Symmetries, Large Leptonic Mixing and a Fourth Generation

Joaquim I. Silva-Marcello
Theoretical Physics Division, CERN, CH-1211 Geneva 23, Switzerland

We show that large leptonic mixing occurs most naturally in the framework of the Standard Model just by adding a fourth generation. One can then construct a small Z_2 discrete symmetry, instead of the large $S_{4L} \times S_{4R}$, which requires that the neutrino as well as the charged lepton mass matrices be proportional to a 4×4 democratic mass matrix, where all entries are equal to unity. Without considering the see-saw mechanism, or other more elaborate extensions of the SM, and contrary to the case with only 3 generations, large leptonic mixing is obtained when the symmetry is broken.

I. INTRODUCTION

Recently [1], it was suggested that the existence of a fourth generation of fermions is in agreement with the latest electroweak precision data. However, this simple extension of the Standard Model (SM) could also be a natural way to explain the smallness of the masses of the first 3 generations of neutrinos. It was shown [2], for the lepton sector and within a democratic weak basis, that there exists an extension of the SM that can account for neutrino masses and mixings of the Dirac type. In this limit, all Yukawa couplings between the different generations of leptons are equal, and only the fourth generation acquires mass for each lepton sector. Theorists propose an alternative explanation (e.g. the see-saw mechanism) for the smallness of the neutrino masses as it does not require very small Yukawa couplings for the neutrinos but only that they be almost equal, and this may result from a discrete (perm. utation) symmetry and its breaking.

In addition, data on neutrinos have provided clear evidence pointing towards neutrino oscillations with very large lepton mixing between the 3 known neutrino families [3]. However, unlike in the quark sector, where simple S_3 permutation symmetries can generate the general features of quark masses and mixings, it was found [4] that it is possible to obtain large leptonic mixing angles with any general symmetry (or its breaking) of only the 3 known generations, without having to consider the see-saw mechanism or other more elaborate extensions of the SM. Therefore, if such symmetries exist, they must be realized in more extended scenarios.

In this Letter, we show that it is exactly within this simple extension of the SM (unless, as explained, one considers the see-saw mechanism or other more elaborate extensions of the SM), just by adding a fourth generation of SM lepton doublets and singlets, that one may obtain large mixing angles for the leptons after breaking the symmetry.

II. LARGE LEPTONIC MIXING AND SYMMETRY

First, we consider the large leptonic mixing consistent with the present data on neutrinos. One of the most attractive scenarios for the mixing is an orthogonal mass matrix of type

$$F^T = \begin{pmatrix} 2 & 1 & 0 \\ 6 & 7 & 2 \\ 9 & 5 & 3 \end{pmatrix}$$

from which we find large mixing angles, $\sin^2(2\theta_{\text{latm}}) = 89$ for the atmospheric neutrinos, and $\sin^2(2\theta_{\text{sol}}) = 1$ for the solar neutrinos. One may think of different frameworks, where a lepton mixing matrix approximately to F^T arises from a simple and obvious structure. Of course, the simplest scenario, which reproduces F^T, can be obtained if one takes different structures for the charged lepton and neutrino mass matrices. In the limit where the charged lepton mass matrix is proportional to the democratic mass matrix, where all entries are equal to 1, while the neutrino mass matrix is proportional to I, the lepton mixing matrix will be the transpose of the orthogonal mass matrix which diagonalizes, and this is just F^T [5].
Another approach was considered in Ref. [6]. In the framework of the universal strength for Yukawa couplings (USY), it was proven that large lepton mixing is compatible with all lepton mass matrices having the same structure, of the form

$$
M = \begin{pmatrix}
ed_1^2 & 1 & 1 \\
1 & ed_1 & 1 \\
1 & 1 & ed_1^3
\end{pmatrix}
$$

(2)

The hierarchy of the charged leptons requires $e_1; e_2; e_3$ to be small and M_α is near to the democratic limit. For the neutrino mass matrix, one must take $e_1; e_2$ to be large, otherwise the lepton mixing angles would not be large either. Indeed, if one takes e_3 to be near to $2 = 3$, a lepton mixing matrix near to $F^* \mu$ can be obtained. In the limit $e_1; e_2; e_3 \approx 2 = 3$, the neutrino mass matrix will be proportional to a unitary matrix W, and the neutrinos will be degenerate. The mixing F^* will result from a small perturbation of W, just by taking $e_1; e_2$ slightly different from $2 = 3$.

