Search for single top quark production in pp collisions at $P_T = 1.96$ TeV

We present a search for electroweak production of single top quarks in the s-channel and t-channel using neural networks for signal-background separation. We have analyzed 230 pb$^{-1}$ of data collected with the D0 detector at the Fermi Lab Tevatron Collider at a center-of-mass energy of 1.96 TeV and nd no evidence for a single top quark signal. The resulting 95% confidence level upper limits on the single top quark production cross sections are 6.4 pb in the s-channel and 5.0 pb in the t-channel.

PACS numbers: 14.65.Ha; 12.15.Jt; 13.85.Qk
INTRODUCTION

Top quark physics provides fundamental knowledge of the strong and electroweak sectors of the standard model and offers discovery potential for physics beyond the standard model. The top quark was discovered in 1995 at the Fermilab Tevatron Collider in $t\bar{t}$ events produced through the strong interaction. The standard model predicts that proton-antiproton collisions should also produce single top quarks through the electroweak interaction. Studying single top quark production will provide direct measurement of the CKM matrix element V_{tb} and top quark polarization, and will probe possible new physics in the top quark sector.

There are two main modes of single top quark production as shown in Fig. 1: the s-channel (tb) process pp → tbX and the t-channel (tqb) process pp → tqbX. The production cross sections have been calculated at next-to-leading order (NLO) in the strong coupling constant [1, 2, 3, 4, 5, 6, 7, 8], yielding 0.68 ± 0.14 pb for the s-channel and 1.98 ± 0.30 pb [9, 10] for the t-channel, assuming a top quark mass of $m_t = 175$ GeV. Both the D and CDF collaborations have previously performed searches for single top quark production [9, 11]. Recently, CDF performed a search using 160 pb$^{-1}$ of data and obtained upper limits of 13.6 pb (s-channel), 10.1 pb (t-channel), and 17.8 pb (s+t combined) at 95% C.L. [12].

DATA SET AND EVENT SELECTION

The data were recorded between August 2002 and March 2004 using a trigger that required an electron or muon spectrometer and an iron toroid m magnet, and an iron toroid m magnet, and an iron toroid m magnet. The central tracking system covers the detector pseudorapidity region $|\eta| < 2.5$. It includes a silicon microstrip tracker and a scintillating fiber tracker, both located within a 2 T solenoidal magnet. The calorimeters consist of a central barrel in the region $|\eta| < 1.1$, and two end caps extending the coverage to $|\eta| < 4.2$. The m magnet system outside the calorimeter consists of a layer of tracking detectors and scintillation counters before 1.8 T toroids, followed by two silicon layers after the toroids. M inosity is measured using plastic scintillator arrays located in front of the end calorimeters.

The D detector consists of a central tracking system, liquid-argon/uranium calorimeters, and an iron toroid m magnet, and an iron toroid m magnet, and an iron toroid m magnet. The integrated luminosity is 226 pb$^{-1}$ for the electron channel and 229 pb$^{-1}$ for the muon channel.

In the electron channel, we require exactly one isolated electron [13] with $p_T > 15$ GeV and $|\eta| < 1.1$. In the muon channel, events are selected by requiring exactly one isolated muon [14] with $p_T > 15$ GeV and $|\eta| < 2.1$. For both channels, events are also required to have $E_T > 15$ GeV. Events must have from two to four jets with the leading jet $p_T > 25$ GeV and $|\eta| < 2.5$, and all other jets having $p_T > 15$ GeV and $|\eta| < 3.4$. Jets are defined using a cone algorithm with radius $R = 0.5$ [15]. M reconstructed events are rejected by requiring that the direction of E_T is not aligned or anti-aligned in azimuth with the lepton or the jets.

The fraction of signal-like events is further enhanced through the selection of b-quark jets that are identified by reconstructing displaced vertices from long-lived particles. A displaced vertex is selected by requiring the transverse decay-length sign canonical length, $L_{xy} = L_{x} + L_{y}$, to be greater than seven, where L_{xy} is the decay length and L_{x}, L_{y}, is the uncertainty on L_{xy}, calculated from the error matrixes of the tracks and the primary vertex. A jet is considered b-tagged by this algorithm if a displaced vertex lies within a cone of radius $R = 0.5$ around the jet axis.

