B → e Transitions from QCD Sum Rules on the Light-Cone

Patricia Ball and Emi Kou

IPPP, Department of Physics, University of Durham, Durham DH1 3LE, UK

Abstract:
B → e transitions have recently been studied in the framework of QCD factorization. The attractiveness of this channel for such an analysis lies in the fact that, at least in the heavy quark limit, the only hadron involved is the B meson itself, so one expects a very simple description of the form factor in terms of a convolution of the B meson distribution amplitude with a perturbative kernel. This description, however, does not include contributions suppressed by powers of the b quark mass. In this letter, we calculate corrections to the factorized expression which are induced by the "soft" hadronic component of the photon. We demonstrate that the power-suppression of these terms is numerically not effective for physical values of the b quark mass and that they increase the form factor by about 30% at zero momentum transfer. We also derive a sum rule for \(B \), the first negative moment of the B meson distribution amplitude, and find \(\langle t \rangle_B = 0.6 \text{GeV} \) (to leading order in QCD).

Submitted to JHEP
1 Introduction

With the B factories BaBar and Belle running \"full steam\", B physics has entered the era of precision measurements. The quality and precision of experimental data calls for a corresponding match in theoretical precision, in particular with regard to the analysis of non-leptonic decays. Noting the fact that a complete solution of the problem appears as elusive as ever, progress has been made in the description of non-leptonic B decays, in the heavy quark limit, which were shown to be amenable to perturbative QCD (pQCD) factorization [1,2]. In this framework, B decay amplitudes are decomposed into a \"soft\" part, for instance a weak decay form factor, or, in general, an intrinsically non-perturbative quantity that evades further breakdown into factorizable components, and a \"hard\" part which can be neatly described in a factorized form in terms of a convolution of a hard perturbative kernel, depending only on collinear momenta, with one or more hadron distribution amplitudes that describe the (collinear) momentum distribution of partons inside the hadron. Factorization was shown to hold, for certain B decay channels, to all orders in perturbation theory [3], but to date could not be extended to include contributions that are suppressed by powers of the b quark mass. For the important channel B \to K, in particular, it was found that factorization breaks down for one specific class of power-suppressed corrections which are expected to be numerically relevant [2]. Reliable alternative methods for calculating QCD effects in non-leptonic B decays are scarce, and only little is known about the generic size of power-suppressed corrections for instance in B \to \pi K, one of the \"benchmark\" channels for measuring the angle of the CKM unitarity triangle. There is, however, one channel that can be treated both in pQCD factorization and by an alternative method, QCD sum rules: the B \to \gamma transition. It has been shown recently [5,6] that B \to \gamma is indeed accessible to collinear factorization, in contrast to previous findings [7] which indicated the need to include also transverse degrees of freedom in the convolution. On the other hand, the B \to \gamma transition can also be investigated in the framework of QCD sum rules on the light-cone [8,9]. The crucial point here is that the photon is not treated as an exactly pointlike object with standard EM couplings, but that, in addition to that \"hard\" component, it also features a \"soft\" hadronic component whose contribution to the decay amplitude must not be neglected.

The \"soft\" component is related to the probability of a real photon to dissociate, at small transverse separation, into partons and resembles in many ways a (massless) transversely polarized vector meson; like it, it can be described by a Fock-state expansion in terms of distribution amplitudes of increasing twist. An analysis of these distribution amplitudes, including terms up to twist-4, has recently been completed [10] and comes in handy for an update and extension of the previous QCD sum rules analyses of B \to \gamma. Such a reanalysis is the subject of this letter and we include in particular one-loop radiative corrections to the contribution of leading twist-2 distribution amplitudes to B \to \gamma. In the framework of pQCD factorization, the \"soft\" component of the photon leads to heavy power-suppressed contributions and is hence neglected in Refs. [5,6,7]. As we shall show
in this letter, this suppression is not e

ective numerically due to the large value of
the matrix-element governing its strength: the magnetic susceptibility of the quark condensate. Our

ings indicate that such contributions are likely to be nonnegligible also in
other channels involving photon emission, notably \(B \) \(K \) and \(B \) \(\pi \), which are
treated in [11, 12]. We also compare the QCD sum rule for the hard part of the \(B \)

plitude with the pQCD result and derive a sum rule for \(B \), the first negative moment
of the \(B \) meson distribution amplitude.

