A previous study of the Kawai, Lewellen and Tye (KLT) relations between gravity and gauge theories, imposed by the relationship of closed and open strings, are here extended in the light of general relativity and Yang-Mills theory as effective field theories. We discuss the possibility of generalizing the traditional KLT mapping in this effective setting. A generalized mapping between the effective Lagrangians of gravity and Yang-Mills theory is presented, and the corresponding operator relations between gauge and gravity theories at the tree level are further explored. From this generalized mapping a remarkable diagrammatic relation is found, linking diagrams in gravity and Yang-Mills theory, as well as in effective Yang-Mills theory. This is the possibility of gravitational coupling to an antisymmetric field in the gravity scattering amplitudes is considered, and shown to allow for mixed open-closed string solutions, i.e., closed heterotic strings.

I. INTRODUCTION

In a former publication [1] the implications of the Kawai, Lewellen and Tye (KLT) string relations [2] were surveyed in the effective field theory limit of open and closed strings. At such energy scales the tree scattering amplitudes of strings can be exactly reproduced by the tree scattering amplitudes originating from an effective Lagrangian with an infinite number of terms written as a series in the string tension α_s. Closed strings have a well known natural interpretation as fundamental theories of gravity (open string theories turn on the other hand up as non-abelian Yang-Mills vector fields theories. This gravity/gauge correspondence will be the turning point of our investigations.

At tree level the KLT string relations are connecting on-shell scattering amplitudes for closed strings with products of left/right moving amplitudes for open strings. This was first applied by [13] to gain useful information about tree gravity scattering amplitudes from the much simpler Yang-Mills tree amplitudes. The KLT relations between scattering amplitudes alone give a rather remarkable non-trivial link between string theories, but in the field theory regime the existence of such relationships is almost astonishing, and nonetheless valid.

Yang-Mills theory and general relativity being both non-abelian gauge theories have some resemblance, but their dynamical and limiting behaviors at high energy scales are in fact quite dissimilar. One of the key results of our previous efforts was to show that once the KLT relations were imposed, they uniquely relate the tree limits of the generic effective Lagrangians of the two theories. The generic effective Lagrangian for gravity will have a restricting tree level connection to that of Yang-Mills theory, through the KLT relations. In the language of field theories the KLT relations present us with a link between the on-shell field operators in a gravitational theory as a product of Yang-Mills field theory operators.

Even though the KLT relations only hold explicitly at tree level the factorization of gravity amplitudes into Yang-Mills amplitudes can be applied with great success in loop calculations. This has been carried out in [12, 13, 14] using loop diagram cuts and properties such as unitarity of the S-matrix. For a review of such calculations in QCD see [15], and also [16, 17]. These investigations have also showed the important result that $N = 8$ SUGRA, is less UV divergent than previously believed. In addition, matter sources can be introduced in the KLT form as done in [16]. We will not consider such loop extensions here, instead we will be more interested in the actual factorization of tree amplitudes.

Zero string tension factorizations of gravity vertices into gauge vertices were explored at the Lagrangian level in [15] using the standard Einstein action $L = \frac{1}{2} \sqrt{-g} R$. Remarkable factorizations of gravity vertices have also been presented in [14] using a certain vierbein formalism. The idea that gravity could be factorizable into a product of independent Yang-Mills theories is indeed very beautiful and in a sense what is promised by the KLT relations. The product of two independent Yang-Mills vectors (A_L, A_R) (without internal contractions and interchanges of vector indices) should then be related to the gravitational tensor g through KLT:

$$A_L A_R g$$

Electronic address: bbohr@nbi.ki
however such a direct relationship is only realized at the tree amplitude level. At the Lagrangian level gauge issues
\[m \times n\] in and complicates the matter. Whether this can be resolved or not (and how) remains to be understood. Our
goal here will be to gain more insight into the basic tree level factorizations for the amplitudes generated from the
effective action of general relativity and Yang-Mills at order \(\mathcal{O}(g^2)\).

Despite common belief, string theory is not the only possible starting point for the safe arrival at a successful
quantum theory for gravity below the Planck scale. The standard Einstein action has for decades been known to be
non-renormalizable because of loop divergences which were in possible to absorb in a renormalized standard Einstein
action. Traditionally it has been believed that a field theory description of general relativity is not possible
and that one should avoid such theories. However general relativity can consistently be treated as the low energy limit
of an effective field theory, and such an approach leaves no renormalization issues. Furthermore one the experimental
expectations of Einstein gravity in the classical limit are still achieved, and corrections from higher derivative terms
in the effective action are negligible in the classical equations of motion at normal energies. Various effective
theory calculations have already successfully been carried out in this framework as well as in the where
the massless theory of general relativity and QED is considered. These calculations have clearly demonstrated
that it is possible to successfully mathematically describe quantum gravity and gravitational interactions of matter
over an enormous range of energies.

