New developments in the quantization of supersymmetric solitons

(kinks, vortices and monopoles)

Anton Rebhan
Institut für Theoretische Physik, Technische Universität Wien,
Wiedner Hauptstr. 8-10, A-1040 Vienna, Austria

Peter van Nieuwenhuizen
C.N. Yang Institute for Theoretical Physics,
State University of New York,
Stony Brook, NY 11794-3840, USA

Robert Wimmer
Institut für Theoretische Physik, Universität Hannover,
Appelstr. 2, D-30167 Hannover, Germany

We discuss the one-loop quantum corrections to the mass M and central charge Z of supersymmetric solitons: the kink, the vortex and the monopole. Contrary to previous expectations and published results, in each of these cases there are nonvanishing quantum corrections to the mass. For the $N=1$ kink and the $N=2$ monopole a new anomaly in Z rescues BPS saturation ($M=Z$); for the $N=2$ vortex, BPS saturation is rescued for two reasons: (i) the quantum fluctuations of the Higgs field acquire a nontrivial phase due to the winding of the classical solution, and (ii) a fermionic zero mode used in the literature is shown not to be normalizable.

I. An Introduction to New Developments in Quantum Field Theory for SUSY Solitons

Solitons [1] have recently come back in the center of attention of quantum field theory (QFT) because in a certain class of supersymmetric (susy) field theories (the ones with $N=2$ susy) dualities between field theories with point-particles and field theories with solitons allowed calculation of nonperturbative effects [2]. Let us begin by defining what we mean by a soliton:

Definition 1: a soliton is a nonsingular time-independent solution of the classical field equations in Minkowski spacetime with finite energy.

Solitons can be viewed as extended particles ("lumps") which should clearly have finite mass (= finite energy at rest). We shall only consider relativistic field theories. There exist also time-dependent solutions with finite energy (the "breather" solution in the sine-Gordon model), but we consider only time-independent solutions. One can, of course, boost solitons in a relativistic theory, and obtain then moving solitons, but since one can always choose a Lorentz frame in which they are at rest, we restrict our attention to only time-independent solutions.

A soliton is closely related to an instanton. The later is defined as follows:

Definition 2: an instanton is a nonsingular solution of the classical field equations in Euclidean space with finite action.

Because instantons have finite action, they contribute already at the classical level to the path integral. This is the reason for the requirement of finite action. It is clear that a soliton in $n+1$ dimensions is an instanton in n dimensions: since the time coordinate plays no role in the soliton solutions, the space integral in Minkowski space can also be viewed as an integral over Euclidean space, and the energy $E = \int d^nx (\partial_i \phi) L$ is equal to the action $S = \int d^4x L$.

We shall discuss three solitons:

1) the kink in 1+1 dimensions with $N=1$ susy
2) the vortex in 2+1 dimensions with $N=2$ susy
3) the monopole in 3+1 dimensions with $N=2$ susy

There exist also susy extensions of these solitons with more susy ($N=2$ for the kink, $N=4$ for the monopole) or less susy ($N=1$ for the vortex). In addition, discussions have been given about the quantum corrections to these solitons without fermions and without susy.

All three models have recently led to surprising new insights in the quantization of solitons. In particular, a new anomaly was discovered in the quantum corrections to the central charge of the susy algebras for these models. The solitons have not only a mass M but also a central charge Z [3]. The quantum mass of a soliton is obtained by evaluating the vacuum expectation value of the Hamiltonian. The latter depends on the soliton background because one decomposes quantum fields into a background field and a quantum field. The quantum fluctuations appear quadratically (and of course also at higher orders) in the action, and thus the quantum correction to the mass is to first order in the sum over the zero point energies of all the fluctuations. The quantum central charge arises as follows. The susy generators are the Noether charges for rigid susy, and as any Noether
charge they are the space integrals over the time components of the Noether currents. They are expressed in terms of the Heisenberg fields. Using equal-time canonical (anti) commutation relations, one nds then for example for the kink at the full quantum level before regularization:

\[
\begin{align*}
\mathcal{L} &= j(x)g = H(x) \quad (x) \\
\mathcal{J} &= -\frac{\mathcal{Z}}{Z} + (\theta_x U) \\
\mathcal{Q} &= j(x)dx \\
(x) &= \theta_x (x)U(x) = \mathcal{W}(x)
\end{align*}
\]

where \(U \) is a potential quadratic in and \(\mathcal{W}(x) = U(\lambda) \).

Classically, \(M = Z \), the well-known BPS bound, but quantum mechanically both \(M \) and \(Z \) get quantum corrections. At least (or thought) it is surprising that \(Z \) gets any quantum corrections at all, because classically \(Z \) is the space integral of a space-derivative. So it gets its contributions from far away from the soliton, and if one can neglect the presence of the soliton, how can one still get nonvanishing corrections? The answer (one answer) is that the central charge is a com posive operator, and applying point splitting as a regularization scheme, the total derivative ceases to be a total derivative, and one gets then quantum corrections also from the region where the soliton is.

We shall not use point splitting as regularization scheme, but dimensional regularization. There are actually two versions of dimensional regularization:

1. Ordinary (t’Hooft-Veltman-Bollini-Pignatari) dimensional regularization \([4, 5]\) where \(n \) becomes larger than \(n_0 = 2;3;4 \) for our models.

2. Dimensional reduction \([6]\), where one lets \(n \) get smaller than \(n_0 \). Vector fields \(A \) decompose then into \(n\)-dimensional vector fields \(A \) with \(n \) and scalar fields (called \(-\)scalars) where \(n = n_0 \) (and \(n_0 = n \)).

If \(n > n_0 \) one needs a model which remains susy in higher dimensions if we want to preserve susy at the regularized level. This is in general not possible because the number of components of spinors grows much faster in higher dimensions than that of bosons. However, in the low dimensons we consider there are possibilities. For example, the \(N = 1 \) (one precisely \(N = (1;1) \)) susy kink in 1+1 dimensons remains susy in 2+1 dimensons because spinors have 2 components both in 2 and in 3 dimensons. For the vortex we preserve \(N = 1 \) susy in 3+1 dimensons by starting with an \(N = 2 \) model in 2+1 dimensons \((2 \quad 2 \quad 1 \quad 4) \). Finally, for the monopole we get a \(\in \) in all susy model in 5+1 dimensons (with complex unconstrained 4-componet chiral spinors) by starting with an \(N = 2 \) model in 3+1 dimensons with two real 4-componet spinors (or, equivalently, two complex 2-componet spinors).

If \(n < n_0 \), the models remain automatically susy because one does not change the number of bosonic and fermionic fields components (one only reinterprets some components of vector fields as \(-\)scalars as we have discussed). So much for how we deal with susy in the two versions of dimensional regularization. We wish to preserve (ordinary, see below) susy, and the best way to preserve it is to preserve it manifestly, by using models which remain susy even after regularization.

How can one understand that an anomaly in \(Z \) is present? In models, from multipliess susy, and these anomalies multipliess contain the trace anomaly and the conformal susy anomaly \(j \). Here a small explanation is needed. Supersymmetry is the same as translational symmetry in the fermionic directions in superspace, and like ordinary translational symmetry etry, there is no anomaly in ordinary susy: \(\theta j(\text{susy}) = 0 \) at the quantum level. However, in models theories one also has conformal susy (the fermionic counterpart of scale invariance and conformal boost invariance), and the conformal susy current is \(j(\text{conf}) = (\theta j)(\text{susy}) \). Clearly, \(\theta j(\text{conf}) = (j(\text{susy})) \) if ordinary susy is free from anomalies. In models theories the ordinary susy current satisfies at the classical level the relation \(j(\text{susy}) = 0 \). For example, in the \(WZ \) model in 1+1 dimensons, \(j(\text{susy}) = (\theta^2) \), and since \(= 0 \) in 1+1 dimensons, one has \(j(\text{susy}) = 0 \). In 3+1 dimensons the \(WZ \) model yields \(j(\text{susy}) = F \), and since \(= 0 \) in 3+1 dimensons, also here \(j(\text{susy}) = 0 \). At the quantum level, there can be anom alies in \(j(\text{susy}) \) (the current \(j(\text{conf}) \) is no longer conserved, equivalently \(j(\text{susy}) \) is no longer vanishing).