2 Definition of Relevant Quantities and Outline of Calculation

First of all, let us define the form factors that describe the \(B \) \(B \) transition:

\[
\frac{1}{4} h (\;}
includes all other states coupling to the pseudoscalar current $b_s u$, above the threshold s_0. f_B is the decay constant of the B and defined as $\hbar B b_s u f_B = f_B m_B^2 = m_B$. The form factors $F_{\Lambda,'\Lambda}$ are obtained, in principle, by equating the dispersion relation (3) to $\Lambda,'\Lambda$ calculated for Euclidean p_0^2 by means of an operator product expansion. The sum over higher states, the 2nd term on the r.h.s. of (3), is evaluated using quark-hadron duality, which means that the hadronic spectral density $\nu(\Lambda)$ is replaced by its perturbative equivalent. In order to reduce the model-dependence associated with that procedure, one subjects the whole expression to a Borel-transformation, which results in an exponential suppression of the continuum of higher states:

$$B_{M^2} \nu(\Lambda) = \frac{f_B m_B F_{V}(\Lambda)}{m_b} e^{m_B^2 s_0^2} + \frac{2}{s_0} ds \nu(\Lambda)(s) e^{s_0^2}.$$ \hfill (4)

The relevant parameters of the sum rule are then M^2, the Borel parameter, and s_0, the continuum threshold, and our results for the form factors will depend (moderately) on these parameters.

As already mentioned in the introduction, the photon does not only have electromagnetic pointlike couplings to the quarks, but also soft nonlocal ones, and we write $F_{\Lambda,'\Lambda} = F_{\Lambda,'\Lambda}^{\text{hard}} + F_{\Lambda,'\Lambda}^{\text{soft}}$. The separation between these two components is of course scheme-dependent and we denote them in the $\overline{\text{MS}}$ scheme. For the pointlike component of the photon, is just a three-point correlation function, described by the triangle diagrams shown in Fig.1. These diagrams, and also the leading nonperturbative correction which is proportional to the quark condensate, have been calculated in Refs. [8, 9], and we will come back to the hard contributions in Sec. 4. The calculation of radiative corrections to the three-point function, although highly desirable, is beyond the scope of this letter whose main emphasis is on calculating the soft photon contributions which become relevant for a certain configuration of virtualities, namely $m_B^2 p^2 \sim O(\overline{\text{QCD}} m_B)$ and $m_B^2 p^2 \sim O(\overline{\text{QCD}} m_B)$, i.e. $E \sim \overline{\text{QCD}}$. In this regime, the integral in Eq.(3) is dominated by light-like distances and can be expanded around the light-cone:

$$\nu(\Lambda)(p_B^2 ; E) = Q u (f) h u u i (f) X u (n) \nu(n)(u; f) T_V(n) (u; p_B^2 ; E ; f): \hfill (5)$$

This is a factorization formula expressing the correlation function as a convolution of
genuinely nonperturbative and universal distribution amplitudes $DA^{(n)}$ with process-dependent hard kernels $T^{(n)}$, to be calculated in perturbation theory; the overall factor Q_μ hiui ($Q_\mu = 2 = 3$) is pulled out for later convenience. In the above equation, n labels the twist of operators and F is the factorization scale. The restriction on E implies that $F^{\text{soft}}_{\mu\nu}$ cannot be calculated for all photon energies; to be specific, we restrict ourselves to $E > 1 \text{ GeV}$. The factorization formula holds if the infrared divergences occurring in the calculation of $T^{(n)}$ are such that they can be absorbed into the universal distribution amplitudes $DA^{(n)}$ and if the convolution integral converges. We note that this is indeed the case, at least for the leading twist-2 contribution and to first order in α. We also would like to stress that the above factorization formula has got nothing to do with the pQCD factorized expression for $F^{\text{hard}}_{A;V}$ derived in [5, 6] (although we will discuss the relevance of our findings as compared to theirs in Sec. 4) and that it is valid for arbitrary values of the b-quark mass; there is no need to restrict oneself to the heavy quark limit.