An effective field theory thus appears to be the obvious scene for quantum gravity at normal energies (i.e., below
\(10^{13}\) GeV). At the Planck energy the effective action eventually breaks down, leaving an unknown theory at very high
energies; possibly a string theory. From the effective field theory point of view there is no need, however, to assume
that the high energy theory a priori should be a string theory. The effective field theory viewpoint allows for a broader
range of possibilities than that imposed by a specific field theory limit of a string theory.

The effective field approach for the Yang-Mills theory in four dimensions is not really necessary, because it
already a renormalizable theory (but no principles forbid us the possibility of including additional terms in the
nonabelian action and this is anyway needed for a d-dimensional \(d > 4\) Yang-Mills Lagrangian). By modern field
theory principles the nonabelian Yang-Mills action can always be regarded as an effective field theory and treated as
such in calculations.

Our aim here will be to gain additional insight in the mapping process and we will investigate the options of extending
the KLT relations between scattering amplitudes at the effective field theory level. Profound relations between
effective gravity and Yang-Mills diagram and between pure effective Yang-Mills diagrams will also be presented. To which
level string theory actually is needed in the mapping process will be another aspect of our investigations.

The KLT relations also work for fixed closed string amplitudes and open strings. In order to explore such
possibilities we will augment an antisymmetric metric \(g\), which is needed for fixed string modes, to the gravitational
effective action \(\mathcal{G}\).

The paper is organized as follows. First we review our previous results for the scattering amplitudes; we briefly
discuss the theoretical background for the KLT relations in string theory and make a generalization of the mapping.
The mapping solution is then presented, and we give some beautiful diagrammatic relationships generated by the
mapping solution. These relations not only hold between gravity and Yang-Mills theory, but also in pure Yang-Mills
theory itself. We end the paper with a discussion about the implications of such mapping relations between gravity
and gauge theory and try to look ahead. The same conventions as in the previous paper \([1]\) will be used, i.e., metric
\((\cdots)\) and units \(c = \hbar = 1\).

II. THE EFFECTIVE ACTIONS FOR GENERAL RELATIVITY AND GAUGE THEORY

In this section we will review the main results of refs. \([1,2,3,4]\). In order to generate a scattering amplitude we need
expressions for the generic Lagrangians in gravity and Yang-Mills theory. In principle any gauge or reparametrization
invariant term \(s\) could be included (but it turns out that some terms will be ambiguous under generic field
redefinitions such as:

\[g = a_1 R + a_2 g \quad R \cdots \quad A = a_1 D \quad F + \cdots\] (2)

As the S-matrix is manifestly invariant under a field redefinition such as invariants which give rise to the scattering amplitudes, also \([4,5]\). The Lagrangian obtained from the reparametrization invariant term \(s\) alone will be sufficient because we are solely considering scattering amplitudes.

Including only field redefinition invariant contributions in the action one can write for the on-shell action of the
gravitational fields (to order \(\mathcal{O}(g^2)\)):

\[L = \frac{1}{2} R - \frac{\alpha}{2} R^2 + (0)^2 b_1 R + b_2 (R \quad R \quad R \quad 2R \quad R \quad R \quad i) + \cdots\] (3)
while the on-shell effective action in the Yang-Mills case (to order $O(\alpha)$) has the form

$$L_{YM} = \frac{1}{8} \text{tr} F^a F^a + a_1 F^a F^a + \left(\frac{1}{2} a_4 F^a F^a F^a + a_5 F^a F^a F^a F^a \right)$$

The L in the above equation states that this is the effective Lagrangian for a 'left' moving vector field. To the 'left' effective action is associated an independent 'right' moving action, where 'left' and 'right' field strengths are treated as generally different. The 'left' and the 'right' theories are completely disconnected theories and have no interactions.

The Yang-Mills coupling constant in the above equation is left out for simplicity. Four additional trace terms at order $O(\alpha)$ have been neglected. These terms have a different Chan-Paton structure than the single trace terms. We need to augment the gravitational effective Lagrangian in order to allow for the heterotic string. As shown in (2), one should in that case add an antisymmetric tensor field coupling:

$$L_{\text{Anti}} = \frac{1}{2 \alpha} \text{tr} F^a F^a + \frac{3}{4} (\partial \mathcal{B} + \mathcal{C}^{abc} \mathcal{R}_{abc} + \cdots)$$

where \mathcal{B} represents the spin connection.

