Cosmological structure evolution and cmb anisotropies in dgp braneworlds

Oct, 2005
22 pages
e-Print:
Report number:
  • EFI-0518

Citations per year

2005200820112014201605101520
Abstract: (arXiv)
The braneworld model of Dvali, Gabadadze and Porrati (DGP) provides an intriguing modification of gravity at large distances and late times. By embedding a three-brane in an uncompactified extra dimension with separate Einstein-Hilbert terms for both brane and bulk, the DGP model allows for an accelerating universe at late times even in the absence of an explicit vacuum energy. We examine the evolution of cosmological perturbations on large scales in this theory. At late times, perturbations enter a DGP regime in which the effective value of Newton's constant increases as the background density diminishes. This leads to a suppression of the integrated Sachs-Wolfe effect, bringing DGP gravity into slightly better agreement with WMAP data than conventional LCDM. However, we find that this is not enough to compensate for the significantly worse fit to supernova data and the distance to the last-scattering surface in the pure DGP model. LCDM is, therefore, a better fit.