Let us now define the photon DAs that enter Eq. (5). As mentioned above, we shall work in the background eld gauge, which means that the expression (3), formulated for an outgoing photon, gets replaced by a correlation function of the time-ordered product of two currents in the vacuum, which is populated by an arbitrary EM eld configuration F,

$$F(p;g) = i \int \frac{1}{4} \hbar \xi \tilde{T} f(u) (1 \sigma b(x) b(0) i \xi u(0) g \bar{q} i_F)$$

where the subscript F indicates that an EM background $\text{eld} B$ is included in the action. The calculation is explicitly gauge-invariant, and it is only in the final step that we select one specific eld configuration corresponding to an outgoing photon with momentum q:

$$F(x) ! i(q q_\xi) e^{i \xi}$$

Following Ref. [10], we define the leading-twist DA as the vacuum expectation value of the nonlocal quark-antiquark operator with light-like separations, in the EM background eld configuration F:

$$h_0 j_1(z) [z; z] q(z) \bar{q} i_F = \epsilon_q \hbar q_i q_j du F(z) (u)$$

where $z^2 = 0$ and $[z; z]$ is the path-ordered gauge-factor

$$[z; z] = P \exp i \int_0^1 dt 2z [gA ((2t 1)z) + qB ((2t 1)z)]$$

including both the gluon $\text{eld} A = A^a \zeta^a = 2$ and the EM background $\text{eld} B$. ϵ_q is the electric charge of the light quark q, e.g. $\epsilon_u = 2 = 3$. $\hbar q_i q_j$ is the quark condensate and its magnetic susceptibility (defined via the local matrix element $h_0 j_1(z) \bar{q} i_F = \epsilon_q \hbar q_i F$, which implies the normalization $\frac{1}{\epsilon_q} du (u) = 1$ can be expanded in...
terms of contributions of increasing conformal spin (cf. [15] for a detailed discussion of the conformal expansion of DA's):

\[
(u; \gamma) = 6u(1 - u)^2 + \sum_{n=2}^{\infty} n^3 (2 - 1)^n c_n^{3=2} (2u - 1)^n \gamma \; ; \tag{9}
\]

where \(c_n^{3=2} \) are Gegenbauer polynomials and \(u \) is the collinear momentum fraction carried by the quark. The usefulness of the conformal expansion lies in the fact that the Gegenbauer moments \(n \gamma \) renormalize multiplicatively in LO perturbation theory. At higher twist, there exists a full plethora of photon DA's, which we refrain from defining in full detail, but refer the reader to the discussion in Ref. [10], in particular Sec. 4.1.

The task is now to calculate the hard kernels \(T^{(n)} \), to \(O(\gamma) \) in leading-twist and tree-level for higher twist. As for the former, the relevant diagrams are shown in Fig. 2. The diagrams are IR divergent, which divergence can be absorbed into the DA's huui ; we have checked that this is indeed the case. A critical point in pQCD calculations involving heavy particles is the possibility of soft divergences, which manifest themselves as divergence of the \(u \) integration at the endpoints; the success of the approach advocated in [1, 2] relies precisely on the fact that it yields a factorization formula for nonleptonic decays where these divergences are absent in the heavy quark limit (but come back at order \(1=m_b \)). We end that there are no soft divergences in our case\(^2\), which reiterates what has been found for other heavy-light transitions, cf. [16, 17, 18]. We thus con rm the factorization formula (5) to \(O(\gamma) \) at twist-2. Explicit expressions for the spectral

\(^2\)Note that this statement applies to the full correlation function with finite \(m_b \), not only to the heavy quark limit.
densities of the diagram s are too bulky to be given here; they can be obtained from the authors. At this point we only note that, to leading-twist accuracy, A v.