This term will contribute to the 4-graviton amplitudes. We will observe how such a term affects the matching and forces the 'left' and 'right' field strengths to be different.

From the effective Lagrangians above one can expand the field invariants and thereby derive the scattering amplitudes. For the 3-point amplitudes this is very easy as only on-shell terms contribute and we need only consider direct contact terms in the amplitudes.

The following 3-point scattering amplitudes is generated in gravity:

$$M_3 = \frac{1}{3} k_1 k_2 + k_3 k_2 + k_1 k_3 + k_2 k_3$$

For the gauge theory 3-point amplitudes one finds:

$$A_{3L} = \frac{1}{3} k_1 k_2 + k_3 k_2 + k_1 k_3 + k_2 k_3$$

For the general 4-point amplitudes matter is somewhat more complicated. The scattering amplitudes will consist of both direct contact terms as well as 3-point contributions combined with a propagator (interaction parts). Further-more, on-shell constraints will still leave many non-vanishing terms in the scattering amplitudes. A general polynomial expression for the 4-point scattering amplitudes has the form

$$A_4 = F_{h_{m,k}} s^m t^n u^k$$

where s, t, and u are normal Mandelstam variables and the factor $h_{m,k}$ consists of scalar contractions of m on n and k polarization vectors for the external lines. The case $m + n + k = 2$ corresponds to a particular simple case, where the gauge field strengths $h_{m,k}$ consists only of m on n factors contracted with m on n factors, and polarization indices contracted with other polarization indices. In the process of combining amplitudes, we need only to match gauge field strengths at the point of the amplitudes; i.e., for a specific choice of elements $h_{m,k}$, a gauge symmetry will then do the rest and dictate that once adequate parts of the amplitudes match, we have achieved matching of the full amplitude. We will choose the case where $h_{m,k}$ has this simple form, and the contribution to the gravity 4-point amplitudes can then be written:

$$M_4 = \frac{1}{2} \left(\frac{1}{2} \right)^{\frac{1}{2}} 0 2 3 4 (z + a_1 z^2 + 3b_1 (z^3 + 4xyz) + 3b_2 (z^3 + 4xyz) + \frac{1}{2} c^2 (z^3 + 4xyz))$$

$$+ \frac{1}{2} 1 \left(1 + a_1 y^2 + 3b_1 (y^3 + 4xyz) + 3b_2 (y^3 + 4xyz) + \frac{1}{2} c^2 (y^3 + 4xyz))$$

$$+ \frac{1}{2} 1 \left(x + a_1 x^2 + 3b_1 (x^3 + 4xyz) + 3b_2 (x^3 + 4xyz) + \frac{1}{2} c^2 (x^3 + 4xyz))$$

(9)
where we use the definitions: \(e_0 = 1\), \(e_1 = 2\), \(e_2 = 3\), \(e_4 = 1\) as well as \(x = 2\, \delta(k_1, k_2)\), \(y = 2\, \delta(k_1, k_3)\) and \(z = 2\, \delta(k_1, k_4)\). In the above expression the antisymmetric term (with generic coefficients) needed in the heterotic string scattering amplitudes has been included \[1, 2\].

The corresponding 4-point gauge amplitudes can be written:

\[
A_{4L} = \frac{h}{1234} + \frac{z}{1234} + \frac{z}{1234} + \frac{1}{1234} \left(\frac{1}{8} z (1234 + 1234 + 1234) + \frac{1}{128} (h a) \right) x (z, y) 1234
\]

\[
+ y(x, 1234) \left(\frac{1}{4} a x + \frac{1}{4} a x \right) y 1234 + \frac{1}{1234} (a x + a x) y x 1234 \tag{10}
\]

where \(x, y\) and \(z\) are defined as above, and \(e_0 = (1, 2, 3, 4)\) and etc.

These expressions for the scattering amplitudes are quite general. They relate the general effective Lagrangians in the gravity and Yang-Mills case to their 3- and 4-point scattering amplitudes respectively in any dimension. The next section will be dedicated to showing how the 3-point amplitudes and 4-point amplitudes in gravity and Yang-Mills have to be related through the KLT relations.

