Another Look at Minimal Lepton Flavour Violation, $l_i \to l_j$, Leptogenesis and the Ratio $M = \frac{\text{LFV}}{\text{M}}$

Gustavo C. Branco, Andrzej J. Buras, Sebastian Jager, Selma Uhlig and Andreas Weiler

Abstract

We analyze lepton flavour violation (LFV), as well as generation of the observed baryon-antibaryon asymmetry of the Universe (BAU) within a generalized minimal lepton-flavour violation (M LFV) framework where we allow for CP violation both at low and high energies. The generation of BAU is obtained through radiative resonant leptogenesis (RRL), where starting with three exactly degenerate right-handed neutrinos at GUT, we demonstrate explicitly within the SM and the M SSM that the splittings between their masses at the seesaw scale M, generated by renormalization group effects, are sufficient for a successful leptogenesis for M even as low as 10^6 GeV. The inclusion of flavour effects plays an important role in this result and can lead to the observed BAU even in the absence of CP violation beyond the PMNS phases. The absence of a stringent lower bound on M in this type of leptogenesis allows to easily satisfy present and near future upper bounds on $e \to \mu \nu$ and other charged lepton flavour violating (LFV) processes even for $\text{LFV} = 0 (1\text{ TeV})$. We find, that the M LFV framework in the presence of heavy right-handed neutrinos and leptogenesis is not as predictive as M FV in the quark sector and point out that without a specific M LFV model, there is a rich spectrum of possibilities for charged LFV processes and for their correlation with low energy neutrino physics and the LHC physics, even if the constraint from the observed BAU is taken into account. While certain qualitative features of our analysis coincide with those of Cirigliano et al., at the quantitative level we find phenomenologically important differences. We explain the origin of these differences.
1 Introduction

One of the attractive and predictive frameworks for the description of flavour changing processes in the quark sector is the so-called Minimal flavour violation (M FV) hypothesis [1,2] in which the Standard Model (SM) quark Yukawa couplings are the only sources of flavour changing and in particular CP-violating processes.

If only one Higgs doublet is involved in the spontaneous breaking of the underlying gauge symmetry, all flavour changing charged and neutral current processes are governed in the M FV framework by the CKM matrix [4] and the relevant local operators are only those present in the SM. As demonstrated in [5], the existing data on $B^0_{d,s} \to \bar{B}^0_{d,s}$ mixing, θ_K, $B^0 \to X_s$, $B^0 \to X_s\pi^0$ and $K^+ \to \pi^+ \pi^{-} \pi^0$ and the value of the angle in the unitarity triangle from the mixing induced CP asymmetry in $B^0 \to K_s$ imply within this framework very stringent bounds on all rare K and B decay branching ratios. Consequently, substantial departures from the SM predictions are not expected if M FV with one Higgs doublet is the whole story.

If two Higgs doublets, like in the M SSM, are involved and the ratio of the corresponding vacuum expectation values $v_2/v_1 \tan \beta$ is large, significant departures from the SM predictions for certain decays are still possible within the M FV framework [2] in spite of the processes being governed solely by the CKM matrix. The most prominent examples are the decays $B_{d,s} \to \bar{\tau} \tau$, with a subset of references given in [3]. The prime reason for these novel effects is the appearance of new scalar operators that are usually strongly suppressed within the SM and M FV models at low $\tan \beta$, but can become important and even dominant for large $\tan \beta$. The improved data on $B_{d,s} \to \tau \tau$, expected to come in this decade from Tevatron and LHC, will tell us whether M FV models with large $\tan \beta$ are viable.

One of the important virtues of the M FV in the quark sector are the relations [1,7] between the ratios of various branching ratios and the CKM parameters measured in low energy processes that have universal character and are independent of the details of the specific M FV model. An example is the universal unitarity triangle common to all M FV models [1]. But also the fact that each branching ratio can be expressed in terms of the CKM parameters and quark masses measured at the electroweak scale or lower energy scales makes this scenario to be a very predictive framework. Moreover, neither

1 For earlier discussions of this hypothesis see [3].
ne tuning nor the introduction of unnaturally high scales of new physics are required to make this scenario consistent with the available data.

The MFV scenario in the quark sector in question, although simple and elegant, suffers from the following problem. In the absence of new complex phases beyond the CKM phase, it cannot accommodate the observed size of the baryon asymmetry of the universe (BAU) to be denoted by B in what follows. The question then arises whether one could still explain the right size of B within the MFV context by considering simultaneously the lepton sector, where the BAU can in principle be explained with the help of leptogenesis [8,9]. While this is the most natural possibility, other directions could be explored in principle.

Before addressing this question, let us summarize what is known in the literature about the MFV in the lepton sector. Last year, Cirigliano, Grinstein, Isidori and Wise [10] in an interesting paper formulated MFV in the lepton sector (MLFV) both with the minimal field content and with the extended field content, where three degenerate right-handed heavy neutrinos N_R with masses M^1 are added to the SM fields and the see-saw mechanism [11] is responsible for the generation of the light neutrino masses with the see-saw scale denoted by M in what follows. Analyzing charged lepton flavour violating (LFV) processes, like $\mu \to e$ and $\tau \to e$ processes in nuclei in these two scenarios in the absence of CP violation, they reached two interesting conclusions:

Measurable rates for LFV processes within MLFV are only obtained when the scale for total lepton number violation ($\varphi_{\text{LN}} = O(M^1)$) is by many orders of magnitude, typically a factor $10^7 \sim 10^9$, larger than the scale of charged lepton flavour violation (φ_{LFV}).

Similarly to MFV in the quark sector, the ratios of various LFV rates like $B(\mu \to e) = B(\tau \to e)$ are unambiguously determined in terms of neutrino masses and mixing angles measured in low energy processes.

Various phenomenological aspects of MLFV, as formulated in [10], have been subsequently discussed in [12].

The MLFV framework in [10] does not include CP violation, neither at low energy nor at high energy, being a necessary ingredient in the generation of the BAU. Moreover, possible renormalization group effects between the low energy scale $O(M_Z)$ and the high energy scales, like the see-saw scale M and the GUT scale GUT, have not been taken into account in [10]. It is then natural to ask:
whether a successful leptogenesis is at all possible within a M LFV framework in which flavour violation is governed solely by Yukawa couplings,

how the findings of[10] are modified, when CP violation at low and high energy and the renormalization group effects (RGE) in question are taken into account,

whether a successful leptogenesis in the M LFV framework puts stringent constraints on charged LFV processes.

The main goal of our paper is to answer these three questions. In fact, as we will demonstrate explicitly in Section 5, it is possible to obtain the correct size of B in the M LFV framework with three heavy right-handed neutrinos that are assumed to be degenerate in mass at GUT. Other choices for this scale could be considered but GUT seems to be the most natural one. The breakdown of this degeneracy through RGE, that are governed by Yukawa couplings, combined with new sources of CP-violation in the heavy neutrino sector allows to obtain the correct size of B in the framework of the resonant leptogenesis in particular when flavour effects are taken into account. As this type of leptogenesis is generated here radiatively and not by hand as done in most literature so far, we will call this scheme radiative resonant leptogenesis (RRL) in what follows.