As for the higher-twist contributions, we obtain the following results:

\[A = Q_u f_3 \int_0^{Z_1} \frac{d(u)}{s^2} m_b + \frac{1}{2} Q_u \int_0^{Z_1} \frac{h(u)}{s^2} \left(1 + \frac{2m^2}{s^2} \right) \]

\[= Q_u \int_0^{Z_1} \frac{dv}{s^2} D - \frac{2}{s^2} (1 - 2v), \]

\[= Q_u \int_0^{Z_1} \frac{dv}{s^2} \left(D - \frac{2}{s^2} (1 - 2v), \right) \]

\[= Q_u \int_0^{Z_1} \frac{dv}{s^2} \left(D - \frac{2}{s^2} (1 - 2v), \right) \]

\[= Q_u \int_0^{Z_1} \frac{dv}{s^2} \left(D - \frac{2}{s^2} (1 - 2v), \right) \]

where \(s = m_\ell^2 \) (\(p + uq \)) and \(s = m_\ell^2 \) (\(p + q \)) with \(q = (q, q, 0, 1, 1, 0, 0) \).

Definitions and explicit expressions for the higher-twist DAs \((v)(u)\) and \((a)(u)\) (two-particle twist-3), \(h(u)\) (two-particle twist-4), \(S(\)\()\), \(S(\)\()\) (three-particle twist-3) and \(T(\)\()\), \(T(\)\()\) (three-particle twist-4) can be found in [10]. Note that in contrast to the leading-twist results, \(A \) higher-twist is different.

3 Numerical Results for \(F_{A/N}^{soft} \)

Before presenting numerical values for the soft part of the form factors, we first discuss the numerical input to the sum rule (4). As for the photon DA, we use the values and parametrizations derived in [10], notably for the normalization of the twist-2 matrix element (7):

\[(hu\nu)(1 GeV) = (0.050, 0.015) GeV\]

As discussed in [10], there is no conclusive evidence for the di er signi cantly from its asymptotic form, so we set

\[(u) = 6u(1 - u)\]

The remaining hadronic matrix elements characterizing higher-twist DAs are detailed in [10]. Note that we evaluate scale-dependent quantities at the factorization scale \(\frac{2}{F} = m_\ell^2 \) (19); the dependence of the form factors on \(F \) is very small, as all numerically sizeable contributions are now available to NLO in QCD, which ensures good cancellation of the residual scale dependence.
As for the remaining parameters occurring in (4), we have the sum rule specific parameters M^2 and s_0, that is the Borel parameter and the continuum threshold, respectively. In addition, the sum rule depends on m_b, the b quark mass, and f_B, the leptonic decay constant of the B. f_B can in principle be measured from the decay $B\to \mu^+\mu^-\nu\bar{\nu}$, which, due to the expected smallness of its branching ratio, $\mathcal{B}(B\to \mu^+\mu^-\nu\bar{\nu})\sim 10^{-6}$, has, up to now, escaped experimental detection. f_B is one of the best-studied observables in lattice simulations with heavy quarks; the current world-average from unquenched calculations with two dynamical quarks is $f_B = (200\pm 30)\text{MeV} [20]$. It can also be calculated from QCD sum rules: the most recent determinations [21] include $O(\frac{1}{s^2})$ corrections and nd $(206\pm 20)\text{MeV}$ and $(197\pm 23)\text{MeV}$, respectively. For consistency, we do not use these results, but replace f_B in (4) by its QCD sum rule to $O(\frac{1}{s})$ accuracy, including the dependence on s_0 and M^2, and use the corresponding \"optimum\" ranges of continuum threshold and Borel parameter also in evaluating the Borel-transformed correlation function $\left\langle V_{IA}^2\right\rangle$, i.e. the l.h.s. of (4). For the b quark mass, we use an average over recent determinations of the \overline{MS} mass, $m_{b,\overline{MS}} = (4.22\pm 0.03)\text{GeV} [22, 23]$, which corresponds to the one-loop pole mass $m_{b,\overline{MS}}^{\text{pole}} = (4.60\pm 0.09)\text{GeV}$. With these values we find $f_B = (192\pm 22)\text{GeV}$ (the error only includes variation with m_b and M^2, at optimized s_0), in very good agreement with both lattice and QCD sum rules to $O(\frac{1}{s})$ accuracy. For $m_b = (4.51\pm 0.03; 4.69)\text{GeV}$ the optimized s_0 are $(34.5; 34.0; 33.5)\text{GeV}^2$, and the relevant range of M^2 is $(4.5(8)\text{GeV}^2$.

