Gamma^{\mu_2})$$ \hfill (4.6)

We can separate this sum into two types of terms, depending on whether s_1 is equal to s_2 or not. The antisymmetrised product $G^{\mu_1}G^{\mu_2} - G^{\mu_2}G^{\mu_1}$ only contains terms where $s_1 = s_2$, i.e. it is made of terms like

$$\Gamma^{\mu_1}\Gamma^{\mu_2} \otimes 1 \otimes \cdots \otimes 1$$ \hfill (4.7)

with $\mu_1 \neq \mu_2$. A convenient way of writing the operator is

$$\sum_{s=1}^{n} \rho_s(\Gamma^{\mu_1}\Gamma^{\mu_2}).$$ \hfill (4.8)

The set of linearly independent such matrices, spanned by operators of the form given in (4.8) with $\mu_1 > \mu_2$ is in $1-1$ correspondence with vectors in the irreducible representation labelled by the Young diagram with one column of length 2, i.e $\bar{r} = (2,0 \cdots)$ or equivalently with row lengths given by the vector $\bar{c} = (1,1)$. The symmetric combination $G^{\mu_1}G^{\mu_2} + G^{\mu_2}G^{\mu_1}$ can be separated, in an $SO(5)$ invariant manner into a traceless part and a trace part. The trace part is $\delta_{\mu_1\mu_2}(G^{\mu_1}G^{\mu_2} + G^{\mu_2}G^{\mu_1})$. This is manifestly $SO(5)$ invariant, so it is proportional to the identity matrix in the N dimensional irreducible representation.

The traceless symmetric part $(G^{\mu_1}G^{\mu_2} + G^{\mu_2}G^{\mu_1}) - \delta_{\mu_1\mu_2}G^{\mu_1}G^{\mu_2}$ contains, from the sum (4.6) those expressions with $r_1 \neq r_2$, and can be put in $1-1$ correspondence with the irreducible representation of $SO(5)$ which is associated with the Young diagram with $\bar{r} = (2,0)$.

4.1. An $SO(5)$ covariant basis for $N \times N$ matrix algebra

To develop further the connection between the algebra generated by the G^μ and the algebra of $N \times N$ Matrices, we will first describe a convenient basis for these matrices in terms of operators which correspond to irreducible representations of $SO(5)$.

To each Young Diagram corresponding to an irreducible representation of $SO(5)$ we will associate an operator built from Γ matrices acting in $Sym(V^{\otimes n})$. As an example consider the diagram in the following figure.
The above Young diagram corresponds to an operator of the form

$$\sum_{\vec{s}} \rho_{s_1}(\Gamma) \rho_{s_2}(\Gamma) \rho_{s_3}(\Gamma) \rho_{s_4}(\Gamma)$$

(4.9)

The summation over \vec{s} denotes a sum where the indices $s_1 \cdots s_4$ run from 1 to n while respecting the condition $s_1 \neq s_2 \neq s_3 \neq s_4$ (Clearly such an operator only exists for $n \geq 4$). For simplicity we have not included $SO(5)$ indices on the Γ in (4.9). We will now be more explicit. The list of operators of the above form includes expressions

$$\sum_{\mu_i} A[\mu_1, \mu_2, \mu_3, \mu_4] \sum_{\vec{s}} \rho_{s_1}(\Gamma^{\mu_1}) \rho_{s_2}(\Gamma^{\mu_2}) \rho_{s_3}(\Gamma^{\mu_3}) \rho_{s_4}(\Gamma^{\mu_4})$$

(4.10)

The tensor A is traceless and has the Young Diagram symmetry, i.e it is symmetric under permutations of the index j of μ_j^i for fixed i, and is antisymmetric under permutations of the index i for fixed j. The number of operators of this form is the dimension of the representation of $SO(5)$ associated with the Young diagram with row lengths given by $\vec{r} = (4, 2)$, which is 220 using (3.3).

In general for a Young diagram with row lengths $\vec{r} = (r_1, r_2)$, we have

$$\sum_{\mu_j^i} A[\mu_j^i] \sum_{\vec{s}} \rho_{s_1}(\Gamma^{\mu_1^i}) \rho_{s_2}(\Gamma^{\mu_2^i}) \cdots \rho_{s_{r_2}}(\Gamma^{\mu_{r_2}^i}) \rho_{s_{r_2+1}}(\Gamma^{\mu_{r_2+1}^i}) \cdots \rho_{s_{r_1}}(\Gamma^{\mu_{r_1}^i})$$

(4.11)

The number of μ indices is equal to the number of boxes B in the Young diagram, where $B = r_1 + r_2$. The tensor A is traceless and has the symmetry of the Young diagram, i.e it is symmetric in the index j and antisymmetric in the index i.

Representations of $SO(5)$ have Young diagrams with at most two rows. The number of rows, in the correspondence with operators we described above, maps to the largest number of Γ matrices acting on a single V. In listing the independent operators in $Mat_N(C)$, we do not need more than two Γ acting on any factor V since the identity $\Gamma^5 = \Gamma^1\Gamma^2\Gamma^3\Gamma^4$ can be used to write any product of more than two Γ matrices in terms of a product with fewer Γ’s. Hence the class of operators we need to consider in a basis for Mat_N matches
conveniently with the representations of $SO(5)$. Similarly we can understand the need for the tensor A to be traceless in giving a basis of independent operators in the Matrix algebra. If we have an operator of the form $\sum_{\mu} \sum_{\vec{s}} \rho_{s_1}(\Gamma^{\mu}\Gamma^{\nu})\rho_{s_2}(\Gamma^{\mu})$, for example, we can use the identity $\sum_{\mu} \Gamma^{\mu} \otimes \Gamma^{\mu} = 1 \otimes 1$ in $Sym(V \otimes V)$, to show that it is not independent of operators involving only one Γ. The antisymmetry in the j index labelling different Γ matrices acting in the same V is understood since any Γ matrix squares to the identity. The symmetry along the rows is actually automatic for the operators (4.11) since the different s indices can be renamed without changing the operator.

The complete set of irreducible representations of $SO(5)$ in $\text{Mat}_N(C)$ is given by

$$n \geq r_1 \geq r_2 \geq 0$$

We sum up the dimensions as given by (3.3). First summing over the length of the second row, to get a function of the first row length, we get

$$D(r_1) \equiv \sum_{r_2=0}^{r_1} D(r_1, r_2) = \frac{1}{12}(r_1 + 1)^2(r_1 + 2)^2(2r_1 + 3)^2$$

Doing now the sum over the first row length :

$$\sum_{r_1=0}^{n} D(r_1) = \frac{1}{36}(n + 1)^2(n + 2)^2(n + 3)^2$$

This is exactly equal to the square of N. This proves that the above operators (4.11) give a complete $SO(5)$ covariant basis for the Matrix algebra, $\text{Mat}_N(C)$. We may summarize this result as :

$$\text{Mat}_N(C) = \bigoplus_{n \geq r_1 \geq r_2 \geq 0} V_{r_1, r_2}.$$

Here V_{r_1, r_2} refers to operators which transform in the irreducible representation of $SO(5)$ labelled by the row lengths $\vec{r} = (r_1, r_2)$. The explicit form of such operators corresponding to a given representation is given by (4.11).

4.2. Basis and products of G^μ

Consider a set of B copies of the matrices G^μ. We can form sums of products of these matrices using the traceless tensors with symmetry specified by Young diagrams Y with B boxes and $\vec{r} = (r_1, r_2)$. They take the form

$$\sum_{\mu_j} A(\mu_j) \prod_{i,j} G^{\mu_j}_{i,j}.$$

8
This set of operators transforms according to the Young diagram Y. We let r_1, r_2 range in the interval given by (4.12). Since we showed above that the dimensions of precisely this set of representations adds up to N^2, we know that these products of G^μ also form a basis of the algebra. In fact we know that the products of G^μ corresponding to a Young diagram has to be proportional to the operator of the form (4.11) associated with the same Young diagram. The constant of proportionality can be determined by acting on one state in $\text{Sym}(V^{\otimes n})$. This can be used to simplify calculations involved in the study of polarization of branes.

