Measurement of Dijet Azimuthal Decorrelations at Central Rapidities in pp Collisions at √s = 1.96 TeV

Correlations in the azimuthal angle between the two largest transverse momentum jets have been measured using the D0 detector in pp collisions at a center-of-mass energy $\sqrt{s} = 1.96$ TeV. The analysis is based on an inclusive dijet event sample in the central rapidity region corresponding to an integrated luminosity of 150 pb$^{-1}$. Azimuthal correlations are stronger at larger transverse momenta. These are well-described in perturbative QCD at next-to-leading order in the strong coupling constant, except at large azimuthal differences where soft effects are significant.

PACS numbers: 13.87.Ce, 12.38.Qk
Multi-parton radiation is one of the more complex aspects of perturbative Quantum Chromodynamics (pQCD) and its theory and phenomenology are being actively studied for the physics programs at the Fermilab Tevatron Collider and the CERN LHC [2]. The proper description of radiative processes is crucial for a wide range of precision measurements as well as for searches for new physical phenomena where the influence of QCD radiation is unavoidable. A clean and simple way to study radiative processes is to examine their impact on angular distributions. Dijet production in hadron-hadron collisions, in the absence of radiative effects, results in two jets with equal transverse momenta with respect to the beam axis (p_T) and correlated azimuthal angles

$$\Delta \phi_{dijet} = \phi_{jet1} - \phi_{jet2}$$

Additional soft radiation causes small azimuthal decorrelations, whereas dijet signatures significantly lower than the evidence of additional hard radiation with high p_T. Exclusive three-jet production populates $2 < \Delta \phi_{dijet} < 3$ while smaller values of $\Delta \phi_{dijet}$ require additional radiation such as a fourth jet in an event. Distributions in $\Delta \phi_{dijet}$ provide an ideal testing ground for higher-order pQCD predictions without requiring the reconstruction of additional jets and offer a way to examine the transition between soft and hard QCD processes based on a single observable.

A new measurement of azimuthal decorrelations between jets produced at high p_T in pp collisions is presented in this Letter. Jets are defined using an iterative seed-based cone algorithm (including midpoints) with radius $R_{cone} = 0.7$ [2]. The same jet algorithm is used for partons in the pQCD calculations, initial state particles in the Monte Carlo event generator, and reconstructed energy depositions in the experiment. dijet is reconstructed from the two jets with highest p_T in an event. The observable is defined as the differential dijet cross section in $\Delta \phi_{dijet}$, normalized by the dijet cross section integrated over $\Delta \phi_{dijet}$ in the same phase space (i.e., $d\sigma_{dijet}/d\Delta \phi_{dijet}$). Theoretical and experimental uncertainties are reduced in this construction. Calculations of three-jet observables at next-to-leading order (NLO) in the strong coupling constant α_s have recently become available [2]. Quantitative comparisons with data yield information on the validity of the pQCD description and increase sensitivity for gauging potential departures that could signal the presence of new physical phenomena.

Data were obtained with the D0 detector [2] in Run II of the Fermilab Tevatron Collider using pp collisions at $\sqrt{s} = 1.96$ TeV. The primary tool for jet detection was a compact, nely segmented, liquid-argon and uranium calorimeter that provided nearly full-solid-angle coverage. Calorimeter cells were grouped into projective towers focused on the nominal interaction point for trigger and reconstruction purposes. Events were acquired using multiple-stage inclusive-jet triggers. Four analysis regions were defined based on the jet with largest p_T in an event (p_T^{max}) with the requirement that the trigger efficiency be at least 99%. The accumulated integrated luminosities for events with $p_T^{max} > 100$ GeV are scaled by successive factors of 20 for purposes of presentation. The solid (dashed) lines show the NLO (LO) pQCD predictions.

![Graph of Dijet Distributions](image)

Figure 1: The dijet distributions in four regions of p_T^{max}. Data and predictions with $p_T^{max} > 100$ GeV are scaled by successive factors of 20 for purposes of presentation. The solid (dashed) lines show the NLO (LO) pQCD predictions.

The position of the pp interaction was reconstructed using a tracking system consisting of silicon microstrip detectors and scintillating bars located within a 2T solenoidal magnet. The vertex z-position was required to be within 50 cm of the detector center which preserved the projective nature of the calorimeter towers. The systematic uncertainty associated with the vertex selection efficiency is less than 3% for $\Delta \phi_{dijet} > 2.3$ and 8% for $\Delta \phi_{dijet} = 2$. The missing transverse energy was calculated from the vector sum of the individual transverse energies in calorimeter cells. Background from cosmic rays and incorrectly vertexed events was eliminated by requiring this m missing transverse energy to be below 0.7 p_T^{max}. Background introduced by electrons, photons, and detector noise that mimicked jets was eliminated...
PDF uncertainty due to the PDGs is indicated by the solid lines. The points at large $|\Delta \phi_{\text{dijet}}|$ are excluded because the calculation has non-physical behavior near the divergence at $\phi = 0$.

The p_T of each jet was corrected for calorimetric eects, overlapping due to multiple interactions and event pile-up, calorimeter noise, and the energy response of the calorimeter. The calorimetric energy was measured from the p_T imbalance in photon + jet events. The relative uncertainty on the p_T energy calibration is 7% for jets with $20 < p_T < 250 \text{ GeV}$. The sensitivity of the measurement to this calibration was reduced by normalizing the p_T distribution to the integrated dijet cross section. Nevertheless, this provides the largest contribution to the systematic uncertainty (<7% for $|\Delta \phi_{\text{dijet}}| > 4$ but up to 23% for $|\Delta \phi_{\text{dijet}}| < 2$).