The fact that within the M LFV framework one is naturally led to RRL, has significant implications on charged LFV processes, which could in principle be used to distinguish this scenario from other extensions of the SM. In particular, while other types of leptogenesis, with hierarchical right-handed heavy neutrinos, imply generally rather stringent lower bounds for the lightest ν mass, in the ballpark of $O(10^8 \text{ GeV})$ or higher, the values of M in RRL are allowed to be by many orders of magnitude lower. As the branching ratios for $\nu_i \to \nu_j$ are proportional to $M^2 = \frac{g^{\nu}_{\text{LFV}}}{4}$[10], it is relatively easy to satisfy the present and in the near future available upper bounds on these processes by simply choosing sufficiently small value of M. Conversely, by choosing M to be larger than say 10^{12} GeV, it is in principle possible to obtain the values of $B(\nu \to e)$ close to expected bounds from PSI even if ν_{LFV} is as high as 100 TeV. This means that non-observation of $\nu \to e$ with the rate 10^{-13} at PSI will not necessarily imply within the general M LFV framework that ν_{LFV} is very high. Conversely, the observation of $\nu \to e$ will not necessarily imply LFV physics at scales $O(1 \text{ TeV})$. In other words, without a specific M LFV model there is a rich spectrum of possibilities for charged LFV processes within the general M LFV framework, even if the constraint from B is taken into account.

Thus one of the main messages of our paper is the realization that the M LFV framework
in the presence of heavy right-handed neutrinos and leptogenesis is clearly not as predictive as M FV in the quark sector. This is also related to the fact that new physics, even lepton conserving one, that could be present between energy scales M_ν and M_π, could have in principle an important impact on various observables, like B ($\bar{l}_i j$), through RGE.

In the advanced stages of our project a paper by Cirigliano, Isidori and Porretti [13] appeared, in which the idea of the incorporation of leptogenesis into the M LFV framework has been put forward in the literature for the first time and its implications for charged LFV processes have been analyzed in detail. While in agreement with the general predictions of [13] we find that successful leptogenesis is possible for high scales $M \gtrsim 10^{12}$ GeV, and contrary to that paper our detailed numerical analysis demonstrates that this is also true for much lower scales, weakening the implications for charged LFV processes found in that paper. Most importantly we do not confirm the lower bound of 10^{12} GeV for M_ν found by these authors which has significant implications for charged LFV processes as stressed above. The inclusion of flavour effects in the leptogenesis in our paper, that has been left out in [13] and the use of approximate formulas in that paper as opposed to a full numerical analysis present here, brings in significant differences in these two analyses for $M_\nu \sim 10^{12}$ GeV. We will summarize the agreements and differences between [13] and us in Section 5.5.

At this stage it is worth also mentioning that there may be other equally reasonable definitions of M LFV. In this paper, we will only consider a conservative generalization of the initial proposal for M LFV [10]. However, it is clear that one may have other well motivated but different proposals for M LFV. In particular one should keep in mind that within the seesaw mechanism neutrinos acquire a mass in a manner which differs significantly from the one in the quark sector. In fact it has been suggested [14] that the fact that neutrino masses arise from the seesaw mechanism is the key point in understanding why lepton mixing is large, in contrast with small quark mixing. Therefore a reasonable definition of M LFV may differ from M FV in the quark sector. In our opinion, only in the presence of a theory of lepton flavour, where Yukawa couplings would be constrained by family symmetries, can one define in a unique way what M LFV should be. The question of different definitions of M LFV has been recently addressed in an interesting paper by Davidson and Palorini [15].

Our analysis involves several points and it is useful to list them one by one already at this stage.

As already stated above, in the framework of the M LFV the right-handed heavy
neutrinos are assumed to be degenerate in mass at some high energy scale in order to exclude possible new sources of flavour violation. However, the exact degeneracy of M^i is not RG invariant and can only be true at a single scale which we choose to be $\text{GUT} = 0 \left(10^{16} \text{ GeV}\right)$. RGE between GUT and the see-saw scale M_{GUT} break the degeneracy between M^i at M_Z, a welcome result for leptogenesis that vanishes in the limit of degenerate M^i. This structure is the basis of the so-called radiative leptogenesis \cite{16,17} that has been first considered in the case of two degenerate neutrinos in \cite{16,17,18}. An important ingredient of this framework is the resonant leptogenesis \cite{19,20,21}. Therefore we will call this framework RRL as stated above. Our analysis is one of the first that considers the case of three degenerate neutrinos and includes flavour effects in RRL.

As the values of the light neutrino masses and of the parameters of the PMNS mixing matrix \cite{22}, that enter the formulae for charged LFV processes, are not to be evaluated at the low energy scale but at the high energy scale M_{GUT}, the M LFV relations between neutrino masses, mixing angles and rates for charged LFV processes presented in \cite{10} can be in principle significantly modified through the RGE between the M_Z and M_{GUT} scales, changing the conclusions about the value of the ratio $M = M_{\text{LFV}}$ necessary to obtain visible charged LFV rates. While it is conceivable that in certain M LFV scenarios RGE could be neglected, the example of the MSSM with a large $\tan \beta$, presented in this context in \cite{23}, shows that the RGE in question could in principle modify $B(l_i \to l_j)$ by a few orders of magnitude.

The requirement of a successful BAU with the help of leptogenesis and in fact in general, necessarily brings into play CP violation. Neglecting flavour effects in the Boltzmann equations, the relevant CP violation is encoded in a complex orthogonal matrix R in the parameterization of Y by Casas and Ibarra \cite{24}. As analyzed already in several papers in the context of supersymmetric models, the size of the imaginary parts of R, crucial for generating the observed BAU in the framework of leptogenesis, can change the rates of charged LFV processes by several orders of magnitude. See, in particular \cite{25}, but also \cite{23,24,26,27,28,31,34}. We note that when flavour effects are important, the generation of the BAU could be possible without complex phases in R \cite{45,46}.

The inclusion of CP violation at low energy with the help of the non-vanishing phase $\text{PMNS} \left[22\right]$ has only a moderate impact on the results in \cite{10} but in the presence of a complex matrix R (see above) non-vanishing Majorana phases in the PMNS matrix can modify the results for LFV processes in \cite{10} both directly and
indirectly through RGE mentioned above. The numerical studies in [26,27,23] show that such effects can be in principle significant.

Our paper is organized as follows. In Section 2 we present the generalization of the formulation of M LFV given in [10] by including low energy CP violation in the leptonic sector with the help of the PMNS matrix [22] and the high energy CP violation necessary for the leptogenesis of BAU. The parametrization of the neutrino Yukawa coupling Y of Casas and Ibarra [24] turns out to be useful here.

In Section 3 we analyze the issue of the breakdown of the mass degeneracy of heavy neutrinos by radiative corrections. This breakdown is necessary for leptogenesis to work even if R is complex. Assuming then this scale to be the grand unification (GUT) scale, we discuss the renormalization group equations in the SM and the MSSM used to generate the splitting of M_ℓ at scales $O(M_Z),$ where the heavy neutrinos are integrated out. The results of this section are a very important ingredient of the leptogenesis that we consider in Section 4 and in particular in 5.

In Section 2 as a preparation for Section 5, we present some numerical aspects of theavour changing radiative charged lepton decays $l_i \rightarrow l_j$ and of the CP asymmetries in the right-handed neutrino decays.

In Section 5, the most important section of our paper, we describe the scenario of radiative resonant leptogenesis in the case of three quasi-degenerate right-handed Majorana neutrinos. In this context we include in our analysis recently discussedavour effects that definitely cannot be neglected. The main result of this paper is the demonstration that the right value of B can be obtained in this framework. A plot of B versus M demonstrates very clearly that already for M as low as 10^6 GeV leptogenesis becomes effective and thatavour effects are important. We compare our results with existing literature and explain why in contrast to [13] we do not find a stringent lower bound on M_A.