4.3. Projection from Matrix Algebra to Fuzzy Spherical harmonics

The fuzzy sphere algebra we have discussed so far $\hat{A}_n(S^4)$, which is isomorphic to $\text{Mat}_N(C)$, contains, in the large n limit, all the $SO(5)$ representations labelled by the row lengths r_1 and r_2, with unit multiplicity. Only the representations with $r_2 = 0$ give spherical harmonics of the classical sphere. So just looking at the algebra $\hat{A}_n(S^4)$ is not the adequate non-commutative structure which leads to the classical sphere in the large n limit. Rather we need to consider the an algebra $\mathcal{A}_n(S^4)$ together with the equation $r_2 = 0$. Any $N \times N$ matrix A can be written as a linear combination of operators transforming in symmetric representations with $r_2 = 0$, which we call A_+, and a linear combination involving non-symmetric representations with $r_2 \neq 0$ which we call A_-:

$$A = A_+ + A_-.$$ \hfill (4.17)

We define a projection P which annihilates the $A_-:

$$P(A) = A_+.$$ \hfill (4.18)

If we have two elements A and B, which satisfy $P(A) = A$ and $P(B) = B$, then in general the matrix product AB does not have to be symmetric. We can express this as:

$$AB = (AB)_+ + (AB)_-$$ \hfill (4.19)

$(AB)_+$ denotes matrices which transform as representations with $r_2 = 0$. $(AB)_-$ denote matrices which transform in representations with $r_2 \neq 0$. However we can define a product which closes on the symmetric representations by just projecting the matrix product

$$A \bullet B = P(AB) = (AB)_+$$ \hfill (4.20)
We show, in a later section, that this is not an associative product, and that the non-associativity disappears in the large n limit so that we indeed recover the classical sphere. Here we just observe a simple numerical reason for suspecting non-associativity. While a sum of representations with non-zero r_1 and r_2 adds up as in (4.14) to an absolute square and hence can be identified with a Matrix algebra, a sum with non-zero r_1 only, up to n, gives $\frac{1}{12}(n+2)^2(n+1)(n+3)$. This is not an absolute square. Now under rather general grounds, whenever we have an irreducible representation of an associative algebra over the complex numbers, the representatives of the algebra give a complete basis for the matrix algebra. This is Burnside’s theorem, described for example in [27]. The symmetric representations, added with unit multiplicity, do not add up to the dimension of any matrix algebra so we do not expect them to form a finite Matrix algebra over C, without knowing any details of explicit fuzzy sphere constructions of the kind we described.

The projection defined in (4.18) and the product in (4.20) can be re-expressed as follows. The quadratic and cubic casimirs of $SO(5)$ can be written in terms of products of the generators of $SO(5)$ $G^{\mu\nu}$. In any irreducible representation, these are numbers which are functions of r_1 and r_2. The explicit formulae are given for example in [28]. We can invert this relation in order to write a formula for r_2 in terms of the Casimirs, and hence in terms of a series in $G_{\mu\nu}$. These can be considered as differential operators on the algebra $\hat{A}_n(S^4)$, and they act by commutators. Hence r_2 can be considered as a differential operator on $\hat{A}_n(S^4)$, which we write as \hat{r}_2. A_+ in (4.18) is the kernel of this differential operator. A useful way to write the projected product, is to multiply AB, the ordinary product, with spherical harmonics $Y^*_{r_1', r_2'=0}$, take a trace to pick out the coefficient of $Y(r_1, r_2 = 0)$ in the expansion of AB, and sum over r_1

$$P(AB) = \sum_{r_1} TR(ABY^*_{(r_1,0)}Y_{(r_1,0)}). \quad (4.21)$$

5. Higher even spheres

The construction we described above for the fuzzy four-sphere admits a simple generalization to higher even spheres.
5.1. The fuzzy 6-sphere

The arguments we described in detail for the fuzzy S^4 generalize straightforwardly to the fuzzy S^6. Now we consider operators G^μ acting on the symmetrized tensor space $\text{Sym}(V^{\otimes n})$ where V is the fundamental spinor with weight $\vec{r} = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$. The symmetrized tensor product of the spinor has weight $\vec{r} = (\frac{n}{2}, \frac{n}{2}, \frac{n}{2})$. The action of G^μ is again given by

$$G^\mu = P_n \sum_{r=1}^{n} \rho_r (\Gamma^\mu) P_n$$

(5.1)

Using the dimension formula (3.3), we get

$$N \equiv \text{Dim}(\mathcal{R}) = \frac{1}{360} (n+1)(n+2)(n+3)^2(n+4)(n+5).$$

(5.2)

Now the tensor representations are given by Young diagrams with three rows, labelled by $\vec{r} = (r_1, r_2, r_3)$, with $r_1 \geq r_2 \geq r_3$. For fixed n, the operators that appear in Matrices over \mathcal{R} also obey the restriction $r_1 \leq n$. The map between representations and matrices acting on \mathcal{R} analogous to (4.11) is given by

$$\sum_{\mu_j} A[\mu_j] \sum_{\vec{s}} \rho_{s_1} (\Gamma^{\mu_1} \Gamma^{\mu_2} \Gamma^{\mu_3}) \cdots \rho_{s_{r_3}} (\Gamma^{\mu_{r_3}} \Gamma^{\mu_{r_3}})$$

$$\rho_{s_{r_3+1}} (\Gamma^{\mu_{r_3+1}} \Gamma^{\mu_{r_3+1}}) \cdots \rho_{s_{r_2}} (\Gamma^{\mu_{r_2}} \Gamma^{\mu_{r_2}}) \cdots$$

$$\rho_{s_{r_2+1}} (\Gamma^{\mu_{r_2+1}}) \cdots \rho_{s_{r_1}} (\Gamma^{\mu_{r_1}})$$

(5.3)

The equation describing products of G_i which correspond to a given representation take the same form as (4.16), with the index i running from 1 up to a maximum of 3 and the index j running from 1 up to a maximum of n, and A being a traceless tensor with the Young symmetry.

The number of operators corresponding to a given Young diagram is the dimension of that representation. The dimension $D(r_1, r_2, r_3)$ is given by (3.3). Doing the sums using Maple, we find, after the sum over r_3

$$D(r_1, r_2) \equiv \sum_{r_3=0}^{r_1} D(r_1, r_2, r_3)$$

$$= \frac{1}{4320} (2r_2 + 3)(r_2 + 2)^2(r_2 + 1)^2(2r_1 + 5)$$

$$(r_1 + r_2 + 4)(r_1 - r_2 + 1)(3r_1^2 + 15r_1 - r_2^2 - 3r_2 + 18)$$

(5.4)
After the sum over r_2 we have

$$D(r_1) \equiv \sum_{r_2=0}^{r_1} D(r_1, r_2)$$

$$= \frac{1}{43200} (2r_1 + 5)(2r_1^2 + 10r_1 + 15)(r_1 + 4)^2(r_1 + 3)^2(r_1 + 2)^2(r_1 + 1)^2$$

Finally we do the sum over r_1 and find

$$D = \sum_{r_1} D(r_1) = N^2$$

where N is given in (5.2).

If we just sum over the representations with a non-zero first row, with the length of teh first row extending from 1 to n, we get $\frac{1}{360}(n + 3)(n + 1)(n + 2)(n + 4)(n + 5)$, which is not an absolute square.

5.2. Fuzzy S^8

In this case we take the fundamental spinor of $SO(9)$ and consider the n’th symmetric tensor power. The dimension of this representation is $N = \frac{1}{302400}(n+1)^2(n+2)^2(n+3)^4(n+4)^4(n+5)^4(n+6)^2(n+7)^2$.

The G^μ are Γ matrices acting in these representations. We can associate independent matrices generated by multiplying G^μ with traceless tensors associated with symmetry described by Young diagrams Y having row lengths (r_1, r_2, r_3, r_4), with $n \geq r_1 \geq r_2 \geq r_3 \geq r_4 \geq 0$. By summing (using Maple) over all such representations with r’s in this range we again get precisely N^2.

6. Review : Even orthogonal groups $SO(2k)$

We need to review some properties of the $SO(2k)$, which can be found in [26] for example. The tensor representations are labelled by integer valued vectors $\vec{r} = (r_1, r_2,.., r_k)$. The difference from $SO(2k+1)$ is that r_k can be either positive or negative. In the case of $SO(4) = SU(2) \times SU(2)$, we have

$$2j_L = r_1 + r_2$$

$$2j_R = r_1 - r_2$$

(6.1)
When \(r_2 < 0, 2j_L < 2j_R \). For example, the representation with \(\vec{r} = (1, 1) \) corresponds to self-dual anti-symmetric tensors, and the representation with \(\vec{r} = (1, -1) \) corresponds to anti-self-dual tensors. In general we will refer to representations associated to vectors where \(r_k > 0 \) as self-dual, and those with \(r_k < 0 \) as anti-self-dual. Two representations which are related by a change of sign of \(r_k \) are conjugate.

To write a formula for the dimensions of representations we define

\[
\begin{align*}
 l_i &= r_i + k - i \\
 m_i &= k - i
\end{align*}
\]

The dimension is

\[
D(l_i) = \prod_{i \leq j} \frac{(l_i^2 - l_j^2)}{(m_i^2 - m_j^2)}
\]

The construction of irreducible representations with \(r_k \neq 0 \) proceeds by applying the Young symmetrizer to traceless tensors. For \(r_k > 0 \), we apply to each antisymmetrized product of \(k \) tensors (corresponding to the columns of length \(k \) in the Young Diagram), a \(P^+ \) projector, where

\[
P^+ = \frac{1}{2}(1 + \Gamma^{2k+1}).
\]

For \(r_k < 0 \), we apply the \(P^- \) projector in the same way, where \(P^- = \frac{1}{2}(1 - \Gamma^{2k+1}) \).