The data were recorded between August 2002 and March 2004 using a trigger that required an electron or muon spectrometer and an iron toroid m magnet, and an iron toroid m magnet, and an iron toroid m magnet. The central tracking system covers the detector pseudorapidity region $|\eta| < 2.5$. It includes a silicon microstrip tracker and a scintillating fiber tracker, both located within a 2 T solenoidal magnet. The calorimeters consist of a central barrel in the region $|\eta| < 1.1$, and two end caps extending the coverage to $|\eta| < 4.2$. The m magnet system outside the calorimeter consists of a layer of tracking detectors and scintillation counters before 1.8 T toroids, followed by two silicon layers after the toroids. M inosity is measured using plastic scintillator arrays located in front of the end calorimeters.

In this Letter, we present a new search for electroweak top quark production at the Tevatron Collider. This search focuses on the s-channel and (b) the t-channel.

In this Letter, we present a new search for electroweak top quark production at the Tevatron Collider. This search focuses on the s-channel and (b) the t-channel.

In this Letter, we present a new search for electroweak top quark production at the Tevatron Collider. This search focuses on the s-channel and (b) the t-channel.
For both s-channel and t-channel searches, we separate the data into independent analysis sets based on on-shell lepton and b-tag multiplicity. To take advantage of the different on-shell topologies, we separate single-tagged (=1 tag) events from double-tagged (≥2 tags) events. In the t-channel search, we additionally require that one of the jets is not b tagged.

ACCEPANCES AND YIELDS

We estimate the kinematic and geometrical acceptances for s-channel and t-channel single top quark production using the MadGraph matrix element event generator [17] with $m_t = 175$ GeV. The factorization scales are m_t^2 for the s-channel sam ples and $(m_t^2)^2$ for the t-channel sam ples. For the s-channel (t-channel) search, the t-channel (s-channel) is considered as background.

We use both Monte Carlo events and data to estimate the background yields. The $W +$ jets and diboson ($W W$ and $W Z$) backgrounds are estimated using events generated with alpgen [18]. The diboson background yields are normalized to NLO cross sections computed with mcdf [19]. The total $W +$ jets yield is normalized to the yield in data corrected for the presence of multijet, tt, and dibosons before requiring a b-tagged jet. The fraction of heavy-av or (W bb) events is obtained using the ratio of the NLO cross sections for $W +$ jets and W bb, as described in Ref. [20]. This normalization of data also accounts for small contributions such as Z + jets events in which one of the leptons from the Z boson decay is not reconstructed.

The tt background, consisting of the leptonic decay modes of the W boson from the top quark decay (+ jets and dilepton), is estimated using sam ples generated with alpgen, normalized to the cross section: $(t \bar{t}) = 6.7$ pb [21], where the uncertainty on the top quark mass is incorporated into the cross section uncertainty.

The parton level sam ples are then processed with pythia [22] for hadronization, particle decays, and modeling of the underlying event. The generated events are processed through a geant-based [23] simulation of the D detector. The resulting lepton and jet energies are sm eared to reproduce the resolution observed in data.

The background from jets misidentified as electrons or jets resulting in isolated muons is estimated using multijet data sam ples that pass all event selection cuts, but fail the requirement on muon isolation or electron quality [24]. This background is normalized using a data sam ple dominated by multijet events, selected by requiring $p_T < 15$ GeV.

The overall acceptances, including trigger and selection efficiencies, for signal events with at least one b-tagged jet are (2.7 ± 0.2)% in the s-channel and (1.9 ± 0.2)% in the t-channel. The acceptance is calculated as the fraction of events that pass the selection over all possible single top quark decays, including all leptonic and hadronic decays of the W boson. Estimates for signal and background yields and the observed num bers of events after selection are shown in Table 1.