Finally, we return to the $l_i \rightarrow l_j$ decays and use the knowledge collected in Sections 2 and 5 to present a brief numerical analysis of these that illustrates the points made above. We restrict our analysis to $\tan \beta = 10$ so that RGE between M_Z and M are small and other effects can be transparently seen.

In Section 5.5 we compare our analysis and our results with [13]. We conclude in Section 6.
2 Basic Framework

2.1 Preliminaries

The discovery of neutrino oscillations provides evidence for non-vanishing neutrino masses and lepton mixing, leading to lepton–avour violation. In the SM, neutrinos are strictly massless, since Dirac masses cannot be constructed due to the absence of right-handed neutrinos, and left-handed Majorana masses are not generated due to exact (B L) conservation.

The simplest extension of the SM which allows for non-vanishing but naturally small neutrino masses, consists of the addition of right-handed neutrinos to the spectrum of the SM. This extension has the nice feature of establishing on the one hand a lepton quark symmetry and on the other hand being naturally embedded in a grand unified theory like SO(10). Since right-handed neutrinos are singlets under U(1) SU(2) SU(3), Majorana neutrino masses M R should be included, with a mass scale M which can be much larger than the scale v of the electroweak symmetry breaking. Apart from M R, Dirac neutrino mass terms m D are generated through leptonic Yukawa couplings upon gauge symmetry breaking. The presence of these two neutrino mass terms leads, through the seesaw mechanism [11], to three light neutrinos with masses of order v 2 =M and three heavy neutrinos with mass of order M. The decay of these heavy neutrinos can play a crucial role in the creation of a baryon asymmetry of the universe (BAU) through the elegant mechanism of baryogenesis through leptogenesis [8,9]. In the presence of neutrino masses and mixing, one has, in general, both CP violation at low energies which can be detected through neutrino oscillations and CP violation at high energies which is an essential ingredient of leptogenesis. The connection between these two manifestations of CP violation can be established in the framework of specific lepton–avour models.

In this paper, we study lepton–avour violation in this extension of the SM, assuming minimal lepton–avour violation (M LFV) but allowing for CP violation both at low and high energies. The case of no leptonic CP violation either at low or high energies, was considered in [10] where the suggestion of M LFV was first presented. The first discussion of CP violation at low and high energy in a M LFV framework has been presented recently in [13]. We will compare the results of this paper with ours in Section 5.5.
2.2 Yukawa Couplings and Majorana Mass Terms

We add then three right-handed neutrinos to the spectrum of the SM and consider the following lepton Yukawa couplings and right-handed Majorana mass terms:

\[L_Y = \bar{\psi}_E Y_L L \bar{Y}_R + h.c.: \] (1)

\[L_M = \frac{1}{2} c_R M_R R + h.c.: \] (2)

where \(Y_E, Y \) and \(M_R \) are 3x3 matrices in the lepton armour space. In the limit \(L_Y = L_M = 0 \) the Lagrangian of this minimal extension of the SM has a large flavour symmetry

\[SU(3)_L \times SU(3)_E \times SU(3)_R \times U(1)_L \times U(1)_E \times U(1)_R; \] (3)

which reflects the fact that gauge interactions treat all flavours on equal footing. This large global symmetry is broken by the Yukawa couplings \(Y_E, Y \) and by the Majorana mass terms \(M_R \). A transformation of the lepton fields:

\[L_L \to V_L L_L; \quad \psi_R \to V_R \psi_R; \quad R \to V_R R \] (4)

leaves the full Lagrangian invariant, provided the Yukawa couplings and the Majorana mass terms transform as:

\[Y \to Y^0 = V_R Y V_L^T; \] (5)

\[Y_E \to Y_E^0 = V_E Y_E V_L^T; \] (6)

\[M_R \to M_R^0 = V_R M_R V_R^T; \] (7)

which means that there is a large equivalent class of Yukawa coupling matrices and Majorana mass terms, related through (4)-(7), which have the same physical content.

The M LFV proposal [10] consists of the assumption that the physics which generates lepton number violation, leading to \(M_R \), is lepton flavour blind, thus leading to an exactly degenerate eigenvalue spectrum for \(M_R \), at a high-energy scale. As a result, in the M LFV framework, the Majorana mass terms break \(SU(3)_R \) into \(O(3)_R \).

2.3 Leptonic Masses, Mixing and CP Violations

Without loss of generality, one can choose a basis for the lepton fields, where \(Y_E \) and \(M_R \) are diagonal and real. In this basis, the neutrino Dirac mass matrix \(m_D = vY \) is an arbitrary complex matrix, therefore with nine moduli and nine phases. Three of these phases can be eliminated by a rephasing of \(L_L \). One is then left with six CP violating
phases. There are various classes of phenomena which depend on different combinations \(m_D, m_D^T, m_Y \) or equivalently \(Y, Y^T \) and \(Y^\gamma \):

A) Leptonic mixing and CP violation at low energies: Since we are working in the basis where the charged lepton mass matrix is diagonal and real, leptonic mixing and CP violation at low energies are controlled by the PMNS matrix \(U \), which diagonalizes the effective low energy neutrino mass matrix:

\[
U^\dagger (m)_{\text{eff}} U = d;
\]

where \(d = \text{diag}(m_1; m_2; m_3) \), with \(m_i \) being the masses of the light neutrinos and \(\text{diag} \).

\[
(m)_{\text{eff}} = v^2 Y^T D_R Y;
\]

where \(D_R \) denotes the diagonal matrix \(M_R \) and \(v = 174 \text{ GeV} \). In the case of \(M_{L-FV} \), \(D_R = M_L \) and one obtains at \(M_L \):

\[
(m)_{\text{eff}} = \frac{v^2}{M} Y^T Y;
\]

Consequently \(Y^T Y \) is the quantity that matters here.

B) Lepton avours violation: The charged LFV depends on the other hand on the combination \(Y Y^\gamma \) with \(Y \) again normalized at the high energy scale \(M \). We will return to this point in Section 4.

C) CP violation relevant for leptogenesis: The generation of BAU through leptogenesis starts by the production of a lepton asymmetry which is proportional to the CP asymmetry in the decays of heavy Majorana neutrinos. This CP asymmetry involves the interference between the tree-level amplitude and the one-loop vertex and self-energy contributions. It has been shown [30] that the CP asymmetry depends on the neutrino Yukawa couplings through the combination \(Y Y^\gamma \). Again as in classes A and B, \(Y \) is evaluated here at the scale \(M \). When avours effects in the Boltzmann equations become important, the non-summed products \((Y)_{jk}(Y)_{jk} \) corresponding to different lepton avours \(k \) can attain relevance.

2.4 An Useful Parametrization

In order to analyze in a systematic way the above phenomena and study the implied relations among low-energy lepton mixing data, lepton avours violation and leptogenesis in
different scenarios classified below, it is convenient to choose an appropriate parameterization for Y. We use the following parameterization (23) of the neutrino Yukawa couplings:

$$\left(\begin{array}{c} P \\ D_R \end{array} \right) Y = \frac{i}{\sqrt{2}} \left(\begin{array}{c} P \\ d \end{array} \right) U^y; \quad (11)$$

where R is an orthogonal complex matrix ($R^T R = R R^T = 1$), $d = \text{diag}(m_1, m_2, m_3)$ and $D_R = \text{diag}(M_1, M_2, M_3)$.