7. The fuzzy 3-sphere

For the fuzzy 3-sphere we are working with matrices acting in a reducible representation \(\mathcal{R}_+ \oplus \mathcal{R}_- \). The weights of \(\mathcal{R}_+ \) are obtained by adding \(\frac{(n+1)}{2} \) copies of \(\vec{r} = (\frac{1}{2}, \frac{1}{2}) \) and \(\frac{(n-1)}{2} \) copies of \(\vec{r} = (\frac{1}{2}, -\frac{1}{2}) \), giving a total weight of \(\vec{r} = (\frac{n}{2}, \frac{1}{2}) \). The representation \(\mathcal{R}_- \) has weights \(\vec{r} = (\frac{n}{2}, -\frac{1}{2}) \). The dimensions are \(D(R_+) = D(R_-) = \frac{(n+1)(n+3)}{4} \), as can be checked using the formula (6.3). Alternatively we can exploit the isomorphism \(SO(4) = SU(2) \times SU(2) \) which gives the relation (6.1).

The coordinates of the fuzzy three-sphere were defined in [13] by the equation

\[
\hat{G}_i = \mathcal{P}_R G_i \mathcal{P}_R
\]

where \(\mathcal{P}_R = \mathcal{P}_{R_+} + \mathcal{P}_{R_-} \) and acts on \(Sym(V^{\otimes n}) \). \(V \) is a reducible representation \(V = V_+ \oplus V_- \), where \(V_+ \) has weights \(\vec{r} = (\frac{1}{2}, \frac{1}{2}) \) or \((2j_L, 2j_R) = (\frac{1}{2}, 0) \) and \(V_- \) has weights \(\vec{r} = (\frac{1}{2}, -\frac{1}{2}) \) or \((2j_L, 2j_R) = (0, \frac{1}{2}) \). \(V \) is an irreducible representation of \(Spin(5) \) which is used for the even fuzzy sphere \(\hat{A}_n(S^4) \). \(\mathcal{P}_{R_+} \) is an operator which projects to \(\mathcal{R}_+ \), the irreducible representation of \(Spin(4) \) labelled by \((2j_L, 2j_R) = (\frac{n+1}{2}, \frac{n-1}{2}) \). The
operator $\mathcal{P}_{\mathcal{R}_-}$ projects to $(2j_L,2j_R) = (\frac{(n+1)}{2},\frac{(n-1)}{2})$. The explicit expression is $\mathcal{P}_{\mathcal{R}_+} = ((P_+)^{\otimes \frac{n+1}{2}} P_-^{\otimes \frac{n-1}{2}})^{\text{sym}}$, where the subscript denotes symmetrization. For example, in the case $n = 3$,

$$\mathcal{P}_{\mathcal{R}_+} = P_+ \otimes P_+ \otimes P_- + P_+ \otimes P_- \otimes P_+ + P_- \otimes P_+ \otimes P_+.$$

7.1. $SO(4)$ covariant basis for Matrices acting on \mathcal{R}

To obtain the representations of $SO(4)$ which are contained in Matrices acting on $\mathcal{R}_+ \oplus \mathcal{R}_-$, we separate the problem into two parts. We first consider matrices taking \mathcal{R}_+ to \mathcal{R}_+, which we denote as $\text{End}(\mathcal{R}_+)$. Next we consider matrices mapping \mathcal{R}_+ to \mathcal{R}_- which we denote as $\text{Hom}(\mathcal{R}_+, \mathcal{R}_-)$. The decomposition of $\text{End}(\mathcal{R}_-)$ follows from that of $\text{End}(\mathcal{R}_+)$ by changing P_+ to P_-. Similarly the decomposition of $\text{Hom}(\mathcal{R}_-, \mathcal{R}_+)$ follows from that of $\text{Hom}(\mathcal{R}_+, \mathcal{R}_-)$. Let us consider then matrices in $\text{End}(\mathcal{R}_+)$. They correspond to Young Diagrams with even numbers of boxes B. We first consider operators transforming in self-dual representations. These are labelled by $\vec{r} = (p_1 + p_2, p_1)$, with $p_1 > 0$ and $p_2 \geq 0$. The schematic form of the operators corresponding to the above “self-dual Young Diagram”

$$\sum_{\vec{s}, \vec{t}} \rho_{s_1}((\Gamma P_+)^{\otimes \gamma}) \rho_{s_2}((\Gamma P_+)^{\otimes \gamma}) \cdots \rho_{s_{p_1}}((\Gamma P_+)^{\otimes \gamma}) \rho_{t_1}(\Gamma) \rho_{t_2}(\Gamma) \cdots \rho_{t_{p_2}}(\Gamma)$$ \hspace{1cm} (7.2)

The sum over (\vec{s}, \vec{t}) denotes a sum where $s_1 \neq s_2 \cdots \neq s_{p_1} \neq t_1 \cdots \neq t_{p_2}$ and all the s and t range over 1 to n. We have suppressed the $SO(4)$ indices on the Γ, to avoid writing a more cumbersome expression. It is understood that the Γ carry $SO(4)$ indices which are contracted with a traceless tensor with Young symmetry as in (4.11). All the operators corresponding to the p_1 columns of length 2 have P_+ projectors attached to them. This guarantees that the operator transforms according to a self-dual representation. Recall that \mathcal{R}_+ is obtained from $\text{Sym}(V^{\otimes n})$ by acting with strings of $\frac{(n+1)}{2}$ copies of P_+, and $\frac{(n-1)}{2}$ copies of P_-. Of the p_2 copies $\rho(\Gamma)$ acting on \mathcal{R}_+, let p_2^+ denote the number that act on a P_+ and $p_2^−$ the number that act on a P_-. And let p_3^+ denote the remaining number of P_+. By adding up the number of P_+ that the operator (7.2) is acting on, we get

$$p_1 + p_2^+ + p_3^+ = \frac{(n+1)}{2}$$ \hspace{1cm} (7.3)

and adding the number of P_+ operators that result from this action

$$p_1 + p_2^- + p_3^+ = \frac{(n+1)}{2}$$ \hspace{1cm} (7.4)
These two equations imply that

\[p_2^+ = p_2^- . \]

(7.5)

Let us define \(k = p_2^+ = p_2^- \). Without loss of generality, then, we can write for the self-dual operators

\[
\sum_{s,t} \rho_{s_1} (\Gamma \Gamma P_+) \rho_{s_2} (\Gamma \Gamma P_+) \cdots \rho_{s_{p_1}} (\Gamma \Gamma P_+) \rho_{t_1} (\Gamma P_+) \rho_{t_2} (\Gamma P_+) \cdots \rho_{t_k} (\Gamma P_+) \\
\rho_{t_{k+1}} (\Gamma P_-) \rho_{t_{k+2}} (\Gamma P_-) \cdots \rho_{t_{p_2}} (\Gamma P_-)
\]

(7.6)

The allowed values of \(k \) range from 0 to \(\frac{(n-1)}{2} \), since there are no more than \(\frac{(n-1)}{2} \) copies of \(P_- \). For fixed \(k \), the allowed values of \(p_1 \) range then from 0 to \(\frac{(n+1)}{2} - k \). Doing the sum over the appropriate representations we get :

\[
\sum_{k=0}^{\frac{(n-1)}{2}} \sum_{p_1=0}^{\frac{(n+1)}{2} - k} (2p_1 + 2k + 1)(2k + 1) = \frac{1}{96} (n+1)(3n^3 + 41n^2 + 97n + 51)
\]

(7.7)

We have included, in the above, a term with \(p_1 = 0 \), which corresponds to representations which are not self-dual or anti-self-dual.

For anti-selfdual representations we have \(\vec{r} = (p_1 + p_2, -p_1) \). Now the operators are of the form

\[
\sum_{s,t} \rho_{s_1} (\Gamma \Gamma P_-) \rho_{s_2} (\Gamma \Gamma P_-) \cdots \rho_{s_{p_1}} (\Gamma \Gamma P_-) \rho_{t_1} (\Gamma) \rho_{t_2} (\Gamma) \cdots \rho_{t_{p_2}} (\Gamma).
\]

(7.8)

Again we let \(p_2^+ \) and \(p_2^- \) be the number of single \(\Gamma \) which act on \(P_+ \) and \(P_- \) respectively, and \(p_3^- \) the number of remaining \(P_- \). Adding up the the number of \(P_- \) that are acted on by the above operator we get :

\[
p_1 + p_2^- + p_3^- = \frac{(n-1)}{2} \]

(7.9)

and adding the number of \(P_- \) that come out we have:

\[
p_1 + p_2^+ + p_3^- = \frac{(n-1)}{2} \]

(7.10)

This gives \(p_2^+ = p_2^- = k \). Now \(p_1 \) can range from 1 to \(\frac{(n-1)}{2} \), and \(k \) ranges from 0 to \(\frac{(n-1)}{2} - p_1 \). Performing the sum we get :

\[
\sum_{p_1=1}^{\frac{(n-1)}{2}} \sum_{k=0}^{\frac{(n-1)}{2} - p_1} (2p_1 + 2k + 1)(2k + 1) = \frac{1}{96} (n-1)(n+1)(3n^2 + 4n + 3).
\]

(7.11)

Adding up the dimensions in (7.11) and (7.7) the self-dual and the antiself-dual representations we get \(\frac{1}{16} (n+1)^2(n+3)^2 \), which is exactly the dimension of the space of matrices mapping \(\mathcal{R}_+ \) to \(\mathcal{R}_+ \). The matrices mapping \(\mathcal{R}_- \) to \(\mathcal{R}_- \) can be obtained exactly as above by exchanging the role of \(P_+ \) with that of \(P_- \).
7.2. Decomposing $\text{Hom}(\mathcal{R}_+, \mathcal{R}_-)$ into representations of $SO(4)$

Now we consider matrices which map \mathcal{R}_+ to \mathcal{R}_-. We give here a complete basis for these matrices.