In Fig. 3 we plot the different contributions to $F_{\nu\nu}(0)$ as function of M^2, for $m_b = 4.6\text{GeV}$, $s_0 = 34\text{GeV}^2$ and the central value of $\langle q\bar{q}\rangle$. It is evident that the sum rule is dominated by twist-2 contributions and that both radiative corrections and higher-twist terms are well under control. Note also the minimal sensitivity to M^2 which indicates a \"well-behaved\" sum rule. Varying m_b, s_0 and the other input parameters within the ranges specified above, we find

$$F_{\nu\nu}'(0) = 0.07 \pm 0.02; \quad F_{\nu\nu}''(0) = 0.09 \pm 0.02.$$

As mentioned before, the above results are obtained using the asymptotic form of the twist-2 photon DA. Although there is presently no evidence for nonzero values of higher Gegenbauer moments, the n in (9), it may be illustrative to estimate their possible impact on the form factors. As a guideline for numerical work, we choose $n = 2$ to be equal to 2^2, its analogue for the transversely polarized $q\bar{q}$ meson, as determined in [24]: $2^2(1\text{GeV}) = 0.2 \pm 0.1$. In Fig. 4 we plot the twist-2 contribution to the form factors obtained with the asymptotic and the corrections induced by nonzero 2^2. It is clear that the effect is moderate and at most about 20%. It is also interesting to note that positive values of 2^2, which are in accordance with assuming $q\bar{q}$ meson dominance for the photon, increase the form factor, which means that our results are likely to be an underestimate of the soft contributions rather than the contrary.

In Fig. 5, we show the dependence of $F_{\nu\nu}'(p^2)$ on the momentum transfer p^2, including the variation of all input parameters in their respective ranges. The form factors can be
Figure 3: The soft photon contributions to $F_{V(A)}(O)$ in dependence of the Borel parameter M^2. The twist-2 contributions to both form factors are equal. The plot refers to $m_b = 4.6\,\text{GeV}$ and $s_0 = 34\,\text{GeV}^2$.

Figure 4: Contributions to $F_{V(A)}^{\text{soft}}(O)$ from different values of α_s of the 2nd Gegenbauer momentum of the photon DA ($m_b = 4.6\,\text{GeV}; s_0 = 34\,\text{GeV}^2$).

Figure 5: Dependence of $F_{V(A)}^{\text{soft}}$ on the momentum transfer p^2. Solid line: light-cone sum rule for central values of input parameters. Dashed lines: spread of $F_{V(A)}^{\text{soft}}$ upon variation of input parameters. The exact parameter sets for the curves (a) to (c) are listed in Tab.1. Note that the uncertainty originating from M^2 and s_0 is less than 10%.
Input parameters
t
(a)	(b)	(c)
m_b [GeV] | 4.69 | 4.60 | 4.51
s_0 [GeV^2] | 33.5 | 34.0 | 34.5
M^2 [GeV^2] | 8 | 6 | 5
h_{uu}(= 1 GeV) [GeV] | 0.035 | 0.050 | 0.063

Fit parameters

(a)	(b)	(c)
F_A^{soft}(0) | 0.057 | 0.072 | 0.093
a_A | 1.97 | 1.97 | 1.95
b_A | 1.18 | 1.15 | 1.08
F_V^{(0)} | 0.071 | 0.088 | 0.110
a_V | 2.09 | 2.08 | 2.05
b_V | 1.25 | 1.22 | 1.16

Table 1: Input parameters sets for Fig. 5 and fit parameters for Eq. (13).

The following formula:

\[
F^{soft}_{A(V)}(p^2) = \frac{F^{soft}_{A(V)}(0)}{1 - a_{A(V)} (p^2 = m_b^2) + b_{A(V)} (p^2 = m_b^2)}
\]

(13)

The fit parameters \(F^{soft}_{A(V)}(0), a_{A(V)}, \) and \(b_{A(V)} \) for each curve in the figure are given in Tab. 1.