III. THE OPEN-CLOSED STRING RELATIONS

The KLT relations between closed and open string have already been discussed in ref. \[3\] but let us recapitulate the essentials here. Following conventional string theory \[36\] the general M-point scattering amplitude for a closed string is related to that of an open string in the following manner:

\[
A_M \text{closed} \rightarrow A_{M-\text{open}} \left(\frac{e_i}{e_i} \right)^{A_{M-\text{left open}}} = A_{M-\text{right open}} \tag{11}
\]

in this expression \(e_i\) and \(\frac{e_i}{e_i}\) corresponds to particular cyclic orderings of the external lines of the open string. While the ordering corresponds to a left-moving open string, the \(\frac{e_i}{e_i}\) ordering corresponds to the right-moving string. The factor \(\frac{e_i}{e_i}\) in the exponential is a phase factor chosen appropriately with the cyclic permutations \(e_i\) and \(\frac{e_i}{e_i}\). In the cases of 3- and 4-point amplitudes, the following specific KLT relations can be adapted from the M-point amplitudes:

\[
M_{3\text{grav}} (1;2;3) = A_{3L,\text{gauge}} (1;2;3) = A_{3R,\text{gauge}} (1;2;3)
\]

\[
M_{4\text{grav}} (1;2;3;4) = \frac{2}{0} \sin(x) = A_{4L,\text{gauge}} (1;2;3;4) = A_{4R,\text{gauge}} (1;2;3;4)
\]

where \(M\) is a tree amplitude in gravity, and we have the color ordered amplitude \(A\) for the gauge theory.

In string theory the specific mappin relation originate through the comparison of open and closed string amplitudes. However considering effective field theories there is no need to assume anything a priori about the tree amplitudes. It makes sense to investigate the mapping of scattering amplitudes over the broadest possible setting. We will thus try to generalize the above mapping relations. In the case of the 4-amplitude mapping it seems that it is possible to treat the specific sine function with a general Taylor series e.g.:

\[
\sin(x) ! = x (1 + P_1 x + P_2 x^2 + \cdots)
\]

If this is feasible and what it means for the mapping, will be explored below.

IV. GENERALIZED MAPPING RELATIONS

Insisting on the ordinary mapping relation for the 3-point amplitude and replacing in the 4-point mapping relation the sine function with a general polynomial the following relations between the coefficients in the scattering amplitudes are found to be necessary in order for the generalized KLT relations to hold. From the 3-amplitude at order 5 we have:

\[
3a_1^5 + 3a_1^2 = 16a_1
\]
while from the 3-amplitude at order $^{\otimes}$ one gets:

$$3a_1^L a_1^R = 64b_1$$

From the 4-amplitude at order 0 we have:

$$16a_1 = 3a_1^L + 3a_1^R; \quad P_1 = 0$$

while the 4-amplitude at order $^{\otimes}$ states:

$$6a_5^L + 3a_1^L + \frac{27(a_1^L)^2}{16} = 0; \quad 6a_5^R + 3a_4^R + \frac{27(a_1^R)^2}{16} = 0;$$

Together with the equations

$$24c^2 + 96a_1^2 = 6a_3^L + 3a_3^R + 18a_4^L + 12a_4^R + 24a_5^L + 96b_2 + 18(a_1^L + a_1^R)P_1;$$

$$24c^2 + 96a_1^2 = 3a_4^L + 6a_4^R + 18a_5^L + 24a_5^R + \frac{81(a_1^L)^2}{8} + 96P_2 + 18(a_1^L + a_1^R)P_1;$$

$$24c^2 + 96a_1^2 = 6a_5^L + 3a_3^R + 6a_4^L + 12a_5^L + 36a_5^R + \frac{27}{8}(a_1^L)^2 + 278(a_1^R)^2 + 96P_2 + 18(a_1^L + a_1^R)P_1;$$

$$24c^2 + 96a_1^2 = 3a_3^L + 6a_3^R + 6a_4^R + 12a_5^L + 36a_5^R + \frac{27}{8}(a_1^L)^2 + \frac{27}{8}(a_1^R)^2 + 96P_2 + 18(a_1^L + a_1^R)P_1;$$

and furthermore

$$96b_1 + 48b_2 + 16c^2 = 4a_1^L + 5a_1^R + 2a_3^L + 6a_4^R + 8a_5^L + \frac{9(a_1^L)^2}{4} + \frac{9(a_1^R)^2}{2} + 96P_2 + 18(a_1^L + a_1^R)P_1;$$

$$96b_1 + 48b_2 + 16c^2 = 4a_3^R + 5a_1^L + 2a_4^L + 6a_4^R + 8a_5^L + \frac{9(a_1^L)^2}{4} + \frac{9(a_1^R)^2}{2} + 96P_2 + 18(a_1^L + a_1^R)P_1;$$

