In two-Higgs-doublet models of electroweak symmetry breaking, such as the minimal supersymmetric extension of the standard model (MSSM), there are five physical Higgs bosons: two neutral CP-even scalars, h and H, with H being the heavier state; a neutral CP-odd state, A; and two charged states, H⁺ and H⁻. The ratio of the

PACS numbers: 12.38.Qk, 12.60.Fr, 13.85.Rm, 14.80.Cp
vacuum expectation values of the two Higgs fields is defined as \(v_2 = v_1 \), where \(v_2 \) and \(v_1 \) refer to the fields that couple to the up-type and down-type fermions, respectively. At tree level, the coupling of the A boson to down-type quarks, such as the b quark, is enhanced by a factor of tan \(\beta \) relative to the standard model (SM), and the production cross section is therefore enhanced by \(\tan^2 \beta \). At large tan \(\beta \), this is also true either for the h or H boson depending on their mass.

For several representative scenarios of the MSSM, LEP experiments have excluded at 95\% C.L. a light Higgs boson with mass \(m_h < 92.9 \text{ GeV} \). At hadron colliders, neutral Higgs bosons can be produced in association with b quarks, leading to final states containing three or four b jets. The CDF experiment at the Tevatron Collider performed a search for these events in data from Run II [2].

Higgs boson production in association with b quarks in \(pp \) collisions can be calculated in two ways: in the vector scheme [6], only one b quark has to be present, while in the four-vector scheme [6], two b quarks are explicitly required in the final state. Both calculations are now available at next-to-leading order (NLO), and agree within their respective theoretical uncertainties [6, 9]. Figure 1 illustrates these processes for h production at leading order (LO), and analogous diagram s can be drawn for the H or A bosons.

In this Letter, we assume CFP-conservation in the Higgs sector. The masses, widths, and branching fractions for the neutral Higgs bosons into b pairs are calculated using the CFP superH program [3, 7]. The current analysis is sensitive to tan \(\beta \) in the range 50 to 100, and depends on the Higgs boson mass. In this region of tan \(\beta \), the A boson is nearly degenerate in mass with either the h or the H boson, and their widths are small compared to the di-jet mass resolution. Consequently, we cannot distinguish between the h/H and the A, and the total cross section for signal is assumed to be twice that of the A boson. In the region of \(m_A \) from 100 to 130 GeV, all three neutral Higgs bosons can be degenerate in mass and produced simultaneously [14]. Nevertheless, the total cross section still remains twice that of the A boson.

Using data collected by the D0 detector from November 2002 to June 2004, corresponding to an integrated luminosity of about 260 pb\(^{-1}\), we search for an excess in the invariant mass distribution of the two leading transverse momentum (p\(_T\)) jets in events containing three or more b quark candidates.

The D0 detector has a magnetic central tracking system surrounded by a uranium/liquid-argon calorimeter, contained within a muon spectrometer. The tracking system consists of a silicon microstrip tracker (SM T) and a central her tracker (CFT), both located within a 2 T solenoidal magnet [12]. The SM T and CFT have designs optimized for tracking and vertexing at pseudorapidities \(j < 2.5 \), where \(\eta = \ln(\tan(\frac{\theta}{2})) \) and \(\theta \) is the polar angle with respect to the proton beam direction (z). The calorimeter has a central section (CC) covering up to \(j < 3.1 \), and two end calorimeter (EC) extending coverage to \(j < 4.2 \), all housed in separate cryostats [13]. The calorimeter is divided into an electromagnetic part followed by a near and a far hadronic section. Scintillators between the CC and EC cryostats provide additional sampling of developing showers for \(1.1 < j < 1.4 \).

The muon system consists of a layer of tracking detectors and scintillator trigger counters in front of a 1.8 T toroidal magnet, followed by two similar layers behind the toroids, which provide muon tracking for \(j < 2 \). The luminosity is measured using scintillator arrays located in front of the EC cryostats, covering \(2.7 < j < 4.0 \). The trigger system comprises three levels (L1, L2, and L3), each performing an increasingly detailed event reconstruction in order to select the events of interest.

The large cross section for multiple production necessitates a specialized trigger to maintain signal acceptance while providing reasonable rates. This trigger at L1 requires signals in at least three calorimeter towers of size \(\tau = 0.02 \) (where \(\tau \) is the azimuthal angle), each with transverse energy \(E_T > 5 \text{ GeV} \), three clusters and \(H_T = 50 \text{ GeV} \) at L2 (H\(_T\) = scalar sum of the L2 clusters with \(E_T > 5 \text{ GeV} \)), and three jets with \(p_T > 15 \text{ GeV} \) at L3. A total of 87.5 million events were selected offline with one jet of \(p_T > 20 \text{ GeV} \) and at least two more jets with \(p_T > 15 \text{ GeV} \). Jets are reconstructed using a Run II cone algorithm [14] with radius \(R = (\omega)^2 + (\epsilon)^2 < 0.5 \), and are then required to pass a set of quality criteria. To be accepted for further analysis, jets with \(p_T > 15 \text{ GeV} \) must have \(j < 2.5 \). The jet energies are corrected to the particle level using dependent scale factors. Events with up to two jets are selected if they have a primary vertex position \(j < 5 \text{ cm} \) and at least three jets with corrected \(p_T > 35, 20 \), and 15 GeV. Depending on the hypothesized Higgs boson mass, the final selections are chosen to optimize the expected signal significance, defined as \(S = \frac{B}{\sigma} \),
where S (B) refers to the number of signal (background) events. Jets containing b quarks are identified using a secondary vertex (SV) tagging algorithm. A jet is tagged as a b-jet if it has at least one SV within $R < 0.5$ of the jet axis and a transverse displacement from the primary vertex that exceeds the displacement uncertainty. Jets are b-tagged up to lj < 25, although the b-tagging is about twice as effective in the central region (j < 1.1) because of the CFT coverage. The b-tagging efficiency is 55% for central b-jets of $p_T > 35$ GeV, with a light quark (or gluon) tag rate of about 1%.

Signal events were simulated using the pythia event generator followed by the full D detector simulation and reconstruction chain. pythia minimum bias events were added to all generated events, using a Poisson probability with a mean of 0.4 events to match the instantaneous luminosities at which the data were taken (1 6.10^3 cm^{-2} s^{-1}). The b events, with h! \not{E}_T, were generated for H bosons m masses from 90 to 150 GeV. Reconstructed jets in simulated events were corrected to match the jet reconstruction and identification efficiencies in data. The energy of simulated jets was smeared to match the measured jet energy resolution. The p_T and rapidity spectra of the Higgs bosons from pythia were compared to those from the NLO calculation. The shapes were similar, indicating that the pythia kinematics are approximately correct. The simulated events were weighted to match the p_T spectrum of the Higgs boson given by NLO, resulting in a 10% reduction of the overall signal efficiency.

Of all SM processes, multijet production is the major source of background. This background is determined from data by normalizing distributions outside of the signal region. As a cross-check, we also compare data with simulations. alpgen is used to generate three sample sets of events for H+b and H+bj with h corresponding to u, d, s, strange or charm quarks, or gluons, and Hb+bjj and H+bj+bj with j corresponding to u, d, s, strange or charm quarks, or gluons, and H, b, j, and jj states with generator-level requirements: $p_T > 25$ GeV, $p_T > 15$ GeV, j < 30, and $R > 0.4$ between any two non-SL partons. These selections do not introduce significant bias because the signal sample contains much harder jets, after the application of trigger and b-tagging requirements. Simulation b events and H+bj are added together, but the H+bj sample is weighted by 0.85 to match the jet multiplicity observed in b-tagged data. The cross sections obtained from alpgen are 8.9 nb, 39 nb, and 60 pb, for the respective three states. All other backgrounds are expected to be small and are simulated with pythia: $pp \rightarrow Z (b \bar{b})+jets$, $pp \rightarrow Zb$, and $pp \rightarrow H$. Cross sections of 1.2 nb, 40 pb ($H\rightarrow jbjb$), and 7 pb are assumed, respectively.

There are two main categories of multijet background. One contains genuine heavy-avor (HF) jets, while the other has only light-quark or gluon jets that are mistakenly tagged as b-quark jets, or correspond to gluons that branch into nearly collinear $b\bar{b}$ pairs. Using the selected data sample, before the application of b-tagging requirements, the probability to b-tag a jet is measured as a function of its p_T in three j regions. These functions are called N-is-tag" functions. They are corrected for the contamination from true HF events by subtracting the estimated fraction of H+bj events in the multijet data sample (1.2%), obtained from an initial attempt to identify b-tagged data. These corrected N-is-tag functions are then used to estimate the m is-tag background, by applying them to every jet reconstructed in the full data sample.

In order to test the modeling of the m is-tag background, the high statistics doubly b-tagged data is compared to simulations for, before extrapolating to the triply b-tagged background. The expected signal contribution to the doubly b-tagged data is negligible. The comparison in invariant mass spectra of the two jets of lowest p_T (not necessarily the two b-tagged jets) in the doubly b-tagged data with the expected background is shown in Fig. 1. The b-tagging in this analysis does not distinguish between contributions from bottom and charm events. However, the efficiency for tagging a c-jet is known from simulations to be about 1-4 of that for tagging a b-jet. Therefore, when two b-tags are required, the fraction of $c\bar{c}$jj(j) events relative to $bb\bar{b}jj(j)$ events will be a factor of 16 lower after tagging. We have estimated the fractions of $c\bar{c}$jj to $bb\bar{b}jj$ prior to b-tagging using the madgraph Monte Carlo generator for the $c\bar{c}$jj cross section is 22% higher than $bb\bar{b}jj$ for the same generator-level selections. Therefore, the contribution of $c\bar{c}$jj(j) in the doubly b-tagged data sample is expected to represent about 8% of the events. Thus, when we refer to the $bb\bar{b}jj(j)$ normalization, it should be understood that approximately 8% of the events are from the $c\bar{c}$jj(j) process. After these corrections for $c\bar{c}$jj(j) events, the HF multijet processes are only a factor of 1.08 higher in data than predicted by alpgen. The shape of the estimated background agrees well with the shape of the data over the entire invariant mass region.

To estimate the background for triply b-tagged events, the m is-tag function is applied to the non-b-tagged jets in the doubly b-tagged events. This provides the shape of the multijet background distribution with at least three b-tagged jets. This neglects any contributions from processes with one or two true b-jets, such as from H+bjj and $Z (b \bar{b})+b\bar{b}jj$ production. However, the shapes of these backgrounds from simulations are similar to those of the doubly b-tagged spectra, and their rates are small. The overall background normalization is therefore determined by fitting the leading two jets invariant mass spectrum in triply b-tagged events outside of the hypothesized signal region to the estimated shape for triply b-tagged background. The systematic effect on the background contribution from any signal contribution outside the search window was studied and found to be small relative to other uncertainties, as described below.
The systematic uncertainties correspond to uncertainties in p_T distributions for simulated signal at NLO, the integrated luminosity, and the trigger efficiency, and are found to be 5%, 6.5%, and 9%, respectively. These uncertainties, added in quadrature, result in a total systematic uncertainty of 21%.

The accuracy in modeling the shape of the background distribution can be estimated from the χ^2/dof between the estimated background and the data. The statistical error associated with the uncertainty in the normalization of the background (from the fit outside the signal region) is multiplied by $\sqrt{2}$/dof. The background uncertainty is estimated to be $<3\%$. The systematic uncertainty arising from the width chosen for the search window is evaluated by varying it from less than the resolution to 1.8 σ, centered on the peak value. The resulting change in background normalization is much smaller than from other sources of background uncertainties.

A modified frequentist method is used to set limits on the production of signal. The di-jet invariant mass distributions in triple b-tagged events of data, simulated signal, and the normalized background were used as inputs. The value of $\tan \beta$ was varied until the confidence level for signal (CL$_S$) was < 5%. Figure 4 shows the data, background, and simulated signal at the exclusion limit for $m_A = 120$ GeV. This is converted to a cross section limit for signal production in Fig. 4, which also shows the expected MSSM Higgs boson production cross section as a function of m_A for $\tan \beta = 80$, and the median expected limit with the background-only hypothesis along with its 1σ range. The NLO cross sections and their uncertainties from parton distribution functions (PDFs)
and scale dependence are taken from Refs. [2,3,20]. The MSSM cross section shown in Fig. 5 corresponds to no mixing in the scalar top quark sector [20], or $X_t = 0$, where $X_t = A_t \cot \beta$, A_t is the trilinear coupling, and the Higgsino mass parameter $\lambda = 0.2\,\text{TeV}$. We also interpret our results in the λ mixing scenario with $X_t = 0.5\,\text{M}_{\text{SUSY}}$, where M_{SUSY} is the mass scale of supersymmetric particles, taken to be 1 TeV.

Results for both scenarios of the MSSM are shown in Fig. 5 as limits in the $\tan \beta$ versus m_A plane. The present data analysis, based on 260 pb$^{-1}$ of data, excludes a significant portion of the parameter space, down to $\tan \beta = 50$, depending on m_A and the MSSM scenario assumed.

We thank the authors of Refs. [3,20] for valuable discussions. We thank the sta's at Fermi Lab and collaborating institutions, and acknowledge support from the DOE and NSF (USA), CEA and CNRS/IN2P3 (France), FASI, Rosatom and RFBR (Russia), CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil), DAE and DST (India), Colciencias (Colombia), CONCYT (Mexico), KRF (Korea), CONICET and UBACYT (Argentina), FOM (The Netherlands), PPARC (United Kingdom), M SMT (Czech Republic), CRC Program, CFI, NSERC and WestGrid Project (Canada), BM BF and DFG (Germany), SFI (Ireland), A.P. Sloan Foundation, Research Corporation, Texas Advanced Research Program, Alexander von Humboldt Foundation, and the Marie Curie Fellowships.