The above formula gives the full sum rule results to 1% accuracy for \(0 < p^2 < 17 GeV^2 \), which corresponds to \(1 GeV < E < m_b = 2 \). Note that the uncertainty induced by \(M^2 \) and \(s_0 \) is very small: up to 5% for \(F_V \) and up to 10% for \(F_A \). The main theoretical uncertainty comes from \(h_{qq} \).

4 Calculation of \(B \) { C omparison to pQCD}

As mentioned above, the \(B \) form factors have also been calculated in the framework of pQCD factorization \([7, 5, 6]\). This approach employs the limit \(m_b \rightarrow 1 \) (HQCL), in which the soft contributions vanish. The form factors \(F^{hard}_{A(V)HQCL} \) are equal and at tree level given by

\[
F^{hard}_{A(V)HQCL}(E) = \frac{f_B m_B Q_u}{2E} \frac{Z^d}{k_u} \frac{B(k_u)}{k_u} = \frac{f_B m_B Q_u}{2E} \frac{1}{B} ;
\]

(14)

where the light-cone DA \(\frac{B}{k_u} \) of the \(B \) meson depends on the momentum of the light spectator quark, \(k_u \). The calculation of radiative corrections to this formula has been the subject of a certain controversy, cf. Refs. [7, 5, 6]. The parameter \(B \) does not scale with \(m_b \) in the HQCL and hence is of natural size \(O(\alpha_{QCD}) \); it has been quoted as \(B = 0.3 GeV \) \([1]\) and \(B = (0.35 \ 0.45) GeV \) \([5]\), but without calculation. Although presently any
statement about the numerical size of B appears slightly precarious, since B and hence B depend in a yet unknown way on the factorization scale f, we nonetheless venture to present the (to the best of our knowledge) first calculation of B. To that purpose, we recall that the hard contribution to $F_{\chi'}$ can be obtained, in the QCD sum rule approach, from the local contributions to the correlation function $\langle A \rangle$, Eq. (2), which, to leading order in perturbation theory, correspond to the diagrams shown in Fig. 1 and have been calculated in [8]. In order to extract B via (14) from the local QCD sum rule for $F_{\chi'}$, we must have to nd its HQL QCD sum rules in the heavy quark limit it have actually been studied in some detail, cf. [25], with the following result for the scaling relations of the sum rule specific parameters M^2 and s_0:

$$M^2 \sim 2m_b; \quad s_0 \sim m_B^2 + 2m_b!_0.$$ \hspace{1cm} (15)

Applying these relations to the sum rule for $F_{\chi'}^{hard}$ and using (14), we obtain the following expression:

$$e = \frac{f_B^2 m_B^2}{m_B E} \frac{1}{B} = \frac{3}{2E} \frac{Z}{0} d_!! e^{=} :$$ \hspace{1cm} (16)

We note that the factor $1=E$ on the rhs arises automatically in the HQL of the correlation function is the binding energy of the b quark in the B meson, $= m_B m_b$. On the lhs of (16), the expression $f_B^2 m_B^2 = m_B$ still contains $1=m_B$ corrections; in the rigorous HQL we have $f_B^2 m_B^2 = m_B! f_{stat}$ is known both from lattice calculations and QCD sum rules; in the same spirit that we applied for calculating $F_{\chi'}^{soft}$, we replace, for the numerical evaluation of B, f_{stat} by its sum rule [25]:

$$f_{stat}^2 e = \frac{3}{2} \frac{Z}{0} d_!! e^{=} ;$$ \hspace{1cm} (17)

where we have suppressed (small) condensate contributions. Combining (16) and (17), we nd

$$B = \frac{\frac{3}{2} \frac{Z}{0} d_!! e^{=} :}{\frac{3}{2} \frac{Z}{0} d_!! e^{=} ;}$$ \hspace{1cm} (18)