Operators transforming according to self-dual representations take the form:

$$\sum_{s,t} \rho_{s_1}(\Gamma P_+) \rho_{s_2}(\Gamma P_+) \cdots \rho_{s_{p_1}}(\Gamma P_+)
\rho_{t_1}(\Gamma) \rho_{t_2}(\Gamma) \cdots \rho_{t_{p_2}}(\Gamma)$$

(7.12)

Of the p_2 copies Γ let p_2^+ act on P_+ and let p_3^+ be the number of remaining P_+. The total number of P_+ that the above operator is acting on is, therefore,

$$p_1 + p_2^+ + p_3^+ = \frac{(n+1)}{2}$$

(7.13)

Here we used the fact that the projector $\mathcal{P}_{\mathcal{R}_+}$, which projects $\text{Sym}(V^\otimes n)$ to \mathcal{R}_+ contains $\frac{n+1}{2}$ copies of P_+. The total number of P_+ which result from the action is

$$p_1 + p_2^- + p_3^+ = \frac{(n-1)}{2}$$

(7.14)

Here we used the fact that $\mathcal{P}_{\mathcal{R}_-}$ has $\frac{(n-1)}{2}$ copies of P_+. These two equations imply $p_2^+ = p_2^- + 1$. Letting $p_2^- = k$, we have $p_2 = p_2^+ + p_2^- = 2k + 1$. We can now write the operator in (7.12) without loss of generality as

$$\sum_{\vec{s}, \vec{t}} \rho_{s_1}(\Gamma P_+) \rho_{s_2}(\Gamma P_+) \cdots \rho_{s_{p_1}}(\Gamma P_+)
\rho_{t_1}(\Gamma P_+) \rho_{t_2}(\Gamma P_+) \cdots \rho_{t_{p_2}}(\Gamma P_+)
\rho_{t_{k+1}}(\Gamma P_-) \rho_{t_{k+2}}(\Gamma P_-) \cdots \rho_{t_{2k+1}}(\Gamma P_-)$$

(7.15)

From (7.14) the largest value of p_1 is $\frac{n-1}{2}$, since $p_2^- \geq 0$ and $p_3^+ \geq 0$. The self-dual representations have $p_1 \geq 1$. The representations with $p_1 = 0$ are neither self-dual nor anti-self-dual. We will count them here by including the term with $p_1 = 0$ along with the self-dual reps. It also follows that, for fixed p_1, $k = p_2^-$ is allowed to range from 0 to $\frac{n-1}{2} - p_1$. The number of Matrices which are of this form can be obtained by adding up the dimensions of the corresponding representations. Here $r_1 = p_1 + 2k + 1$, and $r_2 = p_1$,
so that $2j_L = 2p_1 + 2k + 1$ and $2j_R = 2k + 1$. The contribution from these representations, denoted by D_+ is therefore:

$$D_+ = \sum_{p_1=0}^{(n-1)/2} \sum_{p_2=0}^{(n-1)/2 - p_1} (2p_1 + 2k + 2)(2k + 2)$$

$$= \frac{1}{96}(3n+5)(n+5)(n+3)(n+1)$$

(7.16)

Now consider the contribution from anti-self-dual representations corresponding to operators of the form:

$$\sum_{s,t} \rho_{s_1}(\Gamma P_-)\rho_{s_2}(\Gamma P_-) \cdots \rho_{s_{p_1}}(\Gamma P_-) \rho_{t_1}(\Gamma)\rho_{t_2}(\Gamma) \cdots \rho_{t_{p_2}}(\Gamma)$$

(7.17)

Defining p_2^+, p_2^- and p_3^+ as in the previous paragraph, and adding up the number of P_+ in the incoming state we have:

$$p_2^+ + p_3^+ = \frac{n+1}{2},$$

(7.18)

and from the outgoing state

$$p_2^- + p_3^+ = \frac{n-1}{2}.$$

(7.19)

This gives $p_2^+ = p_2^- + 1$ as before, and we define $k \equiv p_2^-$. Now the operator can be rewritten

$$\sum_{s,t} \rho_{s_1}(\Gamma P_-)\rho_{s_2}(\Gamma P_-) \cdots \rho_{s_{p_1}}(\Gamma P_-) \rho_{t_1}(\Gamma P_+)\rho_{t_2}(\Gamma P_+) \cdots \rho_{t_{k+1}}(\Gamma P_+).$$

(7.20)

$$\rho_{t_{k+2}}(\Gamma P_-)\rho_{t_{k+3}}(\Gamma P_-) \cdots \rho_{t_{2k+1}}(\Gamma P_-).$$

Since we already counted representations with $p_1 = 0$ above, the allowed range of p_1 is from 1 to $\frac{n-1}{2}$. The upper bound comes from the fact that there are no more than $\frac{n-1}{2}$ copies of P_- in R_+. For fixed p_1, k can range from 0 to $\frac{n-1}{2} - p_1$. The contribution from anti-self-dual representations, denoted by D_- is

$$D_- = \sum_{p_1=1}^{n-1} \sum_{p_2=0}^{n-1 - p_1} (2p_1 + 2p_2 + 2)(2p_1 + 2)$$

$$= \frac{1}{96}(n-1)(3n+7)(n+3)(n+1)$$

(7.21)

Adding up the expressions from (7.21) and (7.16) we find

$$D = D_+ + D_- = \frac{1}{16}(n+1)^2(n+3)^2.$$

(7.22)

This shows that the matrices described in (7.20) and (7.12) give a complete $SO(4)$ covariant basis for $\text{Hom}(R_+, R_-)$, the matrices acting from R_+ to R_-. By exchanging P_+ with P_- we can obtain $\text{Hom}(R_-, R_+)$.

17
7.3. Relation between algebra generated by coordinates and Matrix Algebra

In the case of $\hat{A}_n(S^4)$ the algebra generated by the coordinate matrices G^μ is isomorphic to a Matrix algebra. For the fuzzy three-sphere, this is not the case. The coordinate matrices \hat{G}^i do not generate the matrix algebra $Mat_N(C)$. They only generate a sub-algebra. In the discussion of $Mat_N(C)$, we considered 4 subalgebras $End(\mathcal{R}_+)$, $End(\mathcal{R}_-)$, $Hom(\mathcal{R}_+,\mathcal{R}_-)$ and $Hom(\mathcal{R}_-,\mathcal{R}_+)$. Each has dimension $\frac{N^2}{4}$. Among the matrices in $End(\mathcal{R}_+)$, we have, for generic n (i.e $n > 1$),

$$\mathcal{P}_{\mathcal{R}_+} \sum_s \rho_s (G^{ij} P_+) \mathcal{P}_{\mathcal{R}_+}$$

$$\mathcal{P}_{\mathcal{R}_-} \sum_s \rho_s (G^{ij} P_-) \mathcal{P}_{\mathcal{R}_+} \quad (7.23)$$

Among $End(\mathcal{R}_-)$ we have

$$\mathcal{P}_{\mathcal{R}_-} \sum_s \rho_s (G^{ij} P_+) \mathcal{P}_{\mathcal{R}_-}$$

$$\mathcal{P}_{\mathcal{R}_-} \sum_s \rho_s (G^{ij} P_-) \mathcal{P}_{\mathcal{R}_-} \quad (7.24)$$

We have used the notation $G^{ij} = [\Gamma^i, \Gamma^j]$. The matrices generated by \hat{G}^i only include the first operator in (7.23) and the second in (7.24). The operator $\sum_s \rho_s (\Gamma^i)$ acting on \mathcal{R}_+ can be written as a sum of $\sum_s \rho_s (\Gamma^i P_+) + \sum_s \rho_s (\Gamma^i P_-)$. The first operator maps states from \mathcal{R}_+ to \mathcal{R}_-. The second maps states in \mathcal{R}_+ to states in the representation $(2j_L, 2j_R) = (\frac{n+3}{2}, \frac{n-3}{2})$. These states are projected out by the $\mathcal{P}_{\mathcal{R}}$ in the definition of \hat{G}^i. This is the reason why operators in the second line of (7.23) are in $End(\mathcal{R}_+)$ but cannot be generated by \hat{G}^i. The algebra $\hat{A}_n(S^3) = Mat_N(C)$ should therefore be distinguished from $\hat{A}^{(g)}_n(S^3)$, the sub-algebra generated by the coordinates. The algebra $\hat{A}^{(g)}_n(S^3)$ contains the symmetric representations with unit multiplicity, whereas $\hat{A}_n(S^3)$ contains them with multiplicity 2.