as well as

$$96a_1^2 + 96b_1 + 8c^2 = a_3^L + 2a_4^R + 12a_5^L + 12a_5^R;$$

$$96a_1^2 + 96b_1 + 8c^2 = a_1^L + 2a_4^R + 12a_5^L + 12a_5^R;\quad 2$$

$$96a_1^2 + 96b_1 + 8c^2 = a_3^L + 2a_4^R + 12a_5^L + 12a_5^R;\quad 8$$

$$96a_1^2 + 96b_1 + 8c^2 = 2a_3^L + 12a_5^L + 4a_5^R + 8a_5^R;\quad 2$$

$$96a_1^2 + 96b_1 + 8c^2 = 2a_3^L + 12a_5^L + 4a_5^R + 8a_5^R;\quad 8$$

These equations are found by relating similar scattering components, e.g., the product resulting from the generalized KLT relations: $1234 \cdot 1324 y^2x$ on the gauge side, with $1 \cdot 2 \cdot 4 \cdot 3 y^2x$ on the gravity side. The relations can be observed to be a generalization of the mapping equations we found in ref. [3]. Allowing for a more general mapping and including the antisymmetric term needed in the case of an heterotic string generates additional freedom in the mapping equations. The generalized equations can still be solved and the solution is unique. One one ends up with the following solution [4]:

$$a_1^L = \frac{8}{3}a_1^L; \quad a_1^R = \frac{8}{3}a_1^L;$$

$$a_2^L = 8P_2; \quad a_2^R = 8P_2;$$

$$a_3^L = 4P_2; \quad a_3^R = 4P_2;$$

$$a_4^L = 2a_1c + \frac{1}{2}c^2 + 2P_2; \quad a_4^R = 2a_1c + \frac{1}{2}c^2 + 2P_2;$$

$$a_5^L = 2a_1c + \frac{1}{2}c^2 + 2P_2; \quad a_5^R = 2a_1c + \frac{1}{2}c^2 + 2P_2;$$

$$b_1 = \frac{1}{3}a_1^L; \quad b_2 = \frac{1}{3}a_1^L;$$

$$c^2.$$
This is the unique solution to the generalized mapping relations. As seen, the original KLT solution ref. [3] is still contained but the generalized mapping solution is not as constraining as the original KLT solution was. In fact now one can freely choose C and P2 as well as a1. Given a certain gravitational action with or without the possibility of terms needed for heterotic strings, one can choose between different mappings from the gravitational Lagrangian to the given Yang-Mills action. Traditional string solutions are contained in this and are possible to reproduce (but the solution space for the generalized solution is broader and allows seemingly for a wider range of possible effective actions on the gravity and the Yang-Mills side. It is in part to note that this does not imply that the coefficients in the effective actions can be chosen freely (the generalized KLT relations still present rather restricting constraints on the effective Lagrangians). To which extend one may be able to reproduce the full solution space by string theory is not definitely answered. Clearly superstrings cannot reproduce the full solution space because of spontaneous supersymmetry which does not allow for terms in the effective action like tr(F F F) on the open string side and R R R the gravity side [35,36,40]. For non-supersymmetric string theories constrains on the effective actions such as the above does not exist, and it is therefore possible that in this case some parts or all of the solution space might be reproduced by the variety of non-supersymmetric string theories presently known. It is e.g. observed that the bosonic non-supersymmetric string solution in fact covers parts of the solution space not covered by the superyumetic string solution.

The possibility of heterotic strings on the gravity side, i.e., a non-vanishing c will as observed always generate dissi
di
gar 'left' and 'right' Yang-Mills coe
cients, i.e., for nonzero C, e.g., a1, a2, a3, a5, a6, and a7. It is also seen that for c = 0 that 'left' is equivalent to 'right'. The coefficients a1, a2, and a3 are completely determined by the coefficient P2. In the generalized mapping relation the only solution for the coefficient P2 is zero.

The KLT or generalized KLT mapping equations can be seen as constraints linking the generic terms in the gauge/gravity Lagrangians. To summarize the gravitational Lagrangian has to take the following form, dictated by the generalized KLT relations:

\[
L = L_{tr} + \frac{g^2}{4} R + \sum_{i=1}^{6} a_i R_i^2 + \left(\frac{1}{3} a_1^2 - \frac{1}{12} c^2 R \right) R R R + \sum_{i=1}^{6} a_i \left(\frac{1}{6} c^2 R R R + 2 R R R \right)
\]

and the corresponding 'left' or 'right' Yang-Mills action are then forced to be:

\[
L_{YM} = \frac{1}{8} \text{tr} F^L F^L + \sum_{i=1}^{6} a_i \left(2 a_i + 2 c^2 F^L F^L F^L \right) + \left(\frac{1}{3} a_1^2 - \frac{1}{12} c^2 R \right) R R R + \sum_{i=1}^{6} a_i \left(2 a_i + 1 \right)
\]

where 'left' and 'right' respectively opposite choices of signs, in the above equation. One sees that the Yang-Mills Lagrangian is fixed once a gravitational action is chosen; the only remaining freedom in the Yang-Mills action is then the choice of P2, corresponding to different mappings.