It is instructive to count next the number of independent parameters on both sides of (11). The left-hand side of (11) is an arbitrary 3×3 complex matrix with nine real parameters and six phases, since three of the initial nine phases can be removed by rephasing L_L. It is clear that the right-hand side of (11) also has nine real parameters and six phases. Indeed, R, d and U have each three real parameters and m are over R and U have in addition each three phases. We consider now the case where the right-handed neutrinos are exactly degenerate, i.e., $D_R = M \ 1$. We will show that three of the real parameters of R can be rotated away. Note that any complex orthogonal matrix can be parametrized as

$$R = \text{e}^{A_1 B_1} \text{e}^{A_2 B_2}; \quad (12)$$

with $A_1, 2$ real and skew symmetric. Now in the degenerate case an orthogonal rotation of R leaves the Majorana mass proportional to the unit matrix and defines a physically equivalent reparametrization of the fields R. Choosing $O_R = \text{e}^{A_1}$ we see immediately that

$$Y = O_R^Y \left(\begin{array}{c} P \\ M \end{array} \right) \text{e}^{A_1} \left(\begin{array}{c} P \\ d \end{array} \right) \text{e}^{A_2} \left(\begin{array}{c} P \\ U^y \end{array} \right) \; (13)$$

which shows that the physically relevant parameterization is given by $R_{\text{deg}} = \text{e}^{A_2}$.

Using the parameterization in (11) one nds that the matrix Y^TY which controls low-energy CP violation and mixing can be written as follows

$$Y^TY = \frac{1}{v^2} (U^y)^T \left(\begin{array}{c} P \\ d \end{array} \right) D_R R \left(\begin{array}{c} P \\ d \end{array} \right) U^y = \frac{M}{v^2} (U^y)^T d U^y; \quad (14)$$

where in the last step we have set $D_R = M \ 1$.

On the other hand, the matrix Y^Y which controls charged LFV, can be written as follows (see also [31])

$$Y^Y = \frac{1}{v^2} U \left(\begin{array}{c} P \\ d \end{array} \right) R^y D_R R \left(\begin{array}{c} P \\ d \end{array} \right) U = \frac{M}{v^2} U \left(\begin{array}{c} P \\ d \end{array} \right) R^y R \left(\begin{array}{c} P \\ d \end{array} \right) U; \quad (15)$$

Finally, the matrix Y^Y which enters in leptogenesis when flavor effects are not relevant is given by (see also [31]):

$$Y^Y = \frac{1}{v^2} P \left(\begin{array}{c} D_R \\ R \end{array} \right) R \left(\begin{array}{c} P \\ D_R \end{array} \right) = \frac{M}{v^2} R \left(\begin{array}{c} R \end{array} \right); \quad (16)$$
We note that Y^TY depends only on U and d, while YY^y relevant for the leptogenesis only on d and R. This means that CP violation at low energy originating in the complex U and the CP violation relevant for leptogenesis are then decoupled from each other and only the mass spectrum of light neutrinos summarized by d enters both phenomena in a universal way.

In this respect the charged LFV, represented by (13), appears also interesting as it depends on d, U and R and consequently can also provide an indirect link between low energy and high energy CP violations and generally a link between low and high energy phenomena.

2.5 Classification

Having the parametrization of Y in (11) at hand we can now spell the difference between the analysis of (10) and ours in explicit terms. Indeed, from the above considerations, it follows that possible relations among phenomena A, B, C, discussed in Section 2.3, crucially depend on the assumptions one makes about leptonic CP violation at low energies, as well as at high energies. One may consider then separately the following four scenarios:

Case 1: No leptonic CP violation either at low or high energies. The limit that all complex phases vanish leads to

$$Y^TY = Y^yY$$

This is the case considered in (10), where a close connection is obtained between experimental low energy data on lepton mixing and the pattern of various charged LFV processes, that is the correlation between phenomena A and B in the absence of CP violation. It corresponds to choosing R and U real. However, even in this case the scale at which the lepton neutrino masses and mixings are measured and the scale at which Y is evaluated could have an impact on the correlation in question.

Case 2: Leptonic CP violation at low energies, but no CP violation relevant for leptogenesis (barringavour eects). This corresponds to assuming that the leptonic mixing matrix U contains CP violating phases so that Y^TY is complex, but YY^y is real or equivalently as seen in (16) R is real.

Case 3: CP violation relevant for leptogenesis but no low energy leptonic CP violation. This corresponds to having YY^y and R complex, but U real.
Case 4: There is leptonic CP violation both at low and high energies, that is both U and R are complex quantities. It should be stressed that Case 4 is of course the general case and, in fact, the most "natural" one, since once CP is violated by the Lagrangian the six CP violating phases contained in m_D lead in general to CP violation both at low and high energies.

2.6 Final Remarks

It is clear that [15], depending on U, R, d and M enables one to analyze separately the four cases considered here. In each case there will be simultaneously implications for lepton flavour violations, leptogenesis and low energy CP violation and mixing with certain correlations between them. These correlations can be affected by RGE between the low energy scale and M. At this stage the following comments are in order:

- U is relatively well known from oscillation experiments with the exception of s_{13}, the phase and the Majorana phases and . In order to use it for the calculation of Y it has to be evolved by RGE equations to M.

- With the measured two mass differences squared from solar and atmospheric oscillation data, the diagonal matrix d is a function of a single parameter that we choose to be the mass of the lightest neutrino. Again these parameters have to be evaluated at the scale M with the help of renormalization group techniques.

- The matrix R depends on three complex parameters that influence simultaneously lepton flavor violation and leptogenesis as seen in [15] and [16], respectively. Some constraints on R can then be obtained from these two phenomena but a complete determination of this matrix is only possible in an underlying theory represented usually by special texture zeros of Y.

- Finally, M can be restricted from the BAU in the context of the seesaw mechanism and if the eigenvalues of the right-handed neutrino matrix D_R are hierarchical, the absolute lower bound on the lowest M_1 is $O(10^8)$ or even higher. In the case of the M LFV considered here the right-handed heavy neutrinos have to be quasi-degenerate in order to avoid new flavour violating interactions. In this case BAU can be explained with the help of RRL which combines the resonant leptogenesis considered in [20,21] and radiative leptogenesis [13,17,18]. The lower bound on M can be significantly lowered in this case, as we will see explicitly below.
3 Radiative corrections in M LFV

3.1 Preliminaries

Our M LFV scenario defined in the previous section contains no free parameters beyond the neutrino masses, the PMNS matrix, a matrix of form R_{deg}, an initial, universal heavy Majorana neutrino mass, and perhaps additionalavour-blind parameters that depend on the M LFV model. The rates for charged leptonavour violation thus follow upon computing radiative corrections due to the degrees of freedom between the scales M_Z and G_{UT}, and with suitable washout factors also the baryon asymmetry B.

In this section we investigate how the CP-andavour-violating quantities relevant to leptogenesis and charged leptonavour violation, respectively, are radiatively generated. Since leptogenesis in the present framework can be considered as a generalization of the setup with two heavy singlets in [18] to the case of three degenerateavour spaces, we will also clarify what novelties arise in this case. This will be important in comparing our results to the existing literature.

An important point will be that, due to the hierarchy between the GUT/avour-breaking scale G_{UT} and the neutrino mass scale M, large logarithms appear such that the parameter counting for the coefficients c_i ofavour structures that has been recently presented in [13] should be modified. Rather than being independent, the coefficients of structures containing different powers of Yukawa matrices are related by the renormalization group, while any additional independent effects are suppressed. Although this fact in principle increases the predictivity of M LFV, in our phenomenological sections it will still turn out insufficient to have correlations between high-scale and weak-scale observables.