TABLE I: Estimates for signal and background yields and the num bers of observed events in data after event selection for the electron and muon, single-tagged and double-tagged analysis sets combined. The $W +$ jets yields include the diboson backgrounds. The total background for the s-channel (t-channel) search includes the top (tb) yield. The quoted yield uncertainties include systematic uncertainties taking into account correlations between the different analysis channels and sam ples.

<table>
<thead>
<tr>
<th>Source</th>
<th>s-channel search</th>
<th>t-channel search</th>
</tr>
</thead>
<tbody>
<tr>
<td>$t \bar{t}$</td>
<td>5.5 ± 1.2</td>
<td>4.7 ± 1.0</td>
</tr>
<tr>
<td>$t \bar{t} +$</td>
<td>8.6 ± 1.9</td>
<td>8.5 ± 1.9</td>
</tr>
<tr>
<td>$W +$ jets</td>
<td>169 ± 19.2</td>
<td>163 ± 17.8</td>
</tr>
<tr>
<td>tt</td>
<td>78.3 ± 17.6</td>
<td>75.9 ± 17.0</td>
</tr>
<tr>
<td>Multi-jet</td>
<td>31.4 ± 3.3</td>
<td>31.3 ± 3.2</td>
</tr>
<tr>
<td>Total background</td>
<td>287.4 ± 31.4</td>
<td>275.8 ± 31.5</td>
</tr>
<tr>
<td>Observed events</td>
<td>283</td>
<td>271</td>
</tr>
</tbody>
</table>

NEURAL NETWORKS ANALYSIS

After event selection, several variables are combined in neural networks to discriminate the single top quark signals from the backgrounds. The networks are composed of three layers of nodes: input, hidden, and output. For training and testing, we use the mlpack package. Testing and training event sets are created from simulated signal and background samples. We use a technique called early stopping [25] to determine the maximum number of epochs for training which prevents overtraining. Each network is then tuned by choosing the optimal number of hidden nodes. From studies based on optimizing the expected upper limits on the single top quark production cross sections, we nd that the s-channel and t-channel searches each require only two networks, corresponding to the dominant backgrounds: W bb and tt + jets.

The list of discriminating variables has been chosen based on an analysis of Feynman diagrams of signals and backgrounds [26] and on a study of single top quark production at NLO [27]. The input variables to each network are selected from this list by training with different combinations of variables and choosing the combination that produces the highest testing error and lowest signal-background separation. Table 1 shows the variables used for each signal-background pair. These variables fall into three categories: individual-object kinematics, global-event kinematics, and angular correlations.
Since the input variables do not depend on the lepton flavor, the electron and muon analyses utilize the same variables. However, owing to different lepton resolutions and pseudorapidity ranges, we construct separate networks for them. Therefore, four neural networks are used for the signal-background pairs (tb-W bb, tb-tt, tbj-W bb, tbj-tt) for each of the electron and muon channels.

Figure 4 shows distributions of four representative variables. We reconstruct the neutral boson and the missing transverse energy. The z-component of the neutral boson is calculated using a W boson mass constraint, choosing the solution with smaller p_z from the two possible solutions. In the s-channel analysis, the top quark is reconstructed from the W boson and the leading jet. In the t-channel analysis, the top quark is reconstructed from the W boson and the leading jet. Using these two methods, we are able to correctly identify the b-quark jet from the top quark decay in about 90% of the signal events.

Sytematic uncertainties

Systematic uncertainties are evaluated for the M onte Carlo signal and background samples, separately for the electron and muon channels and for each b-tag multiplicity. The most important sources of systematic uncertainty are listed in Table III. The systematic uncertainty on the shapes of the distributions is taken into account for the contributions from b-tag modeling, jet en-
energy calibration, jet identification, and trigger modelling.
In order to evaluate the total uncertainty, we consider all sources of systematic uncertainties for all sample sizes and their correlations. The total uncertainty on the signal acceptance for single-tagged events is 13% for the s-channel and 15% for the t-channel, and for double-tagged events it is 24% for the s-channel and 28% for the t-channel. The total uncertainty on the background yield is 10% for the single-tagged sample and 26% for the double-tagged sample.