It is directly seen that the graviton 3-amplitude to order 0 is re-expressible in terms of 3-point Yang-Mills amplitudes. This can be expressed diagrammatically in the following way:

\[
\left(\frac{a_1}{(a')} \nu^{a_1} \right) \otimes \left(\frac{a_1}{(a')} \mu^{a_1} \beta^{a_1} \right) + \left(\frac{a_1}{(a')} \nu^{a_1} \beta^{a_1} \right) \otimes \left(\frac{a_1}{(a')} \mu^{a_1} \beta^{a_1} \right) = \frac{16}{3k} \left(\frac{a_1}{(a')} \nu^{a_1} \beta^{a_1} \right)
\]

FIG. 1: A diagrammatic expression for the generalized mapping of the 3-point gravity amplitude into the product of Yang-Mills amplitudes at order 0.

At order 0 we have:

\[
\left(\frac{a_1}{(a')} \nu^{a_1} \right) \otimes \left(\frac{a_1}{(a')} \nu^{a_1} \beta^{a_1} \right) = \frac{64}{3k} \left(\frac{a_1}{(a')} \nu^{a_1} \beta^{a_1} \right)
\]

FIG. 2: A diagrammatic expression for the generalized mapping of the 3-point gravity amplitude into the product of Yang-Mills amplitudes at order 0.

At the amplitude level this factorization is not surprising; this is just what the KLT relations tell us. At the Lagrangian level things usually get more complicated and no factorizations of gravity vertex rules are readily available. At order 0 (0) the factorization of gravity vertex rules was investigated in ref. [13]. An interesting task would be to continue...
The analysis to order 0, and investigate the KLT relations for effective actions directly at the Lagrangian vertex level. Everything is more complicated in the 4-point case as contact and non-contact terms mix in the mapping relations. This originates from the fact that we are actually relating 3-matrix elements. Diagrammatically the 4-point generalized KLT relation at order 0 is presented below:

\[
x \left[(\mathcal{K}^L)_{(\alpha')_a(\alpha)_{bf}}^L (t + s + u) + (\mathcal{K}^R)_{(\alpha')_a(\alpha)_{bf}}^R (t + s + u) + (\mathcal{K}^W)^{\mu\nu\sigma\rho} \right] \otimes \left[(\mathcal{K}^R)_{(\alpha')_a(\alpha)_{bf}}^R (t + s + u) + (\mathcal{K}^W)^{\mu\nu\sigma\rho} \right]
\]

This relation is essentially equivalent to the 3-vertex relation at order 0. The 4-point relation at order 0 rules out the possibility of a P1 term in the generalized mapping. The full KLT relation at order 0 is:

\[
ge_0 \left[(\mathcal{K}^L)_{(\alpha')_a(\alpha)_{bf}}^L (t + s + u) + (\mathcal{K}^R)_{(\alpha')_a(\alpha)_{bf}}^R (t + s + u) + (\mathcal{K}^W)^{\mu\nu\sigma\rho} \right] \otimes \left[(\mathcal{K}^R)_{(\alpha')_a(\alpha)_{bf}}^R (t + s + u) + (\mathcal{K}^W)^{\mu\nu\sigma\rho} \right]
\]

The coefficients in the above expression need to be taken in agreement with the generalized KLT solution in order for this identity to hold. A profound consequence of the KLT relations is that they link the sum of a certain class of diagrams in Yang-Mills theory with a corresponding sum of diagrams in gravity, for very specific values of the constants in the Lagrangian. At a glance we do not observe anything manifestly about the decomposition of e.g., vertex rules, however this should be investigated more carefully before any conclusions can be drawn. The coefficients cannot directly be transformed into relations between diagram s, (this can be seen by calculation. However, reinstating the solution for the coefficients it is possible to turn the above equation for the 4-amplitude at order 0 into interesting statements about diagram s. Relating all P2 terms gives e.g., the following remarkable diagrammatic statement:
\[
\left[-8(\mathcal{M})_{(ab)}^L - 4(\mathcal{M})_{(ab)}^R \right]_{(\alpha^2)^2} \propto \left[(\mathcal{M})^R(t + s + u) + (\mathcal{M})^R \right]_{(\alpha^2)^2} \mu^\nu \sigma^\rho^d \\
+ \left[(\mathcal{M})^L(t + s + u) + (\mathcal{M})^L \right]_{(\alpha^2)^2} \propto \left[-8(\mathcal{M})_{(ab)}^R - 4(\mathcal{M})_{(ab)}^R \right]_{(\alpha^2)^2} \mu^\nu \sigma^\rho^d \\
= -x^2 \left[(\mathcal{M})^L(t + s + u) + (\mathcal{M})^L \right]_{(\alpha^2)^2} \propto \left[(\mathcal{M})^R(t + s + u) + (\mathcal{M})^R \right]_{(\alpha^2)^2} \mu^\nu \sigma^\rho^d
\]