3.2 M LFV with a degeneracy scale

We have defined our M LFV scenario to have a scale at which the masses of the right-handed neutrinos are exactly degenerate, such that the matrix M_R has noavour structure at all. In general, there will be additionalavour particles in the theory. As a specific example, we consider the M SSM. Here the N_i are accompanied by heavy sneutrinos \tilde{N}_i, and there are also SU(2) doublet sleptons \tilde{l}_i, transforming as

\[
\tilde{l}_i \sim V_L \ell_i, \quad N^c_i \sim V_R \tilde{N}^c
\]

(18)
under the transformation (4). The Lagrangian then contains soft SUSY breaking terms

\[L_{\text{soft}} = N_i^2 m^2_{ij} N_j^2 \sum_l m^2_{ij} \delta_{ij} + \cdots; \quad (19) \]

where the ellipsis denotes further scalar mass matrices and trilinear scalar interactions. In general, all mass matrices in \(L_{\text{soft}} \) have non-minimal flavour structure. The simplest generalization of our degenerate scenario is then to extend the requirement of exact degeneracy to all mass matrices, similar to m in all supergravity. To be specific, we require all scalar masses to have the same value \(m_0 \) at the high scale and also require the A-terms to have the m SUGRA form \(A = aY \) with \(Y \) the corresponding Yukawa matrix and \(a \) a universal, real parameter of the theory. This example also provides us with a concrete value for the scale \(m_{\text{LFV}} : \) LFV processes such as \(l_i \to l_j \) are mediated by loop diagrams involving sleptons and higgsinos or (weak) gauginos, and unless gaugino masses are very large, the scalar particles such as \(\tilde{l}_i \) decouple at a scale \(m_0 \). Hence the operators governing charged LFV are suppressed by powers of \(m_0 \). As in the case of the heavy Majorana masses, the generalized degeneracy requirement is not stable under radiative corrections, and for the same reason it is not renormalization scheme independent.

3.3 Radiatively generated flavour structure and large logarithms

As we will be discussed in detail in the following section, the CP asymmetries necessary for leptogenesis require mass splittings between the decaying particles. The decaying particles are on their mass shell, but the degenerate initial conditions are usually specified in a massless scheme \((\text{MS to be definite} \ [32]) \).

At one loop, the two mass definitions are related by a formula of the structure

\[M_{i \text{MS}} = M_{\frac{\text{GUT}}{1}} + c_i (\text{non-logarithmic corrections}) \]

where \(M_{\frac{\text{GUT}}{1}} \) is the renormalization scale, \(c_i = 2(Y Y)_{i\ell} = (16 \^2) \) in the standard-model seesaw, and the non-logarithmic corrections depend on our choice of massless (or any other) renormalization scheme. The resulting scheme dependence cannot be present in physical observables such as the BAU. Since this issue is usually not discussed in the literature on lepton flavour violation, let us elaborate on how it may be resolved.

First, notice that while the non-logarithmic terms in (20) are scheme dependent, the logarithmic corrections proportional to \(c_i \) are actually scheme independent. If \(\ln \frac{\text{GUT}}{m} = m \)

\[\text{We follow the treatment of [20,21] (see also [42]), where some terms on the-shell masses are replaced by their alm masses. (We will employ zero-tem perature masses.)} \]

\[\text{This is likely appropriate if the degeneracy is true to some extent of an underlying theory, relating high-energy Lagrangian parameters and broken at the scale \(\text{GUT} \).} \]
1, the logarithmic terms must be considered $O(1)$ and summed up to all orders. This is achieved in practice by solving renormalization group equations. Similar resummations must be performed for all other parameters in the theory (such as Yukawa couplings). Correspondingly, the dominant higher-loop corrections to LFV observables and leptogenesis are approximated by using leading-order expressions with one-loop RG-E-improved Yukawa couplings and masses. This is the leading-logarithmic approximation. Nonlogarithmic corrections such as those indicated in (20) are then sub-leading and should be dropped.

What happens when the logarithms are not large is the following. If the M LFV framework is an effective theory for some fundamental theory where the degeneracy is enforced by aavour symmetry, for instance the group (3), then the degeneracy holds in any scheme (that respects the symmetry) in the full theory and the scheme dependence observed in (20) must be due to unknown threshold corrections in matching the underlying and effective theories. Since theavour symmetry in M LFV, by definition, is broken precisely by the Yukawa matrices, this matching introduces all possible terms that are invariant under transformations (4, 5, 6, 7). A list of such structures has recently been given in [13], for instance,

$$\begin{align*}
M_R &= M \cdot (1 + c_1 (Y Y^T + (Y Y)^T) + c_2 (Y Y^T Y Y^T + (Y Y Y Y^T)^T) + \ldots) \quad (21)
\end{align*}$$

The coefficients c_1 and c_2 have been claimed by these authors to be independent $O(1)$ coefficients. Indeed these terms contain only non-logarithmic terms and (small) decoupling logs when M_R is taken in the MS scheme, renormalized near the GUT (matching) scale.

However, when computing the (physically relevant) on-shell M_R in the case of GUT M, large logarithms dominate both c_1 and c_2. The leading logarithmic contributions are not independent, but are related by the renormalization group. c_2 is quadratic in $\ln \text{GUT}=M$, while c_1 is linear, and the RG-E for M_R implies $c_2 j^2 = \frac{1}{2} [c_1 j]^2$. These logs are summed by RG-evolving M_{MS} to a scale M. The additional conversion to on-shell masses is then again a sub-leading correction.

Finally, we note that if there is no underlying symmetry, the degeneracy condition can again be true at most for special choices of scheme/scale, and must be fine-tuned.

Numerically, the logarithms dominate already for mild hierarchies $\text{GUT}=M > 10^2$, as then $2 \ln \text{GUT}=M > 10$. Let us now restrict ourselves to hierarchies of at least two orders of magnitude and work consistently in the leading-logarithmic approximation. As explained above, in this case non-logarithmic corrections both of the threshold type (in the coefficients c_1 in (21) and in physical quantities (on-shell masses, CP asymmetries,
etc.) are sub-leading and should be dropped. In this regard our apparently \"special\" framework of initially degenerate heavy neutrinos turns out to be the correct choice at leading-logarithmic order.

Finally we recall that the positions of the poles of the N_i two-point functions contain an imaginary part related to the widths of these particles. While not logarithmically enhanced, these are also scheme-independent at one loop (as the widths are physical), and it is unambiguous to include them in applications. In fact, these widths effects are often numerically important for the CP asymmetries in N_i decay [20, 21], and we will keep them in our numerical analysis.

3.4 Renormalization-group evolution: high scales

For the running above the seesaw scale the relevant renormalization-group equations have been given in in [51] (in particular, last paper) for the SM and MSSM seesaw models. As the physical quantities studied below, such as lepton CP asymmetries, involve mass eigenstates, it is convenient to keep the singlet mass matrix diagonal during evolution (see, e.g., Appendix B of [52]):

$$M_R(\tau) = \text{diag}(M_1(\tau); M_2(\tau); M_3(\tau));$$

Defining

$$H = Y \bar{Y};$$

and

$$t = \frac{1}{16} \ln (\tau = \text{GUT});$$

one obtains for the mass eigenvalues in the SM with right-handed neutrinos:

$$\frac{dM_i}{dt} = 2H \mu_{M_i} \quad \text{(no sum)};$$

Note that due to the positivity of the right-hand side of [24], the running will always decrease the masses when running from the GUT to the seesaw scale.