However, as pointed out in Ref. [6], both structures, i.e. $M_\alpha = \mu$ or the pattern of Eq. (2), could never be the result of a simple symmetry or its breaking. More precisely, there exists no symmetry, transforming the lepton fields

$$
L_i \rightarrow \begin{pmatrix} L_i \end{pmatrix} \ , \ P_{ij} L_j \rightarrow \begin{pmatrix} P_{ij} L_j \end{pmatrix} \ , \ e_{ij} \rightarrow \begin{pmatrix} e_{ij} \end{pmatrix} \ , \ \ddagger \ L_i \rightarrow \begin{pmatrix} L_i \end{pmatrix} \ , \ e_{ij} \rightarrow \begin{pmatrix} e_{ij} \end{pmatrix}
$$

(3)

(depends on whether neutrinos are Majorana or Dirac) and imposing invariance conditions for the lepton mass matrices

$$
P^* \mu \ Q = \mu \ ; \ P^* \mu \ M \ P = M \ \text{or} \ P^* \mu \ M \ P = \mu \ ;
$$

(4)

that would force the charged lepton mass matrix to be proportional to the democratic limit, while, at the same time, requiring that the neutrino mass matrix be given by a matrix proportional to W or by Eq. (2) with $e_1; e_2; e_3 \approx 2 = 3$. On the contrary, it was proven that, if such a symmetry exists, the neutrino and the charged lepton mass matrices have to be related as

$$
M^* \mu = p \ \text{or} \ M \ M^* = p \ ;
$$

(5)

and this relation implies small mixing angles, insufficient to solve the atmospheric neutrino problem even after the symmetry is broken.

The question then arises whether it is possible to have a framework in which the breaking of a symmetry will generate large lepton mixing near to F^*, and how. Before studying the case of 4 generations, we give two examples in which this was achieved in the context of some elaborate framework:

(1) See-saw mechanism: another important example, which generates large lepton mixing near to F^*, was given in Ref. [6]. It was proven that, within the see-saw mechanism, a 23 symmetry can force all lepton mass matrices to be proportional to W, but does not require small mixing. It is crucial to notice that, in the see-saw mechanism, there is an additional matrix that respects Eq. (2): the heavy neutrino Majorana mass matrix. It is this extra ingredient that prevents small mixing. The heavy Majorana neutrino mass matrix, which is proportional to W, has no (or a singular) inverse. Therefore, the effective neutrino mass matrix can only be computed if a suitable perturbation is added. It is then the combined perturbations of the different mass matrices that will make it possible to have large lepton mixing matrix near to F^*.

1We do not consider (heavy) mass terms for the right-handed neutrinos and the see-saw mechanism. In fact, in the latter context, the statement we make here is not necessarily true [6].

2In addition, it was shown that the symmetry cannot prevent the neutrino mass matrix from having a part which is proportional to W.

\[\begin{align*}
\text{(1)} & : \text{See-saw mechanism} \\
\text{(2)} & : \text{Majorana mass matrix}
\end{align*} \]
Still, it might not be possible to obtain the same result, i.e., some framework in which the breaking of avar symmetry will generate large leptonic mixing near to F^T, in a much simpler context. We will show that this is indeed the case. Large leptonic mixing near to F^T occurs most naturally in the framework of the SM with just one simple extension and in connection with a discrete symmetry. Adding a fourth generation to the SM (making sure that the masses and mixings of the heavy extra particles respect the experimental constraints), one can construct a simple discrete symmetry, which will require that the neutrino as well as the charged lepton mass matrices be proportional to a 4×4 democratic mass matrix, while at the same time generating large leptonic mixings through the breaking. Thus, in this case, large leptonic mixing is consistent with a (discrete) symmetry and its breaking. In this sense (it is also a most simple extension of the SM) we call it "natural"; we do not violate 't Hooft's naturalness principle as in the case with 3 generations, where it was impossible, outside the seesaw mechanism or other more elaborate extensions of the SM to obtain large mixing in connection with a symmetry. Furthermore, we will show that it suffices to consider a small Z_4 discrete symmetry instead of the large $S_{4L} \times S_{4R}$.