As in the case of the fuzzy 4-sphere, we need to apply a projection if we want to recover the spectrum of representations of the classical 3-sphere in the large n limit. Both $\hat{A}_n(S^3)$ and $\hat{A}^{(g)}_n(S^3)$ contain all the desired representations but contain extra representations as well. The algebra $A_n(S^3)$ can be defined as a projection of the Matrix algebra, where we restrict $r_2 = 0$, and we require the matrices to be invariant under conjugation by the permutation matrix which exchanges \mathcal{R}_+ and \mathcal{R}_-, and P_+ with P_-.

18
8. Higher Odd Spheres: The five-sphere

For the fuzzy sphere S^{2k-1}, the coordinates are matrices acting in a reducible representation $\mathcal{R}_+ \oplus \mathcal{R}_-$ of $SO(2k)$. The weights of \mathcal{R}_+ are $\overrightarrow{r} = (\frac{n}{2}, \frac{n}{2}, 0, \frac{1}{2}, \frac{1}{2})$ and those of \mathcal{R}_- are $\overrightarrow{r} = (\frac{n}{2}, \frac{n}{2}, -\frac{1}{2}, -\frac{1}{2})$, where \overrightarrow{r} is a k dimensional vector. We discuss in detail the case of the five sphere below.

Weights of \mathcal{R}_+ are $\overrightarrow{r} = (\frac{n}{2}, \frac{n}{2}, \frac{1}{2})$ and those of \mathcal{R}_- are $\overrightarrow{r} = (\frac{n}{2}, \frac{n}{2}, -\frac{1}{2})$. From (8.3) the dimension of each is

$$\frac{N}{2} \equiv Dim(\mathcal{R}_-) = Dim(\mathcal{R}_+) = \frac{1}{192} (n + 1)(n + 3)^3(n + 5). \quad (8.1)$$

Matrices acting on \mathcal{R} can be decomposed into four blocks $\text{End}(\mathcal{R}_+), \text{End}(\mathcal{R}_-), \text{Hom}(\mathcal{R}_+, \mathcal{R}_-)$ and $\text{Hom}(\mathcal{R}_-, \mathcal{R}_+)$. $\text{End}(\mathcal{R}_-)$ is related to $\text{End}(\mathcal{R}_+)$ by changing P_+ to P_-. Similarly $\text{Hom}(\mathcal{R}_-, \mathcal{R}_+)$ is related to $\text{Hom}(\mathcal{R}_+, \mathcal{R}_-)$.

8.1. $\text{End}(\mathcal{R}_+)$

Consider operators of the form

$$\sum_s \rho_{s_1} (\Gamma \Gamma \Gamma P_+) \cdots \rho_{s_{p_1}} (\Gamma \Gamma \Gamma P_+)$$

$$\rho_{s_{p_1}+1} (\Gamma \Gamma P_+) \cdots \rho_{s_{p_1+p_2^+}} (\Gamma \Gamma P_+)$$

$$\rho_{s_{p_1+p_2^+}+1}(\Gamma \Gamma P_-) \cdots \rho_{s_{p_1+p_2^++p_3^+}} (\Gamma \Gamma P_-)$$

$$\rho_{s_{p_1+p_2^++p_3^+}+1} (\Gamma P_-) \cdots \rho_{s_{p_1+p_2^++p_3^++p_4^+}} (\Gamma P_-)$$

$$\rho_{s_{p_1+p_2^++p_3^++p_4^+}+1} (\Gamma P_-) \cdots \rho_{s_{p_1+p_2^++p_3^++p_4^++p_5^+}} (\Gamma P_-)$$

This gives a non-zero action on vectors in $Sym(V^\otimes n)$ which contain $p_1 + p_2^+ + p_3^+ + p_4^+ = (n + 1)/2$ factors of positive chirality, where p_4^+ can be any integer between 0 and $(n + 1)/2 - p_1 + p_2^+ + p_3^+$. The outgoing vector has $p_2^+ + p_3^- + p_4^+ = (n + 1)/2$ vectors of positive chirality. These equations imply that $p_3^- = p_3^+ + p_1$. Writing $p_3^+ = k$, we see that

$$p_3^- = k + p_1. \quad (8.3)$$

The expression of the form (8.2) corresponds to a representation of weight given by $\overrightarrow{r} = (p_1 + p_2^+ + p_3^+ + p_5^-, p_1 + p_2^+ + p_3^-, p_1)$. To be more explicit, we assign $SO(6)$ indices to the Γ and we multiply by a traceless tensor with the appropriate Young symmetry as in (5.3).
We can obtain the dimension $\text{Dim}(\vec{r})$ of the representation using (6.3). The summation with the appropriate range for the different indices is:

$$
\sum_{p_1=0}^{n-1} \sum_{k=0}^{(n+1)/2} \sum_{p_1^+ = 0}^{(n-1)/2 - k - p_1} \sum_{p_2^- = 0}^{(n-1)/2 - k - p_1} \text{Dim}(\vec{r})
$$

(8.4)

The upper bound on p_1 follows because $p_3^- \geq p_1$ (as is evident from (8.3)) and $p_3^- \leq (n-1)/2$. The upper bound on k is similarly due to the fact that the operator (8.2) hits $k + p_1$ copies of P_- and this is bounded by $n-1$ in \mathcal{R}_+. We have included, in the above sum, the representations with $p_1 = 0$ which are not self-dual.

Next we consider anti-self-dual operators of the form

$$
\sum_{s} \rho_{s_1}(\Gamma \Gamma P_-) \cdots \rho_{s_{p_1}}(\Gamma \Gamma P_-)
$$

$$
\rho_{s_{p_1+1}}(\Gamma \Gamma P_+) \cdots \rho_{s_{p_1+p_2^+}}(\Gamma \Gamma P_+)
$$

$$
\rho_{s_{p_1+p_2^+ + p_3^- + 1}}(\Gamma \Gamma P_-) \cdots \rho_{s_{p_1+p_2^+-p_3^- + p_3^+}}(\Gamma \Gamma P_-)
$$

(8.5)

These correspond to weights $\vec{r} = (p_1 + p_2^+ + p_2^- + p_3^+ + p_3^- , p_1 + p_2^+ + p_2^- , -p_1)$. For these we sum in the range

$$
\sum_{p_1=1}^{n-1} \sum_{k=0}^{(n-2p_1-1)/2} \sum_{p_1^+ = 0}^{(n-1)/2 - k - p_1} \sum_{p_2^- = 0}^{(n-1)/2 - k - p_1} \text{Dim}(\vec{r})
$$

(8.6)

Performing the two sums in (8.4) and (8.6) (using Maple), we get $\frac{N^2}{4}$, which is the dimension of $\text{End}(\mathcal{R}_+)$.

8.2. $\text{Hom}(\mathcal{R}_+, \mathcal{R}_-)$

Using notation similar to the discussion in the previous section, we now have $p_3^- = p_1 + p_3^+ - 1$. The summations of $D(p_1,p_2^+,p_2^-,p_3^-)$ are done with

$$
1 \leq p_1 \leq \frac{n-1}{2},
$$

$$
0 \leq p_3^- \leq \frac{n-1}{2} - p_1
$$

$$
0 \leq p_2^+ \leq \frac{n-1}{2} - p_3^- - p_1
$$

$$
0 \leq \frac{n-1}{2} - p_3^- - p_1
$$

(8.7)
with multiplicity two, corresponding to self-dual and anti-selfdual representations. The summation of $D(p_1 = 0, p_2^+, p_2^-, p_3^-)$ is done with the above constraints (8.7). These are representations with less than three rows. Adding up the dimensions (using Maple) in this range we get $\frac{N^2}{4}$, the dimension of $Hom(R_+, R_-)$.

8.3. General remarks

The same remarks as for the three-sphere apply here, as far as the need to distinguish the matrix algebra $\mathcal{A}_n(S^5) \equiv Mat_N(C)$, the algebra generated by the coordinates $\hat{A}^{(g)}_n(S^5)$, and the algebra of fuzzy spherical harmonics, $\mathcal{A}_n(S^5)$, obtained by a projection of the Matrix algebra.

The Matrix Algebras associated to the various even and odd fuzzy spheres S^m have been decomposed, in previous sections, in terms of representations of $SO(m + 1)$. The Matrix algebras contain too many representations and have to be projected to recover the correct classical limit. This was explained in section 4.3 in the context of S^4. It was already argued in [5] that in the large n limit, the algebra becomes commutative. Since an algebra can be commutative but not associative we need to show that the algebra $\mathcal{A}_n(S^4)$ is indeed associative in the large n limit, to prove that we correctly recover a classical sphere.