What is the technical reason that there is an anomaly, how does it appear when one calculates? Let us recall that an anomaly usually appears as \(0/0 \): 0 because classically there is no violation, and 1/0 because a quantum field has in nitey many degrees of freedom (there are no anom alies in quantum mechanics). Consider now rst ordinary dimensional regularization. It is known that translations in higher dimensions become central charges in lower dimensions. For example, the susy kink model has 3 translations in 3 dimensons, which become 2 translations and one central charge. If one performs a dimensional reduction (setting the coordinate \(x^1 \) to zero). This seems s do com the prospects of anom alies in \(Z \), because we already mentioned that there are no anom alies in the translational symmetry. However, the presence of the soliton in the background polarizes the fermionic excitations in the extra dimensons \([7, 8]\). This phenomenon has the same origin as the quantum Hall effect, and as a result the left-moving and the right-moving modes of the fermions have different norm alizations on the domain wall created by the soliton. One word about domain walls \([5, 9;12]\): if one moves from 1+1 to 2+1 dimensons, with coordinates \((x,y,t)\) and \(y \) is the new coordinate, then the soliton \(k(x) \) remains a solution with \(+ \) energy per unit of length in the extra dimenson. In 1+1 dimensons
the energy density of the soliton solution \(\phi (x) \) is located around \(x = 0 \), so in 2+1 dimensions it is located around the \(\text{wall} \) (line in this case) \(x = 0 \) but any \(y \). One must then solve the Dirac equation in 2+1 dimensions, and in this way one discovers the polarization. (In string theory, Horava and Witten [13], and others have used this idea for other purposes\(^1\)). A detailed calculation reveals that for the kink and the monopole there is indeed an anomaly coming from the polarization of domain wall fermions. Two remarks should quickly be made: (1) in an anomaly coming from the polarization of domain wall fermions. Two remarks should quickly be made: (1) in odd dimensions there are no anomalies, so how \(Z \) gets a contribution for the vortex should be at this point not yet be clear to the uninformed reader, and furthermore, (2) there are also massless fermions on the domain wall; they are chiral (they only move in one direction) but these fermions do not contribute to the anomaly because in the effective regularization massless tadpole integrals vanish. Only the polarization of the massive domain wall fermions yields an anomaly.

In the calculation of quantum corrections to \(M \) and \(Z \) one should let \(n \) tend to \(n_0 \), so \(n = 0 \) as \(n \) tends to zero. How ever the sum of all polarizations is divergent. As the reader may be now anticipate one indeed \(\Lambda \) total correction of the form \(\Lambda = \frac{1}{n} \) (which is fine). Many other regularization schemes have been analyzed, and also in these schemes one \(\Lambda \) nds an anomaly in \(Z \) and the value of this anomaly is the same in all cases.

The picture becomes now clear in even dimensions (kink, monopole). There are no nonvanishing quantum corrections to the mass, partly due to nonanomalous corrections (which however vanish for kink and monopole in the most widely used nonanomalous scheme) and partly due to the trace anomaly. There are also nonvanishing corrections to the central charge, due to the central charge anomaly (which sits in the same multiplet as the conformal susy anomaly and the trace anomaly). Both corrections are equal: the classical BPS bound also holds at the quantum level.

In odd dimensions, in particular for the vortex, there is another reason why there is no nonvanishing correction to \(Z \). There cannot be an anomaly, as we already mentioned, but now the soliton deforms the quantum fluctuations of the scalar (Higgs) field such that the latter acquires an extra phase. This phase has a nontrivial space dependence (a dependence on the angles which can not be removed continuously by a gauge transformation which is everywhere regular). This twisting remains far away from the vortex and does give a nonvanishing contribution to the integral of the total derivative. The result is \(M = 2 \) also at the one loop level.

One would like to know whether there is an explanation for this equality. This involves fermionic zero modes, let us first define them.

Definition 3: A zero mode is a time-independent solution of the linearized \(\phi \) equation for the quantum fluctuations which is mass analyzable and nonsingular.

Bosonic zero modes can be obtained by making a symmetry transformation on the soliton, for example shifting or rotating the classical solution. Many, but not all, fermionic zero modes can be obtained by making an ordinary susy transformation of the soliton. (For instantons there exist fermionic zero modes for \(SU (n) \) with \(n = 3 \) which do not come from susy).

Arguments have been given in the literature that the equality of \(M \) and \(Z \) for the susy vortex at the one-loop level is a mystery because one can count how many fermionic zero modes are there in this model and it has been claimed that there are two, rather than (as expected) one. With two fermionic zero modes the equality \(M = Z \) could indeed not be established; it could be due to some as yet not known symmetry, or it might just be an accident. However, we have shown that the second fermionic zero mode is not mass analyzable at the origin. Hence there is only one fermionic zero mode, and this means that the equality \(M = Z \) which we obtained by detailed calculations using quantum field theory for extended objects, is, in fact, a direct consequence of ordinary supersymmetry at the quantum level.

So far we discussed ordinary dimensional regularization with \(n = n_0 \). We already discussed that dimensional reduction with \(n = n_0 \) preserves susy. The number of \(\phi \) comonents of fermions and bosons remains fixed (and one should treat spinor vector bosons as scalars as we discussed). The identity \(\Lambda = 0 \) remains valid because the index keeps changing from 0 to 2, instead of from 0 to \(n_0 \). (If this index would have been due to a derivative such as \(j = \phi \) then it should only run up to \(n \), but \(j = \phi \) and so \(n \) must run up to \(n_0 \)). This raised a problem many decades ago: it seemed that there was no conformal susy anomaly in dimensional reduction. Some people proposed 2d solutions: breakdown of cyclicality of the trace operation or other drastic measures. Actually, the solution is conventional, although subtle: there are evanescent counterterm solutions [14] for the currents. These are counterterm solutions with \(j = \phi \) where the index \(\Lambda \) only runs over \(n \) values (namely from \(n \) to \(n_0 \)). One cannot write \(x \) itself as a time in a finite quantity, but inside loop graphs the effect of \(x \) is to supply a factor. Thus \(j \) yields finite contributions. If one requires that ordinary susy is preserved, one must satisfy \(\phi (suy) = 0 \) in dimensional reduction, and then one must renormalize the susy current by adding an evanescent counterterm. This counterterm is normal, and not the original loop graph, yields the anomaly. In ordinary dimensional regularization the situation is just the reverse: there the loop graph yields the anomaly.

\(^1\) They considered 2 branes in \(d = 11 \) supergravity with a chiral spinor on one brane and an antichiral spinor on the other (this combination cannot be avoided because there are no chiral spinors in odd dimensions). Then they sent one brane to infinity, applied dimensional reduction, and found in this way chiral spinors in 4 dimensions.
(as discussed in text books) and the counter terms do not contribute to the anomaly. One can construct the whole anomaly multiplet, and one nds then that the evanescent counter term j in the conformal SUSY current yields a non-nil contribution to the central charge anomaly. This nil term is the anomaly in Z, and the value of this anomaly is the same as that obtained from ordinary dimensional regularization. To avoid misunderstanding: we also directly computed this anomaly using dimensional reduction, but as the preceding discussion shows, one can also obtain it by making SUSY transformations of the anomaly j(susy).

We have written several papers on these subjects, and also published some reviews [15, 16]. For a gentle introduction we recommend [15]. In the remaining sections we focus on the kink, vortex, and monopole, respectively, using SUSY-preserving dimensional regularization methods.

II. THE (SUSY) KINK.

The calculation of quantum corrections to the mass of a supersymmetric (SUSY) kink and to its central charge has proved to be a surprisingly subtle problem, and it took protracted struggles to fully understand it in the various methods that had been employed.

Initially it was thought that supersymmetry would lead to a complete cancellation of quantum corrections [17] and thereby guarantee Bogomol'nyi-Pleusset (BPS) saturation at the quantum level. Then, by considering a kink-antikink system in a finite box and regularizing the ultraviolet divergences by a cut in the number of the discretized modes, Schonfeld [18] found that there is a non-zero, negative quantum correction at one-loop level, \(M(1) = m = 2 \). Most of the subsequent literature [19] considered instead a single kink directly, using (usually implicit) an energy-momentum cut-off which gave again a null result. A direct calculation of the central charge [20] also gave a null result, apparently coming from a coupling of imaginary to real fields. However, the conclusion that BPS saturation in the minimally susy 1+1 dimensional case would hold although arguments on multiple shortening naively do not seem to apply.

In Ref. [21] two of the present authors noticed a surprising dependence on the regularization method, even after the renormalization conditions have been fixed. In particular it was found that the naive energy-momentum cut-off used in the susy case spoils the integrability of the bosonic sine-Gordon model [22]. Using a mode regularization scheme and periodic boundary conditions in a finite box instead led to a susy kink mass correction \(M(1) = m = 4 \). 1 = 2 > 0 \) (obtained previously also in Ref. [23]) which together with the null result for the central charge appeared to be consistent with the BPS bound, but in plying nonsaturation. Subsequently it was found by two of us together with Nastase and Stephanov [24] that the traditionally used periodic boundary conditions are questionable. Using instead topological boundary conditions which are invisible in the topological and in the trivial sector together with a derivative regularization \(^2\) led to a different result, namely that originally obtained by Schonfeld [18], which however appeared to be in conflict with the BPS inequality for a central charge without quantum corrections.