This is our sum rule for B, which, admittedly, is the first rather than the last word in the story of how to calculate B. It can and should be improved by including both radiative (which will also settle the issue of scale dependence) and nonperturbative corrections. For the sum rule parameters $!_0$ and $!_0$, we exploit the fact that $= m_B m_b \approx 0.7 GeV$ is known; the corresponding sum rule reads

$$\frac{\frac{3}{2} \frac{Z}{0} d_!! e^{=} :}{\frac{3}{2} \frac{Z}{0} d_!! e^{=} ;}$$ \hspace{1cm} (19)

which can be derived from (17) by taking one derivative in $1=$. None of the sum rules (16), (17), (18) is "well-behaved" in the sense that they feature no stability plateau in
since the perturbative term is not counterbalanced by a nonperturbative one. Nonetheless, taking $0.5 \text{ GeV} < \langle \rangle < 1 \text{ GeV}$ as indicated by our preferred range of M^2 used above and the scaling laws (15), we find $!_0 = 1 \text{ GeV}$ and then, from (18),

$$B = 0.57 \text{ GeV}.$$

Given the neglect of $O(s)$ corrections and nonperturbative terms, it is difficult to attribute an error to that number. For this reason, we check if our result is compatible with the local duality approximation, which corresponds to the limit $\langle \rangle \to 1$. From (16) and (17) we then obtain the interesting relation

$$B = \frac{8}{9};$$

which for $m_b = 4.6 \text{ GeV}$ implies $B = 0.6 \text{ GeV}$. We thus conclude that the value of B is set by QCD and depends strongly on the actual value of m_b; at present, nothing meaningful can be said about the error associated with B and we thus quote as our final result

$$B = 0.6 \text{ GeV};$$

(20)

We are now in a position to compare the numerical size of the pQCD result $F_{A/(V)}^{hard}$ to $F_{A/(V)}^{soft}$. At tree level, we have $F_{A/(V)}^{hard}$ $(E = m_b = 2) = 0.22$; according to (14). Notwithstanding the additional hadronic uncertainties involved at NLO in QCD, we employ the models for B advocated in [5] to obtain $F_{A/(V)}^{hard}$ $(E = m_b = 2) = 0.21$ 0.01 for $2F = m^2_A + m^2_B$, our choice of the factorization scale. This number has to be compared to (12), 0.3 at maximum photon energy so that the param etrical scaling $F_{A/V}^{soft}$ $O(1-m_b)$ is numerically relaxed.

5 Summary and Conclusions

The relevance of B physics for extracting information on weak interaction parameters and new physics is limited by our lack of knowledge on nonperturbative QCD. Recent progress in describing the notoriously difficult nonleptonic decays in perturbative QCD factorization has raised hopes that a sufficiently accurate solution to the problem is around the corner. As much as this is a highly desirable goal, it is nonetheless necessary to critically examine the theoretical uncertainty of the method, which, at least at present, is set by the restriction to the heavy quark limit. A direct theoretical test of pQCD factorization in nonleptonic decays is currently not feasible, and any significant experimental deviation of measured decay rates or CP asymmetries from pQCD predictions is as likely to be attributed to new physics effects as to uncertainties in the predictions themselves. An indirect theoretical test becomes however possible in the admittedly phenomenologically not very attractive channel $B \to e$, where alternative methods of calculation exist and allow one to assess effects suppressed by powers of m_b. In this letter, we have calculated
Corrections to the hard pQCD form factors, which are parametrically suppressed by one power of m_b. These "soft" corrections are induced by photon emission at large distances and involve the hadronic structure of the photon. We have also presented the first calculation of B^-, the first negative moment of the B meson distribution amplitude, a very relevant parameter for pQCD calculations. The calculation is admittedly rather crude, but am enable to improve it. Comparing the numerical size of the pQCD result to the soft contributions, we found that the latter are indeed sizeable, $O(30\%)$. This result implies an immediate caveat for pQCD analyses involving photon emission, in particular $B \to K^*$ and $B \to \pi^0$, e.g. [11, 12]. In a wider sense, it also adds a possible question-mark to pQCD analyses of purely hadronic B decays and emphasizes the relevance of power-suppressed corrections to the heavy quark limit.

Acknowledgments
We are grateful to C. Sachrajda for useful discussions.

References