Let us start with three elements A, B, C of the Matrix algebra in (4.15), which are all symmetric, i.e. they are sums of operators transforming in representations with $r_2 = 0$. This allows us to write

$$P(A) = A$$
$$P(B) = B$$
$$P(C) = C.$$ \hfill (9.1)

The question of associativity of the projected product involves a comparison of $(AB)_+ C_+$ with $(A(BC)_+)$. It is useful to recall that

$$((AB)C) = (A(BC))$$ \hfill (9.2)
By separating each side into symmetric representations with \(r_2 = 0 \) and non-symmetric representations with \(r_2 \neq 0 \), we deduce

\[
((AB)C)_+ = (A(BC))_+
\]

(9.3)

and

\[
((AB)C)_- = (A(BC))_-
\]

(9.4)

Now consider the expression \((AB)C)_+\). We can write \((AB)C)_+ = ((AB)_+C)_+ + ((AB)_-C)_+\) where we have separated the symmetric and non-symmetric representations in \(AB\). Similarly we can write \((A(BC))_+ = (A(BC)_+)_+ + (A(BC)_-)_+\). Using these two expressions, along with (9.3), we deduce that the failure of associativity is given by:

\[
((AB)_+C)_+ - (A(BC)_+)_+ = (A(BC)_-)_- - ((AB)_-C)_+ \]

(9.5)

This shows that the failure of associativity of the projected product defined in (4.20) is related to the fact that the non-symmetric representations can multiply symmetric representations to give symmetric representations. Equivalently, the non-symmetric representations do not form an ideal. What will be significant in the following is that both terms on the RHS of (9.5) contain elements \((AB)_-\) and \((BC)_-\) obtained by coupling two symmetric representations to non-symmetric representations.

Now a simple combinatoric argument can be used to show that the non-associativity vanishes in the large \(n\) limit. This follows from the fact the couplings \((AB)_-\) are subleading. Consider, for concreteness, an operator among those in (4.11) of the type \(\sum_{\tilde{r}} \rho_{s_1}(\Gamma)\rho_{s_2}(\Gamma)\), associated with the representation \(\tilde{r} = (2, 0)\). When we square such an operator we get, among other things, the identity matrix with a coefficient of order \(n^4\). This comes the fact that the product contains terms where the \(\Gamma\) matrices are acting in four different vector spaces in \(\text{Sym}^{\otimes n}(V)\). For appropriate choice of \(SO(5)\) indices on the \(\Gamma\)’s this will be the identity matrix with coefficient of order 1. Now there is a factor of \(\binom{n}{4}\) from the number of ways of choosing four distinct factors in the tensor product. This grows like \(n^4\). We normalize the operators such that the coefficient of the identity matrix is always 1. The correctly normalized operator goes like \(\frac{1}{n^9} \sum_{\tilde{r}} \rho_{s_1}(\Gamma)\rho_{s_2}(\Gamma)\) in the large \(n\) limit. In general the normalizing factor for operators corresponding to Young diagrams with \(r_1\) columns (i.e a first row of length \(r_1\)), obeying \(r_1 \ll n\) behaves like \(\frac{1}{n^{r_1}}\).

In the product of two copies of \(\sum_{\tilde{r}} \rho_{s_1}(\Gamma)\rho_{s_2}(\Gamma)\), we will have terms of the form \(\sum_{\tilde{r}} \rho_{s_1}(\Gamma)\rho_{s_2}(\Gamma)\rho_{s_3}(\Gamma)\rho_{s_4}(\Gamma)\). These appear with coefficient of order 1. It follows that
the product of two copies of the correctly normalized operators related to the Young Diagram with \(\vec{r} = (2, 0) \) contain the operators associated to the Young Diagram with \(\vec{r} = (4, 0) \) with coefficient of order 1. In the product there are also operators of the form

\[
\sum_{\vec{s}} \rho_{s_1}(\Gamma)\rho_{s_2}(\Gamma^\mu)\rho_{s_3}(\Gamma)\rho_{s_4}(\Gamma^\mu)
\] (9.6)

Now using the equation

\[
\Gamma^\mu \otimes \Gamma^\mu = 1 \otimes 1
\] (9.7)

for operators in \(Sym(V^{\otimes 2}) \), and summing over the \(s_2, s_4 \) indices we get an expression of the form

\[
n^2 \sum_{\vec{s}} \rho_{s_1}(\Gamma)\rho_{s_3}(\Gamma),
\] (9.8)

where we have exhibited the large \(n \) behaviour of the coefficient. Again after correctly normalizing we see that the coupling of the representation \(\vec{r} = (2, 0) \) to itself contains the symmetric representation \(\vec{r} = (2, 0) \) with coefficient of order 1.

This should be contrasted with the coupling from pairs of symmetric representations to nonsymmetric representations which is subleading in \(\frac{1}{n} \). In the product considered above there are terms where \(s_1 = s_4 \) which leads to

\[
\sum_{\vec{s}} \rho_{s_1}(\Gamma)\rho_{s_2}(\Gamma)\rho_{s_3}(\Gamma)
\] (9.9)

If we keep the \(SO(5) \) indices on the two \(\Gamma \) in \(\rho_{s_3}(\Gamma) \), we see that this includes an operator transforming in the representation \(\vec{r} = (3, 1) \). The coupling of the un-normalized operators is of order 1. After normalizing we have a factor of \(\frac{1}{n^4} \) from the normalizations of the factors in the product, and a factor of \(\frac{1}{n^3} \) from the normalization of the factors in the result. Therefore the coupling of a pair of normalized symmetric operators associated with the Young diagram \(\vec{r} = (1, 1) \) to the normalized operator corresponding to \(\vec{r} = (2, 1) \) is of order \(\frac{1}{n} \) in the large \(n \) limit. To conclude the correctly normalized symmetric operators couple to non-symmetric operators with coefficients of subleading order in the large \(n \) expansion.

While we discussed a particular example, it can easily be seen that this combinatorics is generic. Since (9.5) shows that the failure of associativity can be expressed in terms of these fusions of symmetric representations \(A, B \) into non-symmetric representations, we have proved that the non-associativity disappears in the leading large \(n \) limit. It does, however persist, in the \(\frac{1}{n} \) expansion.
These observations were made above, for concreteness, in the context of the fuzzy four-sphere, but are clearly applicable to all the higher spheres $A_n(S^m)$ with $m > 2$. As we observed, in an earlier section, this appearance of non-associativity is inevitable, if we want a non-commutative sphere which has as its algebra of functions a finite set of symmetric traceless representations. The sum of dimensions of these representations typically is not an absolute square, and hence they cannot be realized as a finite dimensional associative algebra with unit element over the complex numbers \mathbb{C}.

10. Remarks on Combinatorics And Geometry of Diverse fuzzy spheres

While all the even and odd spheres can be related in an $SO(m+1)$ covariant manner to matrix algebras, only for the two-sphere the matrix algebra coincides with the algebra of functions on the fuzzy sphere. For $m > 2$, the Matrix algebra contains more degrees of freedom. In this section we investigate the extra degrees of freedom, from the point of view of physics on the sphere.

To this end, we first summarize some facts. For $A_n(S^{2k})$, $R^2 \equiv \sum_{\mu}(G_{\mu}G_{\mu}) = n^2 + 2kn$. For $A_n(S^{2k-1})$, $R^2 \equiv \sum_i(\hat{G}_i\hat{G}_i) = \frac{1}{2}(n+1)(n+2k-1)$\footnote{In the first version of this paper this was given as $n^2 + 2kn - 1$, which is actually the eigenvalue of a related quantity $\sum_{r,s} \sum_{i} \mathcal{P}_R \rho_r(\Gamma_i) \rho_s(\Gamma_i) \mathcal{P}_R$ which should be distinguished from $\sum_i(\hat{G}_i\hat{G}_i) = \sum_{r,s} \sum_{i} \mathcal{P}_R \rho_r(\Gamma_i) \mathcal{P}_R \rho_s(\Gamma_i) \mathcal{P}_R$. They are both operators within $\text{Sym}(V^\otimes n)$ but the quantity which should be correctly called the radius is the latter which acts entirely within \mathcal{R}.}. In all cases $R \sim n$ at large n. For even fuzzy spheres, the size of the matrix algebra $\hat{A}_n(S^{2k})$ grows like $n^{(k)(k+1)}$. For odd fuzzy spheres, the size of $\hat{A}_n(S^{2k-1})$ grows like $n^{(k-1)(k+2)}$. Note that S^1 is a special case so the above formulae should not be applied to S^1. One may attempt to define a non-commutative S^1 using the techniques of this paper, but such a non-commutative S^1 admits no classical limit which relies on large irreducible representations of the SO groups for the higher dimensions.