Since this appeared to be a pure one-loop effect, Ref. [24] proposed the conjecture that it may be formulated in terms of a topological quantum anomaly. It was then shown by Shifman et al. [27], using a SUSY-preserving higher-derivative regularization method, that there is indeed an anomalous contribution to the central charge balancing the quantum corrections to the mass so that BPS saturation remains intact. In fact, it was later understood that multiplet shortening does in fact occur even in the minimally susy 1+1 dimensional theories, giving rise to single-state supermultplets [28].

Both results, the non-vanishing mass correction and thus the necessity of a non-vanishing correction to the central charge, have been confirmed by a number of different methods [25, 26, 29-33] validating also the finite mass formula in terms of only the discrete modes derived in Refs. [34, 35] based on the method of [36]. However, some authors claimed a nontrivial quantum correction to the central charge, [29, 37] apparently without the need of the anomalous term proposed in Ref. [27].

In [38], we have shown that a particularly simple and elegant regularization scheme that yields the correct quantum mass of the susy kink leads to dimensional regularization, if the kink is embedded in higher dimensional spaces as a domain wall [5]. Such a scheme was not considered before for the susy kink because both susy and the existence of non-energy solutions seem ed to tie one to one spatial dimension.

In [39] we then showed the 2+1 dimensional domain wall is BPS saturated through a nontrivial quantum correction to the momentum in the extra dimension. This nontrivial correction is made possible by the fact that the 2+1 dimensional theory spontaneously breaks parity, which also allows the appearance of domain wall fermions of only one chirality. By dimensionally reducing to 1+1 dimensions, this parity-violating contribution to the extra momentum turns out to provide an anomalous contribution to the central charge as postulated in Ref. [27], thereby giving a novel physical explanation of the latter. This is in line with the well-known fact that central charges of susy theories can be reinterpreted as momentum in higher dimensions.

Hence, in the case of the susy kink, dimensional regularization is seen to be compatible with susy invariance only at the expense of a spontaneous parity violation.

\(^2\) In mode regularization it turns out that one has to average over sets of boundary conditions to cancel both localized boundary energy and delocalized momenta [25, 26].
which in turn allows nonvanishing quantum corrections to the extra \textit{m} cm etum in one higher spatial dim ension.
On the other hand, the surface term that usually exclusively provides the central charge does not receive quantum corrections in dim ensional regularization, by the same reason that led to null results previously in other schemes [20, 21, 24]. The nontrivial anomalous quantum correction to the central charge operator is thus seen to be entirely the remnant of the spontaneous parity violation in the higher-dimensional theory in which a susy kink can be em bedded by preserving \textit{m} in ir al susy.

A. The model

The real 4 model in 1+1 dim ensions with spontaneously broken \textit{Z}_2 sym m etry ("!" ") has topologically nontrivial nine-energy solutions called \textquotedblleft kink" which interpolate between the two degenerate vacuum states $'=v$. It has a m inally supersymmetric extension [40]

$$L = \frac{1}{2} \left(\Theta' \right)^2 + U (v)^2 + \Theta + U^0 (v) \quad (2)$$

where is a Majorana spinor, $= \overline{C}$ with $C = (\overline{1})^T C$. We shall use a Majorana representation of the Dirac matrices with $0 = 1^2$, $1 = 3^2$, and $C = 2$. In terms of the standard Pauli matrices k so that $= i(x)$ and (x,t).

The 4 model is defined as the special case

$$U (v) = \frac{1}{2} v_0 \rho \overline{v} \quad \rho \overline{v}^2 = 0 \quad (3)$$

where the \textit{Z}_2 symmetry of the susy action also involves the fermion indices in particular to $'=v$ with $= 0$. A classical kink at rest at $x = 0$ which interpolates between the two vacua $'=v_0$ is given by [1]

$$'K = v_0 \tanh \quad \rho x \rho = \frac{P}{v} \quad (4)$$

At the quantum level we have to renormalize, and we shall permit the simplest possible scheme ρ which consists of putting all renormalization constants to unity except for a mass counterterm chosen such that tadpole diagrams cancel completely in the trivial vacuum. At the one-loop level and using dim ensional regularization this gives

$$\rho = \frac{Z}{2} \left(\frac{d^2 k}{k^2} \right)^{i} \left(\frac{Z}{2} \right)^{i} \frac{1}{k^2 + m^2} \quad (5)$$

where $m = U^0 (v) = P \overline{v}$. is the mass of elem entary bosons and ferm ions and $k^2 = \overline{k}^2 = k_0^2$.

The susy invariance of the model under $'(v) \quad (6)$
and two conserved charges $Q = \frac{\partial}{\partial x} \rho$.

The 4 model (2) is equally supersymmetric in 2+1 dim ensions, where we use $= 1$. The same renormalization scheme can be used, only the renormalization constant (5) has to be evaluated for $d = 2$ in place of $d = 1$ spatial dim ensions.

While classical kinks in 1+1 dim ensions have nine energy (massless mass) $m = 3$, in (noncompact) 2+1 dim ensions there exist no longer solutions of nine-energy. Instead one can have (one-dim ensional) domain walls with a profile given by (4) which have nine surface (string tension $\mathcal{M} = M = m^2$). With a compact extra dim ension one can of course use these connotations to form \textit{d} domain strings of nine total energy proportional to the length L of the string when wrapped around the extra dim ension.

The 2+1 dim ensional case is different also with respect to the discrete sym m etry of (2). In 2+1 dim ensions, $= 0^2 = 2 = 1$ corresponding to the two inequivalent choices available for $x = 1$ (in odd space-time dim ensions the Clebsch algebra has two inequivalent irreducible representations). Therefore, the sign of the fermion mass (Yukawa) term can no longer be reversed by $'$ and there is no longer the \textit{Z}_2 symmetry $'=v$ with $'=v$.

What the 2+1 dim ensional model does break spontaneously is instead parity, which corresponds to changing the sign of one of the spatial coordinates. The Lagrangian is invariant under x^m, x^n for a given spatial index $m = 1, \overline{2}$ together with $'=v'$. (which thus is a pseudoscalar) and $'=v'$. Each of the trivial vacua breaks these invariances spontaneously, whereas a kink background in the x^1-direction with $'=v'$. is susy metric with respect to x^1-ext actions, but breaks $x^2 = y$ re action invariance.

B. Susy algebra

The susy algebra for the 1+1 and the 2+1 dim ensional cases can both be covered by starting from 2+1 dim ensions, the 1+1 dim ensional case following from reduction by one spatial dim ension.

In 2+1 dim ensions one obtains classically [41]

$$F \quad \rho Q \quad g = 2i \theta \quad P_\rho \quad (\mathcal{M} = 0; 1,2)$$

$$= 2i \theta \quad 0 \quad + \quad 0 \quad \left(\overline{F}_\rho + \overline{Z}_\rho \right) + \left(\overline{F}_\rho \quad \overline{Z}_\rho \right) \quad (7)$$

where we separated the two surface terms $Z_{\rho m}$ in defining

$$Z \quad \rho = \quad \rho \quad \overline{F}_\rho ; \quad \rho = \quad (\rho \quad \overline{F}_\rho) \quad (8)$$
Having a kink profile in the x-direction, which satisfies the Bogomolny equation \(\theta_x k = U \langle \kappa \rangle \), one finds that with our choice of Dirac matrices
\[
Z = \begin{pmatrix} d^2 x & \mathcal{Z}_m \end{pmatrix} ; \quad \mathcal{Z}_m = \mathcal{U} \psi - \mathcal{E}_m W \mathcal{U} \psi
\]
(9)
with \(W \mathcal{U} \psi \).

In the Bogomolny equation, the charge \(Q \) leaves the topological (domain wall) vacuum \(\langle \kappa \rangle \) invariant. This corresponds to the classical BPS saturation, since with \(P_x = 0 \) and \(P_y = 0 \), one has \(Q^+ g = 2(H + P_x) \) and, indeed, with a kink domain wall \(\mathcal{Z}_m = L^d 1 = W \mathcal{U} \psi \).

At the quantum level, spin mixing of \(Q \) implies
\[
\delta \mathcal{H} \psi \delta \mathcal{F}_y \mathcal{Z}_x \mathcal{J}_i \mathcal{J}_j^{\dagger}
\]
(12)
This inequality is saturated when
\[
Q^+ \mathcal{J}_i = 0 \quad \text{(13)}
\]
so that BPS states correspond to massless states \(P_x P_y = 0 \) with \(P_x = M \) for a kink domain wall in the x-direction, however with finite momentum and energy unless the y-direction is compact with finite length \(L \).