Fig. 5: A diagrammatic relationship on the Yang-Mills side for the tree operators in the effective action between operators of unit order and order \(\alpha^2 \).

The surprising fact is that from the relations which apparently link gravity and Yang-Mills theory only, one can eliminate the gravity part to obtain relations entirely in pure Yang-Mills theory.

In [2], relating all contributions with \(\alpha_1^2 \) gives,

\[
\left[-2(\mathcal{M})_{(ab)}^L + 2(\mathcal{M})_{(ab)}^L \right]_{(\alpha^2)^2} \propto \left[(\mathcal{M})^R(t + s + u) + (\mathcal{M})^R \right]_{(\alpha^2)^2} \mu^\nu \sigma^\rho^d \\
+ x \left[(\mathcal{M})^L(t + s + u) + (\mathcal{M})^L \right]_{(\alpha^2)^2} \propto \left[-2(\mathcal{M})_{(ab)}^R + 2(\mathcal{M})_{(ab)}^R \right]_{(\alpha^2)^2} \mu^\nu \sigma^\rho^d \\
+ x \left[\frac{64}{9} (\mathcal{M})_{(ab)}^L(t + s + u) \right]_{(\alpha^2)^2} \propto \left[(\mathcal{M})^R(t + s + u) + (\mathcal{M})^R \right]_{(\alpha^2)^2} \mu^\nu \sigma^\rho^d \\
+ x \left[\frac{8}{3} (\mathcal{M})_{(ab)}^L(t + s + u) + \frac{8}{3} (\mathcal{M})_{(ab)}^R(t + s + u) \right]_{(\alpha^2)^2} \propto \left[\frac{8}{3} (\mathcal{M})_{(ab)}^R(t + s + u) + \frac{8}{3} (\mathcal{M})_{(ab)}^R \right]_{(\alpha^2)^2} \mu^\nu \sigma^\rho^d \\
= \frac{\alpha'}{k^2} \left\{ \left[(\mathcal{M})_{(ab)}^L(t + s + u) \right]_{(\alpha^2)^2} \mu^\nu \nu'^\sigma^\rho^d \right. \\
+ \frac{1}{3} \left[(\mathcal{M})_{(ab)}^L(t + s + u) \right]_{(\alpha^2)^2} \mu^\nu \nu'^\sigma^\rho^d \left. \right\} \\
+ \frac{2}{3} \left[(\mathcal{M})_{(ab)}^L(t + s + u) + (\mathcal{M})_{(ab)}^L \right]_{(\alpha^2)^2} \mu^\nu \nu'^\sigma^\rho^d
\]

Fig. 6: The essential diagrammatic relationship between gauge and gravity diagrams.

Furthermore we have a relationship generated by the \(\alpha_1 \) parts:

\[
\left[2(\mathcal{M})_{(ab)}^L - 2(\mathcal{M})_{(ab)}^L \right]_{(\alpha^2)^2} \propto \left[(\mathcal{M})^R(t + s + u) + (\mathcal{M})^R \right]_{(\alpha^2)^2} \mu^\nu \sigma^\rho^d \\
+ \left[(\mathcal{M})^L(t + s + u) + (\mathcal{M})^L \right]_{(\alpha^2)^2} \propto \left[-2(\mathcal{M})_{(ab)}^R + 2(\mathcal{M})_{(ab)}^R \right]_{(\alpha^2)^2} \mu^\nu \sigma^\rho^d \\
= \left[\frac{64}{9} (\mathcal{M})_{(ab)}^L(t + s + u) \right]_{(\alpha^2)^2} \propto \left[(\mathcal{M})^R(t + s + u) + (\mathcal{M})^R \right]_{(\alpha^2)^2} \mu^\nu \sigma^\rho^d \\
+ \left[(\mathcal{M})^L(t + s + u) + (\mathcal{M})^L \right]_{(\alpha^2)^2} \propto \left[\frac{64}{9} (\mathcal{M})_{(ab)}^R(t + s + u) \right]_{(\alpha^2)^2} \mu^\nu \sigma^\rho^d
\]

Fig. 7: Another diagrammatic relationship on the Yang-Mills side between order \(\alpha^2 \) and \(\alpha^1 \) operators.