III. A FOURTH GENERATION AND A Z_4 SYMMETRY

Consider the SM with Dirac neutrinos, and one extra generation of lepton doublets and lepton singlets:

$$L = \begin{pmatrix} L_1 & e_{3R} \\ e_{3L} & \end{pmatrix} + \begin{pmatrix} L_2 & L_1 \\ L_2 & \end{pmatrix} + h.c.; \quad i, j = 1, 2, 3, 4$$

In order to obtain mass matrices for the charged leptons and neutrinos proportional to a 4×4 democratic, we impose a symmetry on the lepton fields, which is realized in the following way:

$$L_1 \sim P^i_{ij} L_j, \quad e_{3R} \sim P^i_{ij} e_{3R}; \quad P = \begin{pmatrix} 1 + i \\ 4 \end{pmatrix}$$

It is easy to check that this is indeed a Z_4 discrete symmetry and that the charged lepton and neutrino mass matrices must then be proportional to P. Using $Z_4^2 = 1$ and one can verify that $P^2 = \Pi = 2$, $P^3 = P^4 = \Pi$. Both the neutrino and charged lepton mass matrix respect the relation

$$P^2 P^3 P^4 = P^3 \begin{pmatrix} P^2 & P \end{pmatrix}$$

From this equation it follows that

$$M = \begin{pmatrix} \frac{1}{3} & P & M \\ P & M & P^2 & P^3 & \end{pmatrix}$$

Inserting the expressions for P, P^2 and P^3, one ends that any mass matrix that obeys Eq. (9), and subsequently Eq. (8), must fulfill the constraint

$$M = \begin{pmatrix} \frac{1}{4} \end{pmatrix} \begin{pmatrix} M \\ \end{pmatrix}$$

Finally, using the property $M = m$, where $m = \begin{pmatrix} M_{ij} \end{pmatrix}$ (valid for all matrices) one obtains that M has to be proportional to m.

At this stage, it should be mentioned that the (usual) SM charged leptons and neutrinos of the rest 3 generations all have zero mass and that the lepton mixing for the 3rd sector (as yet) completely arbitrary. The unitary matrix which diagonalizes the 4×4 democratic limit is not uniquely defined and can be written as U_4, where U is an arbitrary unitary matrix that has significant elements only in the 3rd sector (i.e., $U_{id} = 0, i = 1, 2, 3$) and

$$F_4 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 1 & 1 & 1 \\ 3 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ \end{pmatrix}$$

Again, we do not allow for a (heavy) Majorana mass term for the right-handed neutrinos. These can be avoided, e.g., by an extra discrete symmetry where $i, j = 1, 2, 3, 4$. In a more complete scenario, one must also consider an extra generation of quark doublets and up and down singlets, e.g., in order to have anomaly cancellation.
Thus, it is the breaking of the Z_4 discrete symmetry that will give masses to the 3rd generations and determine the lepton mixing.

By adding a small term to the democratic limit, we break the Z_4 symmetry. Obviously, it is possible to have different breaking patterns and leptonic mixing. As an example, just to illustrate the possibility of having large leptonic mixing near to F^T we choose for the charged lepton and neutrino mass matrices the following simple pattern:

$$M_{e_1} = k_e (+ P_{e_1})$$

where

$$P_e = \text{diag}(0;a_e P_3; c_0); \quad P = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

For simplicity, we take real parameters. There is not yet any (or no) experimental evidence for CP violation in the lepton sector. The hierarchy of the charged leptons requires that $a_e = b_e = c_0 = 1$. From the neutrino hierarchy $m_{21}^2 = m_{32}^2$, we obtain also $b = 1$. In addition, we get the relations m_1^2, m_2^2, and m_3^2 because of the restricted number of parameters for the neutrino mass matrix (and a and b). From the invariants, tr(M), $2(M)$, and det(M), the charged lepton and neutrino mass matrix, it is easy to derive the following first order approximations:

$$k_e = \frac{1}{2} m_{21}, \quad a_e = \frac{8a_2}{m_{21}}, \quad b_e = \frac{6a_3}{m_{21}}, \quad c_0 = \frac{16a_1}{m_{21}}$$

$$k = \frac{1}{2} m_{21}, \quad a = \frac{4a_2}{m_{21}}, \quad b = \frac{4a_3}{m_{21}}, \quad c_0 = \frac{16a_1}{m_{21}}$$

where m_{21} and m_{32} are the masses of the (extra) fourth charged lepton and neutrino. At tree level, one neutrino is massless, $m_1^2 = 0$. In a first order approximation, we need (a = b) $P_1 = M_2^0 = M_2^0$ and $m_{21} = (m_{21}^2)^{1/2}$, $m_{32} = (m_{21}^2)^{1/2}$.