Classically, the susy algebra in 1+1 dimensions is obtained from (7) simply by dropping \(\mathcal{F}_y \) as well as \(\mathcal{Z}_x \), so that \(P_x = P_y \). The terms \(\mathcal{Z}_x \) remain, however, with \(\mathcal{F}_y \) being the nontrivial spin of 1+1 dimensions. The susy algebra spin mixtures to
\[
f \mathcal{Z}_m = 2(H + P_x) \mathcal{U} \psi = 2P_x
\]
(14)
and one has the inequality
\[
\delta \mathcal{H} \psi \delta \mathcal{F}_y \mathcal{Z}_x \mathcal{J}_i \mathcal{J}_j^{\dagger}
\]
(15)
for any quantum state. BPS saturated states have \(Q^+ \mathcal{J}_i = 0 \) or \(\mathcal{Z}_m = 0 \), corresponding to kink and antikink, respectively, and preserve half of the supersymmetry.

C. Fluctuations

In a kink (or kink domain wall) background one spatial direction is singled out and we choose this to be along \(x \). The direction orthogonal to the kink direction (parallel to the domain wall) will be denoted by \(y \).

The quantum fields can then be expanded in the analytically known kink eigenfunctions of Dirac plane waves in the extra dimension. For the bosonic fluctuations, we have \(\mathcal{U}^2 = \mathcal{U} \mathcal{U}^0 = 0 \) which is solved by
\[
2 = \frac{d^2 + X_2^2}{(2 \pi)^2} \int \frac{dk}{4} a_k \epsilon^\dagger \psi + a_k^\dagger \psi \epsilon \mathcal{U} \psi \mathcal{U} \psi = (\mathcal{U} \psi)^2
\]
(16)

The kink eigenfunctions \(\kappa \) are normalized according to
\[
\mathcal{Z} \mathcal{U} \psi \mathcal{U} \psi = 1 \quad \text{for the discrete states and to Dirac distributions for the continuum states according to}
\]
\[
\mathcal{Z} \mathcal{U} \psi \mathcal{U} \psi = 2 \quad (k \kappa)
\]
The mode energies are \(\varepsilon = \frac{1}{2} \left(k^2 + m^2 \right) \) where \(k^2 \) is the energy in the 1+1-dimensional case.

The canonical equal-time commutation relations \(\{ \kappa, \kappa^\dagger \} = 1 \) are satisfied with
\[
[a_k, \kappa^\dagger b_{k^\dagger} (\kappa)] = k \kappa^\dagger
\]
(17)
where for the continuum states \(k \kappa^\dagger \) becomes a Dirac delta.

For the fermionic modes which satisfy the Dirac equation \((\mathcal{U} \psi)^2 = 0 \) one finds
\[
\mathcal{Z} \mathcal{U} \psi \mathcal{U} \psi = \frac{d^2 + X_2^2}{(2 \pi)^2} \int \frac{dk}{4} b_k \epsilon^\dagger \psi + b_k^\dagger \psi \epsilon \mathcal{U} \psi \mathcal{U} \psi = (\mathcal{U} \psi)^2
\]
(18)

Thus, the fermionic zero mode of the susy kink turns into a massless mode located on the domain wall, which have only one chirality, forming a Majorana-Weyl domain wall fermion [7, 38].

For the massive modes, the Dirac equation relates the eigenfunctions appearing in the upper and lower components of the spinors as follows:
\[
\frac{1}{k} (\mathcal{F}_x + \mathcal{U}) \kappa \mathcal{F}_x = \mathcal{U} \psi \mathcal{U} \psi
\]
(19)
so that the function \(s_k \) is the SUSY-quantum mechanical partner state of \(\kappa \) and thus coincides with the eigenmodes of the sine-Gordon model (hence the notation [43]). With (32), their normalization is the same as that of \(\kappa \).

The canonical equal-time anti-commutation relations \(\{ \kappa, \kappa^\dagger \} = 1 \) are satisfied if
\[
\mathcal{F}_x \mathcal{U} \psi \mathcal{U} \psi = \mathcal{U} \psi \mathcal{U} \psi
\]
(20)
and again the \(k \kappa^\dagger \) becomes a Dirac delta for the continuum states. The algebra (21) and the solution for the

4 By a slight abuse of notation, we shall always label this by a subscript 0, but this should not be confused with the threshold mode \(k = 0 \) (which does not appear explicitly anywhere below).

5 The mode with \(\kappa = 0 \) corresponds to 1+1 dimensional states to the zero mode of the susy kink. It has to be counted as half a degree of freedom in mode regularization [25]. For dimension regularization such subtleties do not play a role because the zero mode only gives scaleless integrals and these vanish.
massless mode (18) shows that the operator $b_0(\cdot)$ creates right-moving massless states on the wall when \cdot is negative and annihilates them for positive-\emph{em knowne}, thus only massless states with m on entum in the positive y-direction can be created. Changing the representation of the gamma matrices by $\gamma^2 \rightarrow -\gamma^2$, which is equivalent to the original one, reverses the situation. Now only massless states with m on entum in the positive y-direction exist. Thus depending on the representation of the Clifford algebra one chirality of the domain wall fermions is singled out. This is a re-creation of the spontaneous violation of parity when embedding the susy kink as a domain wall in 2+1 dimensions.

Notice that in (18) d can be only 2 or 1, for which \cdot has 1 or 0 components, so strictly $d = 1$. In order to have a susy-preserving dimensional regularization scheme by dimensional reduction, we shall start from $d = 2$ spatial dimensions, and then make d continuous and smaller than 2.

D. Energy corrections

Using the mode expansions in the Hamiltonian expanded to second order in quantum fluctuations, one finds that the bosonic and fermionic contributions combine into

$$Z = \frac{L^d}{2} \sum \int \frac{d^d x}{(2\pi)^d} \frac{d^2 \kappa}{2} \delta_0(k) \Theta_\kappa \Theta_{\kappa}(U) 1 + \frac{1}{2} \Theta_\kappa(U^{0,2}) + O(3)$$

which matches precisely the counterterm from requiring vanishing tadpoles. Straightforward application of the rules of dimensional regularization thus leads to a null result for the net one-loop correction to H_2, as shown in Refs. [20, 21, 24] in other schemes.

On the one hand, by considering the less singular combination $H_1 + Z_2$ and showing that it vanishes exactly, it was concluded in Ref. [29] that Z_2 has to compensate any nontrivial result for H_1, which is Ref. [29] was obtained by subtracting successive Born approximations for scattering phase shifts. In fact, Ref. [29] explicitly demonstrated how to rewrite Z_2 into H_1, apparently without the need for the anomalous terms in the quantum central charge operator derived in Ref. [27].

The resolution of this discrepancy is that Ref. [29] did not regularize Z_2, and the manipulations needed to rewrite it as H_1, which eventually is regularized and renormalized, are ill-defined. Using dimensional regularization one in fact obtains a nonzero result for $H_1 + Z_2$, apparently in violation of susy.

$$M^{(1)} = \frac{1}{4} \int \frac{dk d^d \frac{1}{2} \delta_0(k) + m \nu^2}{(2\pi)^d} \Theta_\kappa \Theta_{\kappa}(U) 1 + \frac{1}{2} \Theta_\kappa(U^{0,2}) + O(3)$$

This reproduces the correct known result for the susy kink mass correction $M^{(1)} = m(2)$ for $d = 1$ and the surface (string) tension of the 2+1 dimensional susy kink domain wall $M^{(1)} = L = m^2(8)$.}

E. Anomalous contributions to the central charge

In a kink (domain wall) background with only nontrivial x dependence, the central charge density Z_x receives nontrivial contributions. Expanding Z_x around the kink background gives

$$Z_x = \Theta_{x^\prime} + \Theta_{x} + \frac{1}{2} \Theta_{x}(U^{0,2}) + O(3)$$

Again only the part quadratic in the fluctuations contributes to the integrated quantity at one-loop order. However, using $U^0(\kappa = 1) = m$ this leads just to the contribution

$$Z \nu^2 \frac{d^d \Theta_{x} + \frac{1}{2} \Theta_{x}(U^{0,2})}{(2\pi)^d} \frac{dk}{2} \frac{1}{2} \frac{m \nu^2}{2}$$

which matches precisely the counterterm from requiring vanishing tadpoles. Straightforward application of the rules of dimensional regularization thus leads to a null result for the net one-loop correction to H_2, as shown in Refs. [20, 21, 24] in other schemes.