These diagrammatic relationships can be readily checked by explicit calculation. It is quite remarkable that the KLT relations provide such detailed statements about pure Yang-Mills effective field theories, without any reference to gravity at all. To explain the notation in the above diagrammatic statements. An uppercase L or R states that the scattering amplitude originates from a left or a right mover respectively. The lower indices e.g. \((\alpha^1)^2 \) denote the order of \(\alpha_1 \) in the particular amplitude and the coupling constant prefactor obtained when this particular part of the amplitude is generated from the generic Lagrangian. The parentheses with \((t + s + u) \) denote that we are supposed to sum over all \(t, s \) and \(u \) channels for this particular amplitude.
It has been observed that it is possible to generalize the KLT open/closed string relations in the effective field theory framework. The KLT relations are seen to serve as mapping relations between the effective field theories for Yang-Mills and gravity. The belief that general relativity is in fact an effective field theory in loop orders makes investigations of its tree level manifestations and connections to other effective actions interesting. Links such as KLT, which are applicable and very simplifying in actual calculations should be exploited and investigated at the effective Lagrangian level. An important result of our investigations is the generalization of the KLT relations. It is found that one cannot completely replace the sine function in the KLT relations by an arbitrary function. To order $O(\alpha_s^3)$ it is possible to replace the sine with an odd third order polynomial in x. However, the degree of freedom represented by P_2 can be completely absorbed into a rescaling of P_2 at this order, so additional investigations are required before any conclusions can be drawn. The mapping relations between the effective theories are found to be broader than those given completely from the KLT relations as the coefficient P_2 in the generalized framework can be chosen freely. Such a rescaling of P_2 represents an additional freedom in the mapping. It has been shown that despite this generalization, the effective extension of the KLT relations is still rather restrictive.

The possibility of an antisymmetric coupling of gravitons needed in the effective action of a heterotic string has also been allowed for and is seen to be consistent with the original and generalized KLT relations. We have learned that detailed diagrammatic statements can be deduced from the KLT relations. This presents very interesting aspects which perhaps can be used to gain additional insight in issues concerning effective Lagrangian operators. Further on we expect this process to continue, (at order $O(\alpha_s^4)$ we assume that the KLT relations will tell us about new profound diagrammatic relationships between effective field theory operators in gauge theory and gravity.

The generalized mapping relations represent an effective field theory version of the well known KLT relations. We have used what we knew already from string theory about the KLT relations to produce a more general description of mapping relations between gravity and Yang-Mills theory. String theory is not really needed in the effective field theory setting. All that is used here is the tree scattering amplitudes. Exploring if or if not a mapping from the general relativity side to the gauge theory side is possible produces the generalized KLT relations. The KLT relations could also be considered in the case of external matter. In this case, operators as the Ricci tensor and the scalar curvature will not vanish on-shell. Such an approach could perhaps explain more about the KLT relations and introduce additional aspects in the mapping of operators.

KLT relations involving loops are not yet resolved. One can perform some calculations by making cuts of the diagrams using the unitarity of the S-matrix but no direct factorizations of loop scattering amplitudes have been seen to support a true loop extension of the KLT relations. Progress in this direction still waits to be seen, and perhaps such loop extensions are not possible. Loops in string theory and in field theory are not directly composable, and compositeness issues with additional string theory modes in the loops seem to be unavoidable in extensions of the KLT relations beyond tree level. Perhaps since 4-point scattering amplitudes are much less compositely composed as to 5-point amplitudes, it would be actually more inportant to start to check the mapping solutions at the 5-point level before considering the issue of loop amplitudes.

I would like to thank Z. Bern and P.H. Damgaard for useful discussions.

[41] For completeness we note; in e.g. six-dimensions there exist an integral relation linking the term $R^{R}_{R}R$ with the term $R^{R}_{R}R^{R}_{R}$, in four-dimensions there exist an algebraic relation also linking these terms, see [37]. For simplicity we have included all the reparametrization invariant terms in our approach and not looked into the possibility that some of these terms actually might be further related through an algebraic or integral relation.
[42] See e.g., ref. [41], for a discussion of e.g. redefinitions and the low energy effective action for Heterotic strings.
[43] We have employed an algebraic equation solver Maple, to solve the equations, (Maple and Maple V are registered trademarks of Maplesoft Inc.)