The matrix H satisfies the RG Es

$$\frac{dH}{dt} = [\mathcal{T}; H] + 3H^2 + 3YY^\dagger YY^\dagger + 2H \quad \text{(SM)};$$

$$\frac{dH}{dt} = [\mathcal{T}; H] + 6H^2 + 2YY^\dagger YY^\dagger + 2H \quad \text{(MSSM)};$$
where
\[T = \text{Tr}(Y^TY) + \text{Tr}(Y_u^TY_u) + 3\text{Tr}(Y^TY_u) + 3\text{Tr}(Y_d^TY_d) \]
\[= \frac{9}{20}g^2 - \frac{9}{4}g^2 \quad \text{(SM)}; \quad (27) \]
\[= \text{Tr}(Y^TY) + 3\text{Tr}(Y_u^TY_u) + \frac{3}{5}g^2 \quad \text{(M SSM)}; \quad (28) \]
\[T_{ij} = \begin{cases}
\frac{M_{ij} + M_{ji}}{M_{ij} + M_{ji}} R_{ij} H_{ij} + \frac{M_{ij} + M_{ji}}{M_{ij} + M_{ji}} \text{Im} H_{ij} & \text{(i, j)} \quad \text{(SM)}; \\
0 & \text{(i = j)}; \quad (29) \end{cases} \]
and GUT normalization has been employed for \(g_1 \). The matrix \(T \) satisfies \(U = T U \),
where \(M_R(0) = U(0)M_R(0)U(0) \) and \(M_R(0) \) satisfies the unconstrained RGEs given in \((31) \). Note that \(M_R \) is real and has trivialavour structure. Note the different relative signs in \((25) \) and \((26) \); we will return to this point below.

We now turn to a qualitative analysis of these equations and their impact on leptogenesis andavour violation. Ignoringavour effects in the Boltzmann evolution of charged leptons, the baryon asymmetry \(B \) is approximately proportional to the combinations
\[\text{Im} (H_{ij})^2 = 2R_{ij} \text{Im} H_{ij} (i \neq j), \]
evaluated in the mass eigenbasis. At the scale \(M_\text{GUT} \),
degeneracy of \(M_R \) allows the use of an SO(3) transformation to make the o-diagonal elements of \(R H \) vanish. As explained above, we should RG-evolve all parameters to the scale \(M \) to avoid large logarithms. Let us first consider the form allim of vanishing charged lepton Yukawa couplings \(Y_L \) for the SM case. It is instructive to split \((25) \) into real and imaginary parts. The former satisfies
\[\frac{d(R H)}{dt} = [R T; R H] + 3 \left(R H \right)^2 + 2 R H; \quad (30) \]
To investigate how a nondiagonal \(R H \) can be generated radiatively, assume that it is zero at some scale (initial or lower). Then \((30) \) reduces to
\[\frac{d(R H)}{dt} = [R T; R H] + 3 \left(R H \right)^2; \quad (31) \]
\(\text{(At t = 0, an extra term proportional to the o-diagonal part of } (R H)^2 \text{ appears on the right-hand side of } (31). \) Now evaluate this for the \((2;1) \) element and notice that \(T_{ij} = 0 \) and \(\text{Im} H_{ij} = 0 \) for \(i = j \). If there were only two heavy singlets in the theory, each term in each matrix product would require one \((2;1) \) element and one \((1;1) \) or \((2;2) \) element from the two matrix factors. For example,
\[(\text{Im} T \text{Im} H)_{21} = \text{Im} T_{21} \text{Im} H_{11} + \text{Im} T_{21} \text{Im} H_{21} = 0; \quad (32) \]
\(\text{(To see this, notice that } H \text{ is hermitian, so } R H \text{ is real symmetric. That is, it can be diagonalized by a real orthogonal (and hence unitary) transformation of the right-handed neutrinos. Now if all three neutrinos are degenerate, such a rotation affects no term in the Lagrangian besides } Y \).
and similarly for the other terms. Consequently,

\[\text{Re} H_{21} = 0 \quad \Rightarrow \quad \frac{d\text{Re} H_{21}}{dt} = 0; \quad (33) \]

We see that there is no radiative leptogenesis in the two-avoir case when \(Y_E = 0 \). This is consistent with the approximate equation (12) in [18], where \(\text{Re} H_{21} \) was found to be proportional to \(y^2 \). It is easy to see that the argument breaks down in the three-avoir case. For instance,

\[((\text{Im} H)^2)_{21} = \text{Im} H_{21} \text{Im} H_{11} + \text{Im} H_{22} \text{Im} H_{21} + \text{Im} H_{23} \text{Im} H_{31} = \text{Im} H_{23} \text{Im} H_{31}; \quad (34) \]

which is in general not zero. The other terms in (31) are also proportional to \(\text{Im} H_{23} \text{Im} H_{31} \). We see that three generations of heavy neutrinos are necessary and sufficient to generate leptogenesis without help from charged lepton Yukawas.

Once we restore the charged lepton Yukawas, they will also contribute. The important qualitative difference is that, whereas the contribution involving the charged-lepton Yukawas is only logarithmically dependent of the seesaw scale (as seen in eqs. [58]–[60] below for the two-avoir case, or from [21] for the three-avoir case), the pure \(Y \) contribution to the radiatively generated \(\text{Re} H_{ij} \) scales with \(M \) because it contains two extra powers of \(Y \) as observed in the three-avoir scenario studied in [13].

In summary, we expect the following qualitative behavior for the BAU as a function of \(M \) :

For small \(Y \) (small \(M \)), the dominant contribution to \(\text{Re} H_{ij} \) and hence to \(B \) should be due to \(Y_E \). \(B \) turns out to be weakly dependent on \(M \).

For large \(Y \) (large \(M \)), in the three-avoir case there is a relevant contribution proportional to \(((\text{Im} H)^2)_{ij} \). Since it contains two extra powers of \(Y \), with respect to the contribution proportional to \(y^2 \), \(B \) scales linearly with \(M \).

In the case of only two heavy avours, \(B \) is weakly dependent on \(M \) over the whole range of \(M \). We will therefore include an \textit{effective} two-avoir scenario in our numerical analysis.

Let us stress that we reached these qualitative conclusions only upon neglecting avour effects in the Boltzmann evolution of the products of the \(N_1 \) decays. We will return to these points in Section 4 and in Section 5, where we perform a detailed quantitative analysis.

Finally, let us brie\'ly discuss \(l_i \! - \! l_j \). In M LFV these radiative lepton decays are governed by \(\bar{l}_i Y^T Y \) (and structures involving more powers of Yukawa matrices).
In the case of the SM, the rates are known to be essentially zero due to a near perfect GIM cancellation among the tiny neutrino masses. From the point of view of M LFV, this smallness can be traced to the fact that, in the SM, the LFV scale is equal to the LNV scale M.

On the other hand, in the more generic case of the MSSM, there are additional contributions mediated by slepton-higgsino or slepton-gaugino loops suppressed only by a scale m_{LFV} of order TeV, as discussed in Section 3.2. Linearizing the RG evolution, the charged slepton soft mass matrix acquires the form [50]

$$m^2_i(M) = m^2_{11} \frac{Y^2 Y}{16} (6m^2_0 + 2a^2_0) + \cdots;$$

where the dots denote terms governed by charged lepton Yukawa couplings Y_E or conserving lepton flavour. Note that the flavour structure in the soft terms is generated at a high scale and that, unlike the case of CP asymmetries in N_1 decay, the necessary flavour structure is already present at the initial scale GUT. Hence the RG evolution of m merely gives a correction. Note also that there is dependence on the M LFV model beyond the choice of LFV scale due to the (in general unknown) RG E coefficients in (the relevant analog of) (35).