The zero m contributions in fact do not cancel by them selves between bosons and fermions, because the latter are chiral. This noncancellation is in fact crucial in energy cutoff regularization (see Ref. [38]).

\footnote{The zero m contributions in fact do not cancel by them selves between bosons and fermions, because the latter are chiral. This noncancellation is in fact crucial in energy cutoff regularization (see Ref. [38])}

\footnote{Again, this does not hold for the central charge density locally [27, 31].}
However, dimensional regularization by embedding the kink as a domain wall in (up to) one higher dimension, which preserves susy, instead leads to

$$D \cdot H + Z \cdot F_y = 0;$$ \hspace{1cm} (27)

i.e., the saturation of (12), as we shall now verify.

The bosonic contribution to hF_y involves

$$\frac{1}{2} h \partial_y \phi + \theta_y \phi_i = \frac{Z}{\partial^2 \phi} \lambda^2 \frac{d k}{d \lambda^2} \phi \left(\frac{1}{2} j \frac{1}{2} y + \frac{1}{2} \frac{1}{2} \right).$$ \hspace{1cm} (28)

The λ-integral factorizes and gives zero both because it is a scale-less integral and because the integrand is odd in λ. Only the fermions turn out to give interesting contributions:

$$h F_y = \frac{1}{2} h \partial_y \phi + \theta_y \phi_i = \frac{Z}{\partial^2 \phi} \lambda^2 \frac{d k}{d \lambda^2} \phi \left(\frac{1}{2} j \frac{1}{2} y + \frac{1}{2} \frac{1}{2} \right).$$ \hspace{1cm} (29)

From the last sum λ-integral we have separated out the contribution of the zero mode of the kink, which turns into chiral domain wall fermions for $d > 1$. The contribution of the latter no longer vanishes by symmetry, but the λ-integral is still scale-less and therefore put to zero in dimensional regularization. This sum λ-integral on the right-hand side is again zero by both the symmetry and scalelessness, but the latter is not. The λ-integral no longer factorizes because $! = \lambda^2 + \lambda^2 + m^2$. Integrating over x and using (23) in fact obtains exactly the same expression as in the one-loop result for the energy, Eq. (24).

So for all $d > 2$ we have BPS saturation, $\mu = j \pi_x \cdot F_y$ which in the limit $d = 1$, the susy kink, is made possible by a nonvanishing hF_y. The anomaly in the central charge is seen to arise from a parity-violating contribution in $d = 1 + \text{dimension}$ which is the price to be paid for preserving supersymmetry. When going up in dimensions to embed the susy kink as a domain wall.

It is perhaps worth emphasizing that the above results do not depend on the details of the spectral densities associated with the mode functions k and s. In the integrated quantities μ and hF_y, only the difference of the spectral densities as given by (23) is responsible for the nonvanishing contribution. The function λ therein is entirely fixed by the form of the Dirac equation in the asymptotic regions $x = 1$ far away from the kink [21].

F. Dimensional reduction and evanescent counterterms

We now describe how the central charge anomaly can be recovered from Siegel’s version of dimensional regularization [6] where n is smaller than the dimension of spacetime and where one keeps the number of external components fixed, but lowers the number of coordinates and momenta from 2 to $n < 2$. At the one-loop level one encounters 2-dimensional counterterms coming from Dirac matrices, and n-dimensional from loop momenta. An important concept which is going to play a role are the evanescent counterterms ϕ' [14] involving the factor $\frac{1}{2}$, where ϕ' has only $2n$ nonvanishing components.

In the trivial vacuum, expanding the supercurrent $j = \left(\phi' + \psi' \right)$ into quantum fields yields

$$j = \phi + U_0(v) + \frac{1}{2} U_0(v)^2 + \frac{1}{2} \frac{1}{2} : \phi^2 :$$ \hspace{1cm} (30)

Only matrix elements with one external fermion are divergent. The term involving $U_0(v)^2$ in (30) gives rise to a divergent scalar tadpole that is cancelled completely by the counterterm ϕ' which is due to an and a loop. The only other divergent diagram is due to the term involving ϕ' in (30) and has the form a self-energy. Its singular part reads

$$h_{\phi j} = \frac{U_0(v)}{2} \pi^{\phi j} \left(\int_0^1 \frac{d \lambda}{\lambda^2} \left[\frac{6}{2} + \frac{6}{2} \lambda \frac{1}{x} + \frac{m^2}{2} \right] \right):$$ \hspace{1cm} (31)

Using ϕ' we find that under the integral

$$\int_0^1 \frac{d \lambda}{\lambda^2} = \frac{2}{n} \left(\frac{2}{n} \right) = \frac{2}{n} + \frac{2}{n} = \frac{2}{2} \frac{1}{n} \pi,$$

so that

$$h_{\phi j} = \frac{U_0(v)}{2} \pi^{\phi j} \left(\int_0^1 \frac{d \lambda}{\lambda^2} \right):$$ \hspace{1cm} (32)

Hence, the regularized one-loop contribution to the susy current contains the evanescent operator

$$f^{\phi j} = \frac{U_0(v)}{2} \pi^{\phi j} :$$ \hspace{1cm} (33)

This is by itself a conserved quantity, because all fields depend only on the n-dimensional coordinates, but it has a nonvanishing contraction with ϕ. The latter gives rise to an anomalous contribution to the renormalized conformal susy current ϕ^{ren} where $\phi^{\text{ren}} = \phi + f^{\phi j}$,

$$\theta \left(\phi^{\text{ren}} \right) \left(\phi^{\text{ren}} \right) = \theta \left(\phi^{\text{ren}} \right) = \frac{U_0(v)}{2} :$$ \hspace{1cm} (34)

(There are also nonvanishing nonanomalous contributions to $\theta \left(\phi^{\text{ren}} \right)$ because our model is not conformal susy invariant at the classical level [44].)
Ordinary susy on the other hand is unbroken; there is no anomaly in the divergence of j^{ren}. A susy variation of j involves the energy-momentum tensor and the topological central-charge current according to

$$ j = 2T - 2\varpi; \quad (35) $$

where classically $U \equiv \partial \varphi$.

At the quantum level, the counter-term $j^{ct} = j^{int}$ induces an additional contribution to the central-charge current

$$ \text{anom} = \frac{1}{4}\varpi \equiv U^0 \quad (36) $$

which despite appearances is a finite quantity: using that total antisymmetrization of the three lower indices has to vanish in two dimensions gives

$$ \varpi = \varpi \quad (37) $$

and together with the fact the U^0 only depends on n-dimensional coordinates this nally yields

$$ \text{anom} = \frac{1}{4}\varpi \equiv U^0 \quad (38) $$

in agreement with the anomaly in the central charge as obtained previously.

III. THE (SUSY) VORTEX.

We next considered [45] the Abrikosov-Nielsen-Olesen [46,49] vortex solution of the abelian Higgs model in 2+1 dimensions which has a supersymmetric extension [50, 51] (see also [52, 53]) such that classically the Bogomolny bound [54] is saturated. We employed our variant of dimensional regularization to the $N = 2$ vortex by dimensionally reducing the $N = 1$ abelian Higgs model in 3+1 dimensions. We can embed the results of [50, 55, 56] that in a particular gauge (background-covariant Feynman-’t Hooft) the sum over zero-point energies of instantons in the vortex background cancel completely, but contrary to [50, 55] we found a nonvanishing quantum correction to the vortex mass coming from a new renormalization of the expectation value of the Higgs field in this gauge [56, 57]. In contrast to [50], where a null result for the quantum corrections to the central charge was stated, we show that the central charge receives also a nonvanishing quantum correction, namely from a nontrivial phase in the instanton actions of the Higgs field in the vortex background, which contributes to the central charge even though the latter is a surface term that can be evaluated far away from the vortex. The correction to the central charge exactly matches the correction to the mass of the vortex.

In Ref. [55], it was claimed that the usual multiplet shortening arguments in favor of BPS saturation would not be applicable to the $N = 2$ vortex since in the vortex background there would be two rather than one fermionic zero modes [58], leading to two short multiplets which have the same number of states as one long multiplet.° We showed however that the extra zero mode postulated in [55] has to be discarded because its gaugino component is singular, and that only after doing so there is agreement with the results from index theorems [58,60]. For this reason, standard multiplet shortening arguments do apply, explaining the BPS saturation at the quantum level that we observe in our explicit one-loop calculations.

The $N = 2$ susy vortex in 2+1 dimensions is the solitonic (nane-energy) solution of the abelian Higgs model which can be obtained by dimensional reduction from a 3+1-dimensional $N = 1$ model. We shall use the latter for the purpose of dimensional regularization of the 2+1-dimensional model by susy-preserving dimensional reduction from 3+1 dimensions (where the vortex has in finite mass but finite energy-density).