The combinatorics of the fuzzy 2-sphere is fairly intuitive. The radius grows like n, and the number of degrees of freedom like n^2. In physical applications such as polarization, $R \sim Ln$, where L is a physical length scale, which can be, for example, the string scale or the eleven dimensional Planck length, depending on the context. Using semiclassical intuition, a particle moving on such a sphere would have a configuration space with volume...
growing like $n^2 L^2$. This agrees with the number of degrees of freedom of the Matrix algebra. So the Matrix algebra describes fairly conventional physics on the sphere.

Consider now the fuzzy 4-sphere. The radius of the fuzzy sphere behaves like $R \sim n$. The volume behaves like $V \sim n^m$ for S^m. And this is indeed the behaviour of the projected algebra $\mathcal{A}_n(S^4)$. The Matrix algebra $\hat{\mathcal{A}}_n(S^4)$ has n^6 degrees of freedom. This looks like it is too numerous for a conventional explanation in terms of particles on the sphere. It is useful to recall that in physical applications in matrix theory [5] or in descriptions of fuzzy funnels [24], n is the number of 5-branes and n^3 is the number of instantons. In many instanton moduli space problems [30], instantons of $U(n)$ behave as if they can fractionate into particles of instanton number $\frac{1}{n}$. Fractional instantons also show up in contexts like [31], [32], [33], [34]. We might expect here to understand the degrees of freedom in terms of n^4 fractional instantons moving on an S^4 of radius n. Interestingly, the volume of the configuration space is now too big, i.e grows like n^8. If each fractional instanton were associated with n^2 degrees of freedom, we would have the correct counting. This is suggestive of a picture of the low-energy dynamics where each fractional instanton has a two-dimensional configuration space inside the four-sphere. Precisely such a behaviour, where particles behave like two-dimensional extended objects with a two-dimensional transverse space, was found for giant gravitons on S^4 in [25]. It would be very interesting to explore possible connections with [25] and the fuzzy four-sphere defined using the projection, in more detail. Quantum mechanics on the fuzzy four-sphere, generalizing [35], and more detailed information about instantons on S^4, would be a probably useful starting point.

It is interesting to go back to the fuzzy S^2 case in the light of the above discussion. There, the physical application has $N \sim n^2$ zero-branes and a single spherical two-brane [14] [13]. Now moduli space studies of magnetic flux suggest fractionation is related to the greatest common denominator of the rank and the flux [36] [37]. In this case, we would then be lead to expect degrees of freedom associated with a single particle on the sphere. This indeed agrees with the n^2 degrees of freedom of the Matrix algebra.

11. Summary and outlook

We developed in detail the relation between higher dimensional fuzzy spheres $\mathcal{A}_n(S^m)$ and Matrix algebras $\hat{\mathcal{A}}_n(S^m) = \text{End}(\mathcal{R})$. $\text{End}(\mathcal{R})$ is the algebra of Matrices acting on a representation of the isometry group $SO(m+1)$. For m even, \mathcal{R} is irreducible. For m odd $\mathcal{R} = \mathcal{R}_+ \oplus \mathcal{R}_-$. In both cases the matrix algebra was decomposed into representations
of $SO(m + 1)$. Among these matrices is the algebra $\mathcal{A}_n(S^m)$ which contains symmetric traceless representations with unit multiplicity. The product structure on this algebra is obtained by using the matrix product followed by a projection. We showed that this product is non-associative (section 4.3), but that the non-associativity vanishes in the large N limit (section 9). In the case of m odd, it is also necessary to distinguish the algebra $\hat{\mathcal{A}}_n(S^{2k-1})$ which is generated by the coordinates \hat{G}^i. This algebra is larger than the algebra of spherical harmonics $\mathcal{A}_n(S^{2k-1})$ but smaller than the matrix algebra $\hat{\mathcal{A}}_n(S^{2k-1})$.

The matrices G are used to describe classical solutions of brane actions. Fluctuations can be an arbitrary $N \times N$ matrix. An $SO(m+1)$ covariant description of the fluctuations requires the above decomposition of the Matrix algebras.

The family of non-commutative spheres we described admit embeddings

$$\cdots \rightarrow \hat{\mathcal{A}}_n(S^{2k-1}) \rightarrow \hat{\mathcal{A}}_n(S^{2k}) \rightarrow \hat{\mathcal{A}}_n(S^{2k+1}) \rightarrow \cdots \quad (11.1)$$

and correspondingly

$$\cdots \rightarrow \mathcal{A}_n(S^{2k-1}) \rightarrow \mathcal{A}_n(S^{2k}) \rightarrow \mathcal{A}_n(S^{2k+1}) \cdots \quad (11.2)$$

These embeddings follow from reduction of representations of $SO(m + 1)$ into representations of $SO(m)$. It will be interesting to relate the details of these embeddings to the physical applications of the fuzzy spheres. For example, the embeddings of fuzzy three-sphere into four-sphere, may be expected [38] to be useful in studying the connection between the polarization of D-instantons in background five-form field strengths in type IIB [39] and the polarization of unstable DO-branes [15]. It will also be interesting to study implications of these embeddings in applications to Matrix theory [5][14] and to the ADS/CFT correspondence [8][9][10][11][12].

While $\mathcal{A}_n(S^m)$ is obtained from $\hat{\mathcal{A}}_n(S^m)$ by a projection, it is of interest to understand the Matrix algebra from the geometry of the noncommutative sphere. As a small step in this direction, we considered the case of S^4 and found hints (section 10) that the degrees of freedom of the Matrix algebra could be understood from a picture where fractional instantons behave as extended objects, in a manner reminiscent of giant gravitons [25]. The connection can be explored further by developing quantum mechanics on these fuzzy spheres.
There have been a number of recent discussions of non-associative algebras emerging from considering background NS-sector H-fields in string theory [40][41]. Since spherical branes appearing in polarization effects or Matrix theory, which motivated this work, are a natural setting for non-constant field strengths (RR field strengths in the more conventional applications), it is natural to expect that there will be connections between the structure of non-associativity present here and the one discussed in the above works. It will be interesting to see if a structure similar to the one which came up here, involving non-associativity as consequence of projection from an associative algebra, shows up in the world-sheet construction of exact backgrounds describing the spherical branes. One similarity between the discussion of [41] and the one here, is that the bigger algebra involved here contains derivatives as well as coordinates. For example the generators of the $SO(m+1)$ isometries, $G^{\mu\nu}$, are naturally thought as derivatives, but belong to representations which are projected out in defining $A_{n}(S^{m})$. Non-associativity was also discussed in the context of membrane quantization in [42], in string field theory in [43], in the context of q-spheres in [44], and in superspace in [45].

In [10] the fuzzy two-sphere was used to discuss the entropy of black holes in four dimensions. It may be fruitful to explore applications of the higher spheres as developed here to similar questions. In the case of the fuzzy four-sphere, some aspects of the connection between the MAtrix algebra and spherical 4-brannes was understood using spherically symmetric instantons. Similar constructions should be investigated for the other spheres. Relations between these fuzzy spheres and those based on quantum groups may exist along similar lines to the work in [46] which related fuzzy and quantum group symmetric spheres in two dimensions. Another direction is to explore the detailed relation of these non-commutative spheres we have studied, inspired by brane polarization problems and Kaluza-Klein truncation in ADS/CFT, to the approach of [47], where a deformation of phase space rather than a deformation of configuration space (closer to the approach taken here) is studied.

Acknowledgements: I would like to thank for pleasant discussions S. Corley, V. Fock, Z. Gurahnik, P. M. Ho, A. Jevicki, V. Kazakov, D. Lowe and J. Troost. This research was supported by DOE grant DE-FG02/19ER40688-(Task A).
12. Appendix

In associating operators to representations of $SO(4)$ in our discussion of the 3-sphere, we used operators of the form

$$\rho_{s_1}(\Gamma\Gamma P_+) \rho_{s_2}(\Gamma\Gamma P_+) \cdots \rho_{s_{p}}(\Gamma\Gamma P_+) \rho_{s_{p+1}}(\Gamma) \rho_{s_{p+2}}(\Gamma) \cdots \rho_{s_{p+2}}(\Gamma) \cdots (12.1)$$

For simplicity we have written out indices on the Γ matrices, but it is understood that the full expression adds indices, applies the Young symmetrizer and subtracts a trace as appropriate to the Young diagram appropriate to the above pattern of Γ. We observed that, without loss of generality, we can add a number of P_+ and an equal number of P_- when we are considering $End(R_+)$. We could also have all P_- multiplying the first set of $\Gamma\Gamma$ in (12.1) and an equal number of P_+ and P_- attached to the second set of Γ in (12.1).