The hierarchy of the parameter a_1 of the neutrino and charged lepton mass matrices allows for a straightforward first order computation of the orthogonal matrix that diagonalizes M_e and M_ν. After a weak basis transformation to a heavy basis, where the part in Eq. (12) becomes diagonal, i.e. $M_{e1} \sim F_3^T M_\nu$, we need only one orthogonal matrix that will eliminate, from the first two horizontal lines of M_e and M_ν, the parameter that will be next in the order. So, from the second horizontal line of M_e we eliminate b_e and a_e from the second line. Thus, we obtain an approximation for the matrices that diagonalize M_e and M_ν from Eq. (13):

$$U_e = F_4 \quad F_3^T \quad U = F_4$$

where F_3 is the 4 x 4 orthogonal matrix that contains, in the 3 x 3 SM sector, exactly our original F (its transpose was given in Eq. (11)).

As a final step, to obtain the total orthogonal matrices that diagonalize M_e and M_ν, we have to multiply U_e and U by matrices I_9 and I_4, which are very near to I. For the charged leptons $I_{21}(l_{2}) = 0$ and $m_1 < m_2$, for $I < j$, and for the neutrinos the angles are almost insignificant. Therefore, in a first order approximation, the lepton mixing matrix will be

$$V = U_e^T U = F_3^T;$$

which coincides exactly with our original F^T for the 3rd generation and the 3 x 3 SM sector. The mixing with the fourth generation is at most $O(m_{21}^2)$ between the 3rd and 4th families. We give a numerical example.

Input:

$$a_e = 4.1 \times 10^5 \quad b_e = 6.34 \times 10^3 \quad c_0 = 9.66 \times 10^2$$

$$a = 6 \times 10^{13} \quad b = 5 \times 10^{12}$$

For the heavy extra charged lepton and neutrino, we have chosen masses $m_{\nu_1} = 100$ GeV and $m_4 = 50$ GeV.

These masses are also in accord with the values given by Novikov, O'Kun, Rozanov and Vysotsky [3].
The value for $\sin^2(2 \theta_{atm}) = 0.913$; $\sin^2(2 \theta_{sol}) = 1.0$ (18)

The value for $\sin^2(2 \theta_{atm})$ is above the value permitted by the data available from DELPHI [10] where $\sin^2(2 \theta_{atm}) < 3 \times 10^{-4}$ for $m_s = 50 \text{ GeV}$. The values for the atomospheric and solar neutrino mixing are in good agreement with the values for the Large Mixing Angle (LMA) scenario from previous analysis. At present, slightly different values, where $\sin^2(2 \theta_{atm})$ is almost maximal near to 1.0, and $\sin^2(2 \theta_{sol})$ is somewhat smaller than 1., seem to be favoured. However, it is not yet completely clear what the parameter range is for the neutrino masses and mixings. In any case, both scenarios can be accommodated in the scheme presented here.

IV. CONCLUSIONS

We have shown that large leptonic mixing occurs most naturally in the framework of the SM, just by adding a fourth generation to the SM. One can then construct a very simple discrete symmetry that will require the neutrino as well as the charged lepton mass matrices to be proportional to a 4 by 4 decromatic mass matrix. Without considering the see-saw mechanism, or other more elaborate extensions of the SM, and contrary to the case with only 3 generations, large leptonic mixing is obtained when the symmetry is broken. Furthermore, it was shown that it succeeds to consider a small Z_4 discrete symmetry instead of the large S_4.

Acknowledgements

I am grateful to G.C. Branco for suggestions. This work received partial support from the Portuguese Ministry of Science - Fundação para a Ciência e Tecnologia.