A. The Model

The superspace action for the vortex in terms of 3+1-dimensional super fields contains an $N = 1$ abelian vector multiplet and an $N = 1$ scalar multiplet, coupled as usual, together with a Fayet-Iliopoulos term but without superpotential,

$$ L = d^2W + d^4e^{\phi} + d^4V \quad (39) $$

In terms of 2-component spinors in 3+1 dimensions, the action reads

$$ L = \frac{1}{4}e^2 + i\partial \varphi + \frac{1}{2}D^2 + (e^{i\beta})D \varphi + 2e_1 \varpi \quad (40) $$

where $D = \partial$ when acting on and , and $F = \partial A$ for . Elimination of the auxiliary field D yields the scalar potential $V = \frac{1}{2}D^2 = \frac{1}{2}e^2(j\varphi - \varpi)^2$ with $e^2 = 1$.

In 3+1 dimensions, this model has a chiral anomaly, and in order to cancel the chiral (1) anomaly, additional scalar multiplets would be needed such that the sum over charges vanishes, $\sum e_i = 0$.

° Incidentally, Refs. [55, 58] considered supersymmetric Maxwell-Chern-Simons theory, which contains the supersymmetric abelian Higgs model as a special case.

° Our conventions are $\sigma = (1; 1; 1; 1), \quad \sigma = (-, -) \equiv -\gamma$ and $\gamma = +1$. In particular we have $\gamma = -()$ but $\gamma = ()$. Further one, $\gamma = (1; 1; 1; 1)$ with the usual representation for the Pauli matrix γ.

In 2+1 dimensions, dimensional reduction gives an N = 2 model involving, in the notation of [55], a real scalar \(N = A \) and two complex (Dirac) spinors \(\psi, \bar{\psi} \) as the central charge

\[
H = \frac{1}{4} F_{\mu \nu}^2 + \partial_{\mu} A_{\nu} + \frac{1}{2} e^{2} (j_{\mu} j^{\nu})^2
+ \frac{1}{2} \partial_{\mu} D_{\nu} + \frac{1}{4} F_{\mu \nu}^2 + \frac{1}{2} e^{2} (j_{\mu} j^{\nu})^2
+ \frac{1}{2} V^2 k F_{\mu \nu}^{12} \delta_{k} (k D_{\mu}) \tag{51}
\]

where \(k, l \) are the spatial indices in 2+1 dimensions. The classical central charge reads

\[
Z = \frac{d^2 x}{k} \theta k e \nu^2 A_{1} i D_{1} \tag{42}
\]

where asymptotically \(D_{1} \) tends to zero exponentially fast. Classically, BPS saturation \(E = j_{\mu} = 2 \nu^2 \) holds when the BPS equations \(D_{1} D_{1} D_{1} = 0 \) and \(F_{\mu \nu} = 0 \) are satisfied, where the upper and lower sign corresponds to vortex and antivortex, respectively. The vortex solution with winding number \(n \) is given by \((A_{1}^{V}, A_{1}^{R}) \)

\[
v = e^{in} f(r); \quad eA_{i}^{V} = \frac{i e^{i a}(r)}{r} \tag{43}
\]

where \(f(r) = \frac{1}{k} f(r) \) and \(a(r) = k \nu^{2} (f(r)^{2} - \nu^{2}) \) with boundary conditions \[49\]

\[
a(r!1) = 0; \quad f(r!1) = \nu; \quad a(r!0) = n + O(r^{2}); \quad f(r!0) \quad \text{and} \quad \nu^2 = n + O(r^{2}) \tag{44}
\]

B. Fluctuation equations

For the calculation of quantum corrections to a vortex solution we decompose it into a classical background part \(\nu \) and a quantum part \(\nu \). Similarly, \(A = A^{V} + a \), where only \(A^{V} \) with \(\nu = 1 \) is nonvanishing. We use a background \(B \) [61] gauge xing term which is quadratic in the quantum gauge fields

\[
L_{g: x} = \frac{1}{2} (\theta a + i e (\nu + \nu) f) \tag{45}
\]

The corresponding Faddeev-Popov Lagrangian reads

\[
L_{\text{ghost}} = b \theta^{2} e^{2} 2 j_{\mu} f^{\mu} + \nu + \nu c \tag{46}
\]

The fluctuation equations in 2+1 dimensions have been given in [50, 55] for the choice \(\psi = 1 \) (Feynman-\(\check{t} \) Hooft gauge) which leads to important simplifications. We shall mostly use this gauge choice when considering fluctuations in the solitonic background, but will carry out renormalization in the trivial vacuum for general to exhibit some of the intermediate gauge dependences.

Because we are going to consider dimensional regularization by dimensional reduction from the 3+1 dimensional model, we shall need the form of the fluctuation equations with derivatives in the \(x^{3} \) direction included. (This one trivial extra dimension will eventually be turned into \(0 \) dim dimensions.)

In the \(\check{t} \) Hooft-Feynman gauge, the part of the bosonic quadratic action in the quantum \(\psi \) fields reads

\[
L_{\text{bos}}^{(2)} = \frac{1}{2} (\theta a)^{2} e^{2} j_{\mu} f^{\mu} + \theta B^{V} j_{\mu} e^{2} f^{\mu} + \theta B^{V} j_{\mu} e^{2} f^{\mu} \tag{47}
\]

where \(a = a_{1} + i a_{2} \) to each other according to \(k = 1/2 \)

\[
(\theta x^{2} \theta x^{2} + (D_{V}^{B})^{2} e^{2} (j_{\mu} f^{\mu})^{2} + 1/2 e \nu(D_{V}^{B} + e^{2} j_{\mu} f^{\mu}) D_{V}^{B} = 0 \tag{50}
\]

The quartet \((a_{3} a_{3} b_{3} c) \) with \(b,c \) the Faddeev-Popov ghost fields has diagonal \(\psi \) equations at the linearized level

\[
(Q^{2} + 2e^{2} j_{\mu} f^{\mu} Q = 0; \quad Q = a_{3} a_{3} b_{3} c) \tag{49}
\]

For the fermionic fluctuations, which we group as \(U = \psi \), \(\check{t} \) Hooft, \(\check{t} \) Hooft, \(\check{t} \) Hooft, \(\check{t} \) Hooft, \(\check{t} \) Hooft equations read

\[
u L = i(\theta_{1} + \theta_{3} + \theta_{3} + \theta_{3}) \psi; \quad L^{V} \psi = i(\theta_{1} + \theta_{3} + \theta_{3}) \psi \tag{50}\]

with

\[
L = - \frac{1}{2} e \nu \nu \nu \psi \quad L^{V} = - \frac{1}{2} e \nu \nu \psi \quad L^{V} \psi = 0 \tag{51}
\]

Iteration shows that \(U \) satisfies the same second order equations as the bosonic fluctuations \(B \)

\[
L L^{V} \psi = (\theta x^{2} \theta x^{2}) \psi; \quad L^{V} \psi = (\theta x^{2} \theta x^{2}) \psi \tag{52}
\]

with \(L^{V} \) given by (48), whereas \(\nu \) is governed by a diagonal equation with

\[
L L^{V} \psi = (\theta x^{2} \theta x^{2}) \psi \tag{53}
\]

(In deriving these fluctuation equations we used the BPS equations throughout.)
C. Renormalized mass

At the classical level, the energy and central charge of vortices are multiples of 2 \(v^2 \) with \(v^2 = -e \). Renormalization of tadpoles, even when only by 'nique amouts, will therefore contribute directly to the quantum mass and central charge of the N = 2 vortex, a fact that has been overlooked in the original literature [50, 55] on quantum corrections to the N = 2 vortex.\(^{10}\)

Adopting a 'm in a m' renormalization scheme where the scalar wave function renormalization constant \(Z = 1 \), the renormalization of \(v^2 \) is by the requirement of vanishing tadpoles in the trivial sector of the 2+1 dimensional model. The calculation can be conveniently performed by using the Riemannian regularization of the 3+1 dimensional N = 1 model. For the calculation of the tadpoles we decompose \(\phi = v + i \bar{v} + (+ i) \bar{Z} \), where \(\bar{Z} \) is the Higgs field and \(\bar{b} \) the would-be Goldstone boson. The gauge fixing term (54) avoids the propagators, but there are interactions - propagators, which can be diagonalized by introducing new spinors \(s = (+ 1) \), \(d = (+ 1) \), \(P \), \(Z \) with mass terms \(m(s s d d) + \hbar \bar{Z} \), where \(m = \frac{\hbar}{2} \).