We never needed to consider operators of the form

$$\rho_{s_1}(\Gamma\Gamma P_+) \rho_{s_2}(\Gamma\Gamma P_-) \cdots \rho_{s_{p}}(\Gamma\Gamma P_+) \rho_{s_{p+1}}(\Gamma) \rho_{s_{p+2}}(\Gamma) \cdots \rho_{s_{p+2}}(\Gamma) \cdots (12.2)$$

where some of the set of $\Gamma\Gamma$ are multiplying P_+ and some are multiplying P_-. The reason is that these are expected to vanish identically. The quickest way to see this is that operators with all P_+ or all P_- are naturally associated with Young Diagrams of $SO(4)$ with the second row of length p_1 or $-p_1$. There is no obvious way to associate a representation to the operators involving mixing of P_+ and P_- as in (12.2). The same rule applies to expressions of the form $\Gamma\Gamma\Gamma$ in $SO(6)$, and expressions of the form $\Gamma\Gamma\Gamma\Gamma$ in $SO(8)$, but expressions involving $\Gamma\Gamma$ in the higher rank SO are not restricted to multiplying projectors on a single parity.

We will these points explicitly in some simple examples. We work with $SO(4)$. The representation with $\vec{r} = (1, 1)$ corresponds to the operators

$$\sum_s \rho_{s_1}(\Gamma\Gamma P_+)$$

This representation has dimension 3, and indeed there are three self-dual combinations we can write

$$\sum_s \rho_{s_1}(\Gamma^1 \Gamma^2 P_+) = \sum_s \rho_{s_1}(\Gamma^1 \Gamma^2 P_+) (12.3)$$

$$\sum_s \rho_{s_1}(\Gamma^1 \Gamma^3 P_+) = \sum_s \rho_{s_1}(\Gamma^1 \Gamma^3 P_+) (12.3)$$

$$\sum_s \rho_{s_1}(\Gamma^4 P_+) = \sum_s \rho_{s_1}(\Gamma^4 P_+)$$

28
The representation \(\vec{r} = (1, -1) \) corresponds to the operators

\[
\sum_s \rho_s \Gamma \Gamma P_- \]

. Again we have 3 in agreement with the dimension :

\[
\begin{align*}
\sum_s \rho_s (\Gamma^1 \Gamma^2 P_-) &= \sum_s \rho_s ((\Gamma^1 \Gamma^2 - \Gamma^3 \Gamma^4) P_-) \\
\sum_s \rho_s (\Gamma^1 \Gamma^3 P_-) &= \sum_s \rho_s ((\Gamma^1 \Gamma^3 - \Gamma^4 \Gamma^2) P_-) \\
\sum_s \rho_s (\Gamma^1 \Gamma^4 P_-) &= \sum_s \rho_s ((\Gamma^1 \Gamma^4 + \Gamma^2 \Gamma^3) P_-)
\end{align*}
\] (12.4)

Now consider \(\sum_s \rho_s (\Gamma \Gamma P_+) \rho_s (\Gamma \Gamma P_+) \). These correspond to the irreducible rep. with \(\vec{r} = (2, 2) \) which has dimension 5. So we should be able to exhibit 5 independent operators of the above form. We need to consider operators of the form \(\sum_s \rho_s (\Gamma^i \Gamma^j P_+) \rho_s (\Gamma^i \Gamma^j P_+) \) with \(2 \leq i \leq j \leq 4 \). There are a total of six such operators. We have to show that there is one relation. Take operators of the form \(\sum_s \rho_s (\Gamma^1 \Gamma^2 P_+) \rho_s (\Gamma^1 \Gamma^2 P_+) \). To associate to an irrep of \(SO(4) \) we must do a symmetrization procedure and a subtraction of the trace appropriate to the corresponding Young diagram. The vertical antisymmetry is automatically present given the properties of \(\Gamma \) matrices. The horizontal symmetry is guaranteed by the sums over \(s_1 \) and \(s_2 \). Let us consider the tracelessness condition which gives :

\[
\begin{align*}
\sum_s \rho_s (\Gamma^1 \Gamma^2 P_+) \rho_s (\Gamma^1 \Gamma^2 P_+) + \rho_s (\Gamma^2 \Gamma^2 P_+) \rho_s (\Gamma^2 \Gamma^2 P_+) \\
+ \rho_s (\Gamma^3 \Gamma^2 P_+) \rho_s (\Gamma^3 \Gamma^2 P_+) + \rho_s (\Gamma^4 \Gamma^2 P_+) \rho_s (\Gamma^4 \Gamma^2 P_+) = 0
\end{align*}
\] (12.5)

The second term belongs to an irreducible rep. with fewer boxes, so we can drop it in considering relations involving \(\vec{r} = (2, 2) \). Alternatively we can use antisymmetry along the columns of the Young diagram to drop such a term. So the relation we get is Let us consider the tracelessness condition which gives :

\[
\begin{align*}
\sum_s \rho_s (\Gamma^1 \Gamma^2 P_+) \rho_s (\Gamma^1 \Gamma^2 P_+) + \rho_s (\Gamma^1 \Gamma^4 P_+) \rho_s (\Gamma^1 \Gamma^4 P_+) \\
+ \rho_s (\Gamma^1 \Gamma^3 P_+) \rho_s (\Gamma^1 \Gamma^3 P_+) = 0
\end{align*}
\] (12.6)

Note that if we had started with \(\sum_s \rho_s (\Gamma^1 \Gamma^3 P_+) \rho_s (\Gamma^1 \Gamma^3 P_+) \) and tried to impose the traceless condition we would get the same equation. So we have one relation and six operators leaving us with 5 independent ones.
On the other hand consider an operator of the form $\sum_s \rho_{s_1}(\Gamma^1 \Gamma^2 P_+)\rho_{s_2}(\Gamma^1 \Gamma^2 P_-)$. Applying a tracelessness condition we get:

$$\sum_s \rho_{s_1}(\Gamma^1 \Gamma^2 P_+)\rho_{s_2}(\Gamma^1 \Gamma^2 P_-) + \rho_{s_1}(\Gamma^3 \Gamma^2 P_+)\rho_{s_2}(\Gamma^3 \Gamma^2 P_-) + \rho_{s_1}(\Gamma^4 \Gamma^2 P_+)\rho_{s_2}(\Gamma^4 \Gamma^2 P_-) = \sum_s \rho_{s_1}(\Gamma^1 \Gamma^2 P_+)\rho_{s_2}(\Gamma^1 \Gamma^2 P_-) - \rho_{s_1}(\Gamma^1 \Gamma^4 P_+)\rho_{s_2}(\Gamma^1 \Gamma^4 P_-) - \rho_{s_1}(\Gamma^1 \Gamma^3 P_+)\rho_{s_2}(\Gamma^1 \Gamma^3 P_-) = 0$$

(12.7)

If we start with $\sum_s \rho_{s_1}(\Gamma^1 \Gamma^3 P_+)\rho_{s_2}(\Gamma^1 \Gamma^3 P_-)$, we get a similar equation with different signs:

$$\sum_s -\rho_{s_1}(\Gamma^1 \Gamma^2 P_+)\rho_{s_2}(\Gamma^1 \Gamma^2 P_-) - \rho_{s_1}(\Gamma^1 \Gamma^4 P_+)\rho_{s_2}(\Gamma^1 \Gamma^4 P_-) + \rho_{s_1}(\Gamma^1 \Gamma^3 P_+)\rho_{s_2}(\Gamma^1 \Gamma^3 P_-) = 0$$

(12.8)

And finally starting from $\sum_s \rho_{s_1}(\Gamma^1 \Gamma^3 P_+)\rho_{s_2}(\Gamma^1 \Gamma^3 P_-)$ we get:

$$\sum_s -\rho_{s_1}(\Gamma^1 \Gamma^2 P_+)\rho_{s_2}(\Gamma^1 \Gamma^2 P_-) + \rho_{s_1}(\Gamma^1 \Gamma^4 P_+)\rho_{s_2}(\Gamma^1 \Gamma^4 P_-) - \rho_{s_1}(\Gamma^1 \Gamma^3 P_+)\rho_{s_2}(\Gamma^1 \Gamma^3 P_-) = 0$$

(12.9)

These three independent conditions ensure the vanishing of all operators of the form $\sum_s \rho_{s_1}(\Gamma^1 \Gamma^i P_+)\rho_{s_2}(\Gamma^1 \Gamma^j P_-)$, satisfying the tracelessness and symmetry properties of the candidate corresponding Young diagram. For operators of the form $\sum_s \rho_{s_1}(\Gamma^1 \Gamma^i P_+)\rho_{s_2}(\Gamma^1 \Gamma^j P_-)$ with $i \neq j$ the symmetry in i and j combined with tracelessness again set the operator to zero.

We have discussed the case of $SO(4)$ in detail, but we expect similar arguments to work for higher rank even $SO(2k)$ groups ruling out operators involving both P_+ and P_- attached to a string of k Γ matrices.
References

31

[34] A. Buchel, “Comments on fractional instantons in n=2 gauge theories,” \texttt{hep-th/0101056}.

[38] Discussions with N. Drukker, Z. Guralnik, P. Horava.

[41] P.M. Ho, “Making non-associative algebra associative” \texttt{hep-th/0103024}.

32