3.5 RGE evolution below M : PMNS matrix and ij

So far we have ignored renormalization effects in equations such as (11), identifying d and U with the physical (light) neutrino masses and mixing matrix, while the objects Y and D_R are defined at a high scale. However, to be orthogonal the matrix R has to be defined with all objects given at the same scale. Now it is well known that using low-energy inputs in d can be a bad approximation because there are significant radiative corrections between the weak and GUT scales. However, as investigated in [52], both in the SM and in the MSSM with small $\tan \beta$ the main effect below M is an approximately universal rescaling of the light neutrino masses. This results in larger magnitudes of the elements of Y extracted by means of (11) but in a weak running of the matrix U. Above the scale M, even though the heavy singlets are now dynamical, one can still define an effective neutrino mass matrix through the seesaw relation (3). However, the evolution becomes involved, as in the presence of heavy singlets there are additional contributions to the running involving Y. To deal with this situation, where some of our inputs are specified at the weak scale, while the matrix R_{deg} is defined at the scale GUT, we employ an iterative procedure detailed in Appendix A. As was the case for the evolution above M, also the RGE effects below M, and consequently the relation of e.g. $Y Y$ to the input parameters necessarily depends on the details of the M LFV model.
4 Numerical Analysis: $B(l_i \rightarrow l_j)$ and CP asymmetries in R decay

4.1 Preliminaries

For our numerical analysis we take our input parameters at the weak scale, except for the matrix R_{deg}, which has to be defined at the scale GUT. From these inputs we find a consistent set of parameters at the seesaw scale M, where the CP asymmetries as well as $B(l_i \rightarrow l_j)$ are calculated, through the iterative procedure given in Appendix A. For the running we use the package REAP [53].

For the PMNS matrix we use the convention:

$$
U = \begin{pmatrix}
0 & c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\theta_1} \\
0 & s_{12}c_{23} & c_{23}s_{13}e^{i\theta_2} & c_{12}c_{23} \\
s_{12}c_{23} & s_{23}s_{13}e^{i\theta_2} & s_{3}c_{12} & s_{23}c_{13} \\
s_{12}s_{23} & c_{23}s_{13}e^{i\theta_2} & c_{3}c_{12} & c_{23}c_{13}
\end{pmatrix} \quad V \tag{36}
$$

and $V = \text{Diag}(e^{i\phi_1}; e^{i\phi_2}; 1)$ where ϕ_i denote the Majorana phases and ϕ denotes the Dirac phase. We parameterize the complex orthogonal matrix R as follows:

$$
R = \begin{pmatrix}
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 1
\end{pmatrix}
\tag{37}
$$

with $s_{ij} = \sin \theta_{ij}$, with θ_{ij} in general complex:

$$
\theta_{ij} = x_{ij} + iy_{ij} \tag{38}
$$

In the degenerate case, the angles x_{ij} can be made to vanish by a redefinition of the right-handed neutrinos, i.e. a matrix of the form R_{deg} is parameterized by three real numbers y_{ij}.

In the following, we use maximal atmospheric mixing $c_{23} = s_{23} = \frac{1}{\sqrt{2}}$ and a solar mixing angle $\theta_{sol} = 33^\circ$ with corresponding values for its sines s_2 and cosines c_2. For the sine of the CHOOZ angle s_{13} and the phases we allow the ranges

$$
0 < s_{13} < 0.25; \quad 0 < \phi_i < 2 \pi \tag{39}
$$

and for the light neutrinos we use the low energy values

$$
\begin{align*}
 m_{\text{sol}}^2 &= m_2^2 = 8.0 \times 10^5 \, \text{eV}^2 \\
 m_{\text{atm}}^2 &= m_3^2 = 2.5 \times 10^6 \, \text{eV}^2
\end{align*} \tag{40}
$$

and

$$
\begin{align*}
 m_1^2 &= 8.0 \times 10^5 \, \text{eV}^2 \\
 m_2^2 &= 2.5 \times 10^6 \, \text{eV}^2
\end{align*} \tag{41}
$$
with $m_{\text{lightest}} = m_1(m_3)$ for normal (inverted) hierarchy, respectively. See [33] for a detailed discussion of the neutrino masses and mixing. For the heavy neutrino mass scale, we consider a wide range

$$10^6 \text{ GeV} < M < 10^{14} \text{ GeV};$$

and the CP violating parameters y_{ij} are all taken in the range $[1;1]$ if not otherwise stated.

4.2 Perturbativity bounds

In the M LFV framework the magnitudes of the Yukawa couplings Y are very sensitive to the choice of M, m_{lightest} and the angles in the matrix R_{deg}, as is evident from [11]. To render the framework perturbative, we impose the constraint

$$\frac{y_{\text{max}}^2}{4} < 0.3;$$

where y_{max}^2 is the largest eigenvalue of Y^TY. By means of (15), it translates into a bound on $R^TYR = R^2$ and the angles y_{ij} that scales with M^{-1} and hence is most severe for a large lepton-number-violating scale. Analogous bounds apply to other dimensionless couplings whose number depends on the precise M LFV model. For instance, in the SM there is also the Higgs self-coupling $\frac{1}{2}H^2$, whereas in the M SSM there is no such additional coupling.

4.3 Lepton Flavour Violation and $l_i \leftrightarrow l_j$

Following Cirigliano et al. [10] we consider the normalized branching fractions defined as

$$B(l_i \leftrightarrow l_j) = \frac{\langle l_i \mid l_j \rangle}{\langle l_i \mid l_j \rangle};$$

where $\langle l_i \mid l_j \rangle$ is the true branching ratio and $r_e = 10$, $r_e = 5.61$ and $r = 5.76$. Assuming the heavy right-handed neutrinos to be degenerate but not making the assumptions of $R = 1$ and U being real as done in [10], the straightforward generalization of (29) in [10] is

$$B(l_i \leftrightarrow l_j) = 384 \, \varepsilon^2 \frac{V_{\text{LFV}}^4}{4} \, y_{ij} \, f_i \, f_j;$$

where

$$\begin{align*}
0 & \quad m_{\text{lightest}} \quad 0.2 \, \text{eV} \\
\end{align*}$$

(42)
Here \(v = 174 \text{ GeV} \) is the vacuum expectation value of the SM Higgs doublet. \(\mu_{\text{LFV}} \) is the scale of charged lepton flavour violation, and \(C \) summarizes the Wilson coefficients of the relevant operators that can be calculated in a given specific model. They are naturally of order 1 but can be different in different MFV models. As we would like to keep our presentation as simple as possible, we will set \(C = 1 \) in what follows, bearing in mind that in certain scenarios \(C \) may differ significantly from unity. Thus the true branching ratios \(B(l_i \to l_j) \) can be different from our estimate in a given MFV model, but as \(C \) is, within MFV, independent of external lepton flavour, the ratios of branching ratios take a very simple form

\[
\frac{B(l_i \to l_j)}{B(l_m \to l_n)} = \frac{\mathcal{F}_{ij}}{\mathcal{F}_{mn}};
\]

which in the limit of \(R = 1, D_R = M \), and \(U \) being real reduce to \(\mathcal{F}_{ij} \) as given in (14) of [10].