The part of the interaction Lagrangian which is relevant for tadpoles to one-loop order is given by

\[
L_{\text{tadpoles}}^{\text{int}} = \alpha(+ -) \frac{\epsilon}{2} (2 + 2) \alpha \epsilon (a^2 + bc \bar{v}) ;
\]

where \(b \) and \(c \) are the Faddeev-Popov ghosts.

The one-loop contributions to the tadpole thus read

\[
\begin{align*}
L_{\text{tadpoles}}^{\text{int}} &= \alpha(+ -) \frac{\epsilon}{2} (2 + 2) \alpha \epsilon (a^2 + bc \bar{v}) ; \\
&= (\epsilon m) 2 \pi r I(m) + \frac{3}{2} I(m) + \frac{1}{2} I(\bar{Z} m) \\
&\quad + [3I(m) + I(\bar{Z} m)] I(\bar{v}^2 m) + \bar{v} \varepsilon ;
\end{align*}
\]

where

\[
I(m) = \frac{Z}{(2 \gamma + k) \gamma + m^2} = \frac{m^{1+}}{4 \gamma + 2} \left(\frac{1}{2} + \frac{1}{k} \right) = \frac{m}{4} + O(\epsilon) ;
\]

Required that the sum of tadpole diagram (56) vanishes as \(\bar{v} \varepsilon \),

\[
\bar{v}^2 = \frac{1}{2} I(m) + I(\bar{Z} m) \quad \text{D = 3} = \frac{1 + \bar{Z}}{8} m ;
\]

Because in dimension regularization there are no poles in odd dimensons at the one-loop level, the result for \(\bar{v}^2 \) is finite, but it is nonvanishing.

As it turns out, this is the only contribution to the one-loop mass correction of the vortex. In the = 1 gauge the zero-point energies of the quartet \((a_3, a_0, b_0, c_0) \) cancels, and one is left with

\[
\frac{1}{2} \bar{v}_{\text{bos}} \frac{1}{2} \bar{v}_{\text{sum}} = \bar{v}_{\text{bos}} \bar{v}_{\text{sum}} ;
\]

U sing dimensional regularization these summs can be made well de ned by replacing all eigenfrequencies \(\lambda \) in 2+1 dim ensions by \(\epsilon \lambda = (1 + \epsilon^2)^{i} \) where \(\epsilon \) are the extra m om ents. U sing index theorems, it has been shown that the spectral densities for U and V are equal up to zero modes [50, 55], and zero modes (massless modes upon em bedding) do not contribute in dimension regularization. Hence, \(\bar{v}_{\text{bos}} \bar{v}_{\text{sum}} = 0 \), as we have already seen directly [16], and the only nonvanishing quantum correction of the vortex mass is from renormalization. In our 'm in a m' renormalization scheme, we thus have

\[
E = 2 \kappa \bar{v}^2 + \bar{v}_{(1)}^2 = 2 \kappa \bar{v}^2 \left(\frac{m}{4} \right) ;
\]

D. Central charge

By starting from the susy algebra in 3+1 dimensions, one can derive the central charge in 2+1 dimensions as the component \(T_{03} \) of

\[
T = \frac{1}{4} \epsilon \bar{y} J \epsilon J g
\]

where \(J \) is the susy Nother current.

The antisymmetric part of \(T \) gives the standard expression for the central charge density, while the symmetric part is a genuine moment in the extra dimension:

\[
Z = \frac{D}{E} = v_{\text{bos}} T_{03} = \bar{v} + F_3 ;
\]

(A similar decomposition is valid for the kink [39].)

\(Z \) corresponds to the classical expression for the central charge. Being a surface term, its quantum corrections can be evaluated at in nity:

\[
Z = 2 \kappa \bar{v}^2 x \bar{v} ;
\]

\(\bar{v} \) is the susy Nother current.

With \(\bar{v} \) = \(v \), \(\bar{a} \) = \(A \), and using that the classical fields \(v \) = \(v^2 + \bar{v}^2 \), expanding in quantum fields \(v \) = \(v + i \bar{v} \), \(\bar{a} \) = \(A + i \bar{a} \), and using the classical fields \(v \) = \(v^2 + \bar{v} \), \(\bar{a} \) = \(A^2 + \bar{a} \), the above gives:

\[
\frac{1}{2} \bar{v}_{\text{bos}} \frac{1}{2} \bar{v}_{\text{sum}} = \bar{v}_{\text{bos}} \bar{v}_{\text{sum}} ;
\]

By one-loop order

\[
\bar{v}^2 = 2 \kappa \bar{v}_{\text{bos}} \left(\frac{m}{4} \right) \quad \text{D = 3} = \frac{1 + \bar{Z}}{8} m ;
\]

\(\bar{v}^2 \)

\[10\] The nontrivial renormalization of \(m \) has never been included in [56, 57].
Inserting mode expansions for the quantum excitons one immediately finds that the bosonic corrections vanish because of symmetry in the extra trivial dimension. However, this is not the case for the fermionic excitons, which have a mode expansion of the form

\[U = \frac{Z}{(2\pi)^n} \int \frac{dp}{p} e^{i(p + \phi) x} \quad (68) \]

where we have not written out explicitly the zero-mode terms (for which \(\phi^2 = 0 \)). The fermionic contribution to \(Z_c \) reads, schematically,

\[Z_c = \sum_{n \geq 0} \frac{1}{n!} \left(\frac{\partial}{\partial \phi} \right)^n Z \]

where \(\phi^2 = 0 \), so that the integral gives a nonvanishing result. However, the \(x \)-integration over the zero-mode functions \(u_{1,2}(k \phi) \) and \(v_{1,2}(k \phi) \) produces their spectral densities, which cancel up to zero-mode contributions as we have seen above\(^{11}\), and zero-mode contributions only produce scaleless integrals which vanish in dimensional regularization. Hence, \(Z_c = 0 \) and \(\phi^2 = 0 \), so that the BPS bound is saturated at the one-loop quantum level.

\(^{11} \) An explicit calculation which confirms these cancellations can be found in [16].
The complex spinor is in the adjoint representation of the gauge group which we assume to be SU(2) in the following and $(D_A)^a = (\theta_A + gA_A)^a = \theta_A \cdot a + g^a_bA^b \cdot c$. Furthermore, and satisfy the Weyl condition:

$$ (1 \ 7) = 0 \quad \text{with} \quad 7 = 0 \ 1 \ 2 \ 3 \ 5 \ 6 $$

To carry out the dimensional reduction we write $A_B = (A \ ; P \ ; S)$ and choose the following representation of gammas as matrices:

$$ a = 1 \ ; 0;1;2;3 ; \quad 5 = 5 \ ; 1; \quad 6 = 6 $$

In this representation the Weyl condition (72) becomes

$$ = 0 \ , \ \text{with a complex four-component spinor} \ . \ . \ 12 $$

The (3+1)-dimensional Lagrangian then reads

$$ L = \frac{1}{4} F^2 + \frac{1}{2} (D_S)^2 + \frac{1}{2} (D_P)^2 + \frac{1}{2} g^2 (S \ P)^2 \ g $$

$$ f = D + i g (S + i g_5 (P) , P) $$

We choose the symmetry-breaking Higgs field as $A_3 = v \ \delta$ in the trivial sector. The BPS monopoles are of the form $(A_0 = 0)$ [67]

$$ A_1 = \alpha^3 x^3 \frac{1}{r^3} (1 + K(m \ r)) ; \quad (75) $$

$$ S = \alpha^3 x^3 \frac{1}{r^2} \ m \ r $$

with $H = m \ c \ o h (m \ r) \ \ 1$ and $K = m = s i n (m \ r)$, where $m = g v$ is the mass of the particles that are charged under the unbroken U(1). The BPS equation $F_A^a + i g_5 D_A^a S^a = 0$ can be written as a self-duality equation for F_{MN} with $M ; N = 1;2;3;6$, and the classical mass is $M_{ch} = 4 \ m = g^2 v$.

The susy algebra for the charges $Q = \int_0^1 d^3x$ with $\gamma^a = \frac{1}{2} B \ c \ F_{BC}^a$ reads

$$ \mathfrak{g} = (\ P + i) \ U + i \ V $$

with $= 1; \ldots ; 4$. In the trivial sector P acts as \mathbb{C}, and U multiplies the massive fields by m, but in the topological sector P are covariant translations, and U and V are surface integrals. The classical monopole solution saturates the BPS bound $M_2 = \sqrt{1 + m^2}$ for $1_1 = M_{ch}, V_{ch} = 0$.

For obtaining the one-loop quantum corrections, one has to consider quantum fluctuations about the monopole background. The bosonic fluctuation equations turn out to be simple in the background-covariant Feynman gauge, which is obtained by dimensional reduction of the ordinary background-covariant Feynman gauge in (5+1) dimensions $\bar{D}_A[A]a^b)^2$, where a^{a} composes the bosonic fluctuations and A^a the background fields. A has been found in Refs. [63, 64], in this gauge the eigenvalues of the bosonic fluctuation equations (taking into account Faddeev-Popov ghosts) and those of the fermionic fluctuation equations combine such that one can make use of an index theorem by Witten [68] to determine the spectral density. This leads to the following (unregularized) formula for the one-loop mass correction

$$ M_{(1)} = \frac{4 \ m_0}{g_5^2} + \frac{2 \ X}{Z} \ \ (!_B \ ; \ !_F) \ $$

$$ = \frac{4 \ m_0}{g_5^2} + \frac{2 \ d^3 k \ P}{(Z \ k^2 + m^2 \ k^2)} \ ; \quad (78) $$

with m_0 and g_5 denoting bare quantities and

$$ \frac{X}{Z} = \frac{8 \ m}{k^2 (k^2 + m^2)} $$

This expression is logarithmically divergent and is made finite by combining it with the one-loop renormalization of g, which m does not need to be renormalized [63, 64]. Combining these two expressions from the sum over zero point energies and the counter term, we obtain that there is a mass proportional to $\ m$, but multiplies a logarithmically divergent integral, which in dimensional regularization involves a pole $\ m$. We therefore obtain a finite correction of the form

$$ M_{(1)} = \frac{4 \ m_0}{g_5^2} + \frac{2 \ m_0 (\frac{3}{2} \ - \ \frac{\tau}{2})}{Z \ d^3 k \ (2 \ k^2 + m^2 \ k^2 + m^2 \ k^2 + m^2 \ k^2)} \ 1 + \ 0 , \quad (79) $$

which because of the fact that it arises as $0 \ 1$ bears the hallmark of an anomaly.

Indeed, as we shall now show, this result is completely analogous to the case of the $N = 1$ susy kink in (1+1) dimensions, where a nonvanishing quantum correction to the kink mass (in a non-minimal renormalization scheme) is associated with an anomaly in the central charge (which is scheme-independent) in a non-minimal renormalization scheme.
schem e there are also non-anomalous quantum corrections to the central charge).

In Ref. [64] it has been argued that in the renormalization scheme described above, the one-loop contributions to the central charge precisely cancel the contribution from the counterterm in the classical expression. In this particular calculation it turns out that the cancelling contributions have identical form so that the regularization methods of Ref. [64] can be used at least self-consistently, and also straightforward dimensional regularization would imply complete cancellations. The result (80) would then appear to violate the Bogomol'nyi bound.

However, this is just the situation encountered in the (1+1)-dimensional supe rstring. As we have shown in Ref. [39] and recapitulated above, dimensional regularization gives a zero result for the contribution to the central charge unless the latter is augmented by the non-zero m term in the current dimension used to embed the soliton. This is necessary for m independent superstrings, and, indeed, the extra m term can acquire a non-vanishing expectation value. As it turns out, the latter is entirely due to nontrivial contributions from the fermions. whose fluctuation equations have the form

\[L + i(\theta_t + \theta_s) = 0; \quad (81) \]

\[i(\theta_t - \theta_s) + \mu L^\nu = 0; \quad (82) \]

The fermionic superpotential can be written as

\[(x) = \frac{Z}{(2\pi)^2} \frac{d^3k}{(2\pi)^2} \frac{1}{Z!} \sum_{a} \left(\frac{\partial}{\partial \phi_a} \right)^{\nu} \left(\frac{\partial}{\partial \phi_a^\dagger} \right)^{\nu^\dagger} \phi_a \phi_a^\dagger \phi_a^\dagger \phi_a \right) \]

where

\[= \frac{1}{2} L + i, \quad + = \frac{1}{2} L^\nu, \quad \text{with} \quad !^2 = k^2 + m^2, \quad \text{and the norm factors} \quad \frac{1}{Z!}, \quad \text{are such that} \quad L^\nu + L^\nu^\dagger = 1, \quad \text{and} \quad L^\nu L^\nu^\dagger = !^2, \quad \text{with} \quad !^2 = k^2 + \mu^2. \]

Because of these norm factors, one obtains an expression for the m moment density in the extra dimension which has an even component under resection in the extra m moment variable

\[h_{051} = \frac{Z}{(2\pi)^2} \frac{d^3k}{(2\pi)^2} \frac{1}{Z!} \sum_{a} \left(\frac{\partial}{\partial \phi_a} \right)^{\nu} \left(\frac{\partial}{\partial \phi_a^\dagger} \right)^{\nu^\dagger} \phi_a \phi_a^\dagger \phi_a^\dagger \phi_a \right) \]

\[= \frac{Z}{(2\pi)^2} \frac{d^3k}{(2\pi)^2} \frac{1}{Z!} \sum_{a} \left(\frac{\partial}{\partial \phi_a} \right)^{\nu} \left(\frac{\partial}{\partial \phi_a^\dagger} \right)^{\nu^\dagger} \phi_a \phi_a^\dagger \phi_a^\dagger \phi_a \right) \]

\[(\text{omitting zero-mode contributions which do not contribute in dimensional regularization [39]).} \]

Integration over \(x \) then produces the spectral density

\[U_{an} = d^3x h_{051} \]

\[= \frac{Z}{(2\pi)^2} \frac{d^3k}{(2\pi)^2} \frac{1}{Z!} \sum_{a} \left(\frac{\partial}{\partial \phi_a} \right)^{\nu} \left(\frac{\partial}{\partial \phi_a^\dagger} \right)^{\nu^\dagger} \phi_a \phi_a^\dagger \phi_a^\dagger \phi_a \right) \]

\[= 4m \frac{d^3k}{(2\pi)^2} \frac{1}{Z!} \sum_{a} \left(\frac{\partial}{\partial \phi_a} \right)^{\nu} \left(\frac{\partial}{\partial \phi_a^\dagger} \right)^{\nu^\dagger} \phi_a \phi_a^\dagger \phi_a^\dagger \phi_a \right) \]

\[= 8 \frac{(1 + \mu^2)^{1/2}}{(4\pi)^2} \frac{1}{(1 + \mu^2)^{1/2}} \frac{2m}{\mu^2} + 0 (1); \quad (85) \]

which is indeed equal to the nonzero mass correction obtained above.

This verifies that the BPS bound remains saturated under quantum corrections, but the quantum corrections to mass and central charge both contain an anomalous contribution, analogous to the central charge anomaly in the (1+1)-dimensional all-supersymmetric kink.

The non-trivial result (85) is in fact in complete accordance with the low-energy effective action for \(N = 2 \) super-Yang-Mills theory as obtained by Seiberg and Witten [2]. A according to the latter, the low-energy effective action is fully determined by a prepotential \(F(A) \), which to one-loop order is given by

\[F_{1\text{loop}}(A) = i \frac{2}{2} A^2 \ln \frac{A^2}{2}; \quad (86) \]

where \(A \) is a chiral superfield and the scale parameter of the theory generated by dimensional transmutation. The value of its scalar component corresponds to our notation to \(g_Y = m \). In the absence of a parameter, the one-loop renormalized coupling is given by

\[A = \frac{4}{g_Y^2} \quad (a) = \frac{\theta^2 \phi^2}{\theta^2 a^2} = \frac{1}{2} \ln \frac{a^2}{2} + 3; \quad (87) \]

This definition agrees with the \(m = m \) renormalization scheme that we have considered above, because the latter involves only the zero-m moment \(m \) of the two-point function of the massless fields. For a single magnetic monopole, the central charge is given by

\[j = a_0 = \frac{\theta^2 \phi^2}{\theta^2 a^2} = \frac{1}{2} \ln \frac{a^2}{2} + 1 = \frac{4}{g_Y^2} \frac{2a}{2}; \quad (88) \]

and since \(a = m \), this exactly agrees with the result of our direct calculation in (85).

Note, the low-energy effective action associated with (86) has been derived from a consistency requirement with the anomalous of the \(U(1) \) symmetry of the microscopic theory. The central-charge anomaly, which we have identified as being responsible for the entire nonzero correction (85), is evidently consistent with the former. Just as in the case of the magnetic monopole in 1+1 dimensions, it constitutes a new anomaly [14] that had previously been ignored in direct calculations [63, 64] of the quantum corrections to the \(N = 2 \) monopole.

13 We are grateful to Horia Nastase for pointing this out to us.
14 The possibility of central-charge anomaly in \(N = 2 \) super-Yang-Mills theories has been recently noted in [69], however without a calculation of the one-loop contributions.