The correction for migrations between bins due to finite energy and position resolution was determined from events generated with the herwig [3] and pythia [7] programs. The generated jets were smeared according to detector resolutions [8]. The angular jet resolution was determined from a full simulation of the D0 detector response. It was found to be better than 20 m rad for jets with energies above 80 GeV. The jet p_T resolution was measured from the p_T imbalance in dijet events. It decreases from 18% at $p_T = 40 \text{ GeV}$ to 9% for $p_T = 200 \text{ GeV}$. Finite jet p_T resolution can lead to ambiguities in the selection of the two leading p_T jets. This effect is large at small $|\Delta \phi_{\text{dijet}}|$ where contributions from higher jet multiplicities dominate. The generated events were reweighted to describe the observed dijet distribution. This provided a good description of the observed p_T spectra of the four leading p_T jets. The correction for migrations is typically less than 8% for $|\Delta \phi_{\text{dijet}}| > 2 = 3$ and 40% for $|\Delta \phi_{\text{dijet}}| = 2$ with a model dependence of less than 2%. Only for $p_T^{\text{ax}} < 130 \text{ GeV}$ and at $|\Delta \phi_{\text{dijet}}| = 2$, is the model dependence as large as 14%.

The corrected data are presented in Fig. 4 as a function of $|\Delta \phi_{\text{dijet}}|$ in four ranges of p_T^{ax}. The inner error bars represent the statistical uncertainties and the outer error bars correspond to the quadratic sum of the statistical and systematic uncertainties. The spectra are strongly peaked at $|\Delta \phi_{\text{dijet}}| = 2$; the peaks are narrower at larger values of p_T^{ax}. Overlaid on the data points in Fig. 4 are the results of pQCD calculations obtained using the parton-level event generator nlojet++ [4] and CTEQ 6.1M [5] parton distribution functions (PDFs) with $a(M_Z^2) = 0.118$. The observable was calculated from the ratio of the predictions for 2! 3 processes (d_{dijet} and 2! 2 processes (d_{dijet}), both at leading order (LO) or NLO,

$$\frac{1}{d_{\text{dijet}} \text{(NLO)}} \frac{d_{\text{dijet}}}{d_{\text{dijet}} \text{(NLO)}}$$

The renormalization and factorization scales are chosen to be $\mu = p_T^{\text{ax}}$/2. The ratio is insensitive to hadronization corrections and the underlying event [9].

NLO pQCD provides a good description of the data. As shown in Fig. 5, data and NLO agree within 5/10%. The theoretical uncertainty due to the PDFs is estimated to be below 20%. A large effect of renormalization and factorization scale variation ($0.25 p_T^{\text{ax}} < \mu < p_T^{\text{ax}}$). The large scale dependence for $|\Delta \phi_{\text{dijet}}| = 2$ occurs because the NLO calculation only receives contributions from tree-level four-parton final states in this region. Results from pQCD at large $|\Delta \phi_{\text{dijet}}|$ in Figs. 4 and 5 were excluded because xed-order perturbation theory fails to describe the data in the region $|\Delta \phi_{\text{dijet}}|$ where soft processes dominate.

Monte Carlo event generators, such as herwig and pythia, use 1! 2 LO pQCD matrix elements with phenomenological parton-shower models to simulate higher order QCD eects. Results from herwig (version 6.505) and pythia (version 6.225), both using default parameters and the CTEQ 6L [6] PDFs, are compared to the data in Fig. 5. Herwig describes the data well over the entire $|\Delta \phi_{\text{dijet}}|$ range including $|\Delta \phi_{\text{dijet}}|$.
default parameters describes the data poorly; the distribution is too narrow to peak at $\Delta \phi$ and lies significantly below the data over most of the $\Delta \phi$ range. The maximum p_T in the initial-state parton shower is directly related to the maximum virtuality that can be adjusted in pythia. The shaded bands in Fig. 4 indicate the range of variation when the maximum allowed virtuality is smoothly increased from the current default by a factor of four [11]. These variations result in significant changes in the low $\Delta \phi$ region clearly demonstrating the sensitivity of the measurement. Consequently, global efforts to tune Monte Carlo event generators should benefit from including our data.

To summarize, we have measured the dijet azimuthal decorrelation in different ranges of leading jet p_T and observe an increased decorrelation towards smaller p_T. NLO pQCD describes the data except for very large $\Delta \phi$ where the calculation is not predictive.

We wish to thank W. Giele, Z. Nagy, M. H. Seymour, and T. Sjöstrand for many helpful discussions. We thank the sta at Fermilab and collaborating institutions, and acknowledge support from the Department of Energy and National Science Foundation (USA), Commissariat a l’Energie Atomique and CNRS/Institut National de Physique Nucléaire et de Physique des Particules (France), Ministry of Education and Science, Agency for Atomic Energy and RF President Grants Program (Russia), CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil), D epartment of Atomic Energy and Science and Technology (India), Colciencias (Colombia), CONACYT (Mexico), KRF (Korea), CONICET and UBACyT (Argentina), The Foundation for Fundamental Research on Matter (The Netherlands), PPARC (Unite d Kingdom), M inistry of Education (Czech Republic), Natural Sciences and Engineering Research Council and WestGrid Project (Canada), BMF and DFG (Germany), A. P. Sloan Foundation, Civilian Research and Development Foundation, Research Corporation, Texas Advanced Research Program, and the Alexander von Humboldt Foundation.

FIG. 3: The dijet distributions in different p_T^{dijet} ranges. Results from herwig and pythia are overlaid on the data. Data and predictions with $p_T^{dijet} > 100$ GeV are scaled by successive factors of 20 for purposes of presentation.