With the formula (48) at hand we can generalize the expressions for \(\mathcal{F}_{ij} \) in (24) of [10] to the general case of complex \(R \) and \(U \). To this end we will use the standard parametrization of the PMNS matrix \(U \) in (36) and the parametrization of \(R \) in (37). As the general expressions for \(\mathcal{F}_{ij} \) in terms of \(x_{ij} \) and \(y_{ij} \) are very complicated, we give in Appendix B explicit formulae setting all \(x_{ij} = y_{ij} = 0 \) except for \(y_{12} \neq 0 \). We will discuss in our numerical analysis also the cases for which \(y_{13} \) and \(y_{23} \) are non-vanishing. As mentioned above, setting \(x_{ij} = 0 \) is in accord with the degeneracy of the right-handed neutrinos. Once this degeneracy is broken by RG effects, the \(x_{ij} \) become non-zero.

Recall from Section 3 that \(\mathcal{F}_{ij} \) evolves above the scale \(M_L \) and the flavour structures at scales, such as the slepton mass matrix \(m^2 \), also evolve between \(M_L \) and \(\mu_{\text{LFV}} \) (and the resulting effective operators below \(\mu_{\text{LFV}} \) also evolve). Moreover, the flavour-violating piece in, for example, \(m^2 \) is not exactly proportional to \(\mu_{\text{LFV}} \) at the scale \(M_L \) beyond leading order because these objects satisfy different RGEs between \(M_L \) and \(\mu_{\text{GUT}} \). All this running depends, beyond the operator, also on the details of the model. Below the seesaw scale the flavour-non-universal contributions are governed by \(Y_E \) (although trilinear couplings such as the A-terms in the MSSM can also contribute), which is analogous to the case of the PMNS matrix. Based on the experience that the running of

\[v^5 = \frac{P}{v_1^2 + v_2^2} \text{ for two-Higgs-doublet models such as the MSSM. Powers of sin} \text{ can be absorbed into C or into a redefinition of} \; \mu_{\text{LFV}}. \]
Figure 1: Double ratios of $l_i \leftrightarrow l_j$ for the MSSM with $\tan \beta = 2$. Left plot: All parameters varied, right plot: no phases and only $y_{12} \neq 0$. For a discussion, see the text.

...
Figure 2: Impact of iterative vs simplified procedure. Left plot: Simplified result for the ratio of branching ratios $B(\mu \rightarrow e\gamma)/B(\tau \rightarrow \mu\gamma)$, normalized to the one obtained with the iterative procedure. Right plot: Similarly for Δ_{12}.

It is also interesting to compare our elaborate iterative procedure of matching high- and low-energy parameters to a simpler procedure where we simply impose the weak-scale PMNS and neutrino mass parameters at the scale GUT (Fig. 2 (left)), corresponding to the MSSM with $\tan \beta = 2$. It turns out that both procedures agree well for small scales M. (This agreement is slightly worse for $\tan \beta = 10$.) For large values $M > 10^{11} \text{GeV}$, deviations up to a few orders of magnitude can occur for some choices of parameters. It appears that this is usually due accidentally small branching ratios in one of the approaches. This is supported by the right plot in the Fig. 2, which shows a good agreement for the more fundamental flavour-violating quantity Δ_{12} up to the (expected) different overall normalization.

4.4 CP asymmetries

We are also in a position to illustrate and check numerically our qualitative discussion in Section 3 of the CP asymmetries relevant for leptogenesis. A thorough investigation of the baryon asymmetry follows in the next section. Fig. 2 shows the sum of the three CP asymmetries j_{ij} defined below (50), for the generic three-flavour case (left plot) and the CP asymmetry Δ_{12} for the effective two-flavour case where only $y_{12} \neq 0$ (right plot). One can see clearly that in the latter case the dependence on M is weak and slightly reciprocal. In fact this dependence is approximately proportional to $\ln^2 \text{GUT} = M$ (black solid line) in agreement with expectations. The generic case is shown in the left plot for the SM (black solid) as well as the MSSM for $\tan \beta = 2$ (red dot-dashed) and $\tan \beta = 10$ (blue dotted), with the remaining parameters given in the Figure caption. In contrast
to the two-avour case, there is strong dependence on \(M \) for \(M > 10^{12} \) GeV, when the contribution due to \(Y \) alone starts to dominate the RGEs (25, 26). The precise form of the \(M \) dependence is quite sensitive to the \"angles\" \(y_{ij} \), but the roughly linear growth of \(j_{P_{i}j} \) in the regime of large \(M \) appears to be general. However, the figure also clearly shows a strong dependence on the MSSM parameter \(\tan \beta \) particularly for small \(M \). Indeed already for relatively small \(\tan \beta = 10 \) the CP asymmetries can be more than an order of magnitude larger than in the SM. Moreover, in the case of the MSSM we observe a sign change at some scale \(M > 10^2 \) GeV, which can be traced to the different relative signs between the terms on the right-hand sides of (25) and (26). This example clearly demonstrates a rather dramatic dependence on details of the model. Finally, as in the case of the double ratios above, we investigated the impact of the iterative procedure compared to the simplified approach and found it to be generically small. Hence we feel justified to use the simplified procedure in Section 5 in order to save computation time.

5 Leptogenesis in the extended M LFV Framework

5.1 Preliminaries

One of the most plausible mechanisms for creating the observed matter/antimatter asymmetry in the universe is leptogenesis, where a CP asymmetry generated through the out-of-equilibrium \(L \)-violating decays of the heavy Majorana neutrinos leads to a lepton
asymmetry which is subsequently transformed into a baryon asymmetry by \((B + L)\)-violating sphaleron processes \([8,9,35]\).

Unfortunately, even in its simplest realization through the well-known seesaw mechanism \([11]\), the theory has too many parameters. Indeed, as recalled in Section 2.4 in the framework of the standard model (SM) extended with three heavy Majorana neutrinos \(N_i (i = 1;2;3)\), the high-energy neutrino sector, characterized by the Dirac neutrino \((m_D)\) and the heavy Majorana neutrino \((M_R)\) mass matrices, has eighteen parameters. Of these, only nine combinations enter into the seesaw effective neutrino mass matrix \(m_D^T M_R^{-1} m_D\), thus making difficult to establish a direct link between leptogenesis and low-energy phenomenology \([36]\). Furthermore, there are six CP-violating phases which are physically relevant at high energies, while only three combinations of them are potentially observable at low energies. Therefore, no direct link between the sign of the baryon asymmetry and low-energy leptonic CP violation can be established, unless extra assumptions are introduced.

Furthermore, additional assumptions are usually required to completely determine the high-energy neutrino sector from low-energy observables. Typical examples are the introduction of texture zeros in the Yukawa matrices or the imposition of symmetries to constrain their structure \([37]\). On the other hand, the heavy Majorana neutrino masses can range from the TeV region to the GUT scale, and the spectrum can be hierarchical, quasi-degenerate or even exactly degenerate \([38]\). Despite this arbitrariness, the heavy Majorana neutrino mass scale turns out to be crucial for a successful implementation of the leptogenesis mechanism. In particular, the standard thermal leptogenesis scenario with hierarchical heavy Majorana neutrino masses \((M_1 < M_2 < M_3)\) requires \(M_1 \simeq 4 \times 10^9\) GeV \([39]\), if \(N_1\) is in thermal equilibrium before it decays, or the more restrictive lower bound \(M_1 \simