|
Welcome to INSPIRE, the High Energy Physics information system.
Please direct questions, comments or concerns to feedback@inspirehep.net.
|
| Home > Thermodynamics of the high temperature quark gluon plasma |
Mar 2003 - 63 pages
Abstract
We review the various methods which have been employed recently to describe the thermodynamics of the high temperature quark-gluon plasma using weak coupling techniques, and we compare their results with those of most recent lattice gauge calculations. Many of the difficulties encountered with perturbation theory at finite temperature are in fact not specific to QCD but are present in any field theory at finite temperature and will be discussed first in the simple example of the scalar field theory. We discuss the merits and limitations of various techniques which have been used to go beyond perturbation theory in the soft sector, such as dimensional reduction, screened perturbation theory or hard-thermal-loop perturbation theory, and Phi-derivable approximations. In the last part of the review, we focus on the later, which lead to a remarkably simple expression for the entropy of the quark-gluon plasma. When complemented with further, physically motivated, approximations, this approach reproduces accurately the entropy obtained from lattice gauge calculations at temperatures above 2.5 T_c, where T_c is the deconfinement temperature. This calculation thus provides also support to the physical picture of the quark-gluon plasma as a gas of weakly interacting quasiparticles.