CROSS SECTION LIMITS

The observed data are consistent with the background predictions for all eight analysis channels. We therefore set upper limits on the single top quark production cross section separately in the s-channel and t-channel analysis channels. In each search, two-dimensional histograms are constructed from the W-bb vs. tt neural network outputs. A likelihood is built from these histograms for signal, background, and data, as a product over all channels (electron and muon, single and double tags) and bins. We assume a Poisson distribution for the observed number of events in each bin and a flat prior probability for the signal cross section. The prior for the combined signal acceptance and background yields is a multivariate Gaussian with uncertainties and

TABLE III: Range of systematic uncertainty values for the various Monte Carlo signal and background samples in the different analysis channels.

<table>
<thead>
<tr>
<th>Source of systematic uncertainty</th>
<th>Uncertainty range (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal and background acceptance</td>
<td>5 (20)</td>
</tr>
<tr>
<td>b-tag modelling</td>
<td>1 (15)</td>
</tr>
<tr>
<td>jet energy calibration</td>
<td>2 (7)</td>
</tr>
<tr>
<td>trigger modelling</td>
<td>5 (7)</td>
</tr>
<tr>
<td>jet fragmentation</td>
<td>1 (13)</td>
</tr>
<tr>
<td>lepton identification</td>
<td>4</td>
</tr>
<tr>
<td>Background normalisation</td>
<td>2 (18)</td>
</tr>
<tr>
<td>theory cross sections</td>
<td>5 (16)</td>
</tr>
<tr>
<td>W + jets avor com position</td>
<td>6.5</td>
</tr>
<tr>
<td>Lum inosity</td>
<td></td>
</tr>
</tbody>
</table>

FIG. 3: Comparison of signal, background, and data for the neural network outputs, for the electron and muon channels combined, requiring at least one tag. This figure shows (a) the tb-tt channel, (b) the tqb-tt channel, (c) the tb-W channel, and (d) the tqb-Wbb channel. Signals are multiplied by ten.

correlations described by a covariance matrix. Finally, we compute the posterior probability density as a function of the production cross section.

The Bayesian posterior probability densities are shown in Fig. 3 for both the s-channel and t-channel searches. The corresponding upper limits at the 95% C.L. are 6.4 pb in the s-channel and 5.0 pb in the t-channel. The sensitivity of these measurements is given by the expected upper limits obtained by setting the observed number of events to the background prediction in each bin. The expected upper limits are 4.5 pb in the s-channel search and 5.8 pb in the t-channel search.

CONCLUSIONS

No evidence is found for electroweak production of single top quarks in 230 pb$^{-1}$ of data collected with the D0 detector at $\sqrt{s} = 1.96$ TeV. The data consist of events in the electron and muon final states with at least one b-tagged jet. We build binned likelihoods from the output of neural networks to set upper limits at the 95% C.L. The measured s-channel limit is 6.4 pb and the measured t-channel limit is 5.0 pb. These upper limits represent significant improvements over previously published results [3, 10, 11] due to the larger data set as well as the use of a multivariate analysis technique together with shape information from the resulting output distributions. They approach the region of sensitivity for models of physics beyond the standard model, such as a fourth quark-generation scenario or neutrino-changing neutral-currents [3].
\[\begin{align*}
&\sigma^t_{95} < 5.0 \text{ pb} \\
&\sigma^s_{95} < 6.4 \text{ pb}
\end{align*} \]

FIG. 4: The Bayesian posterior probability density as a function of the single top quark cross section for the s-channel and t-channel searches.

Acknowledgments

We thank the sta ff at Fermi Lab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); PPARC (United Kingdom); MSM T (Czech Republic); CRC Program, CFIN, NSERC and WESTGrid Project (Canada); BM BF and DFG (Germany); SFI (Ireland); Research Corporation, A lexander von Humboldt Foundation, and the Marie Curie Program.

[13] Pseudorapidity is defined as $\eta = \ln(\tan \theta)$, where θ is the polar angle with the origin at the primary vertex. Detector η-regions are defined by detector pseudorapidity η_{det}, which is calculated with the origin at the nominal center of the detector ($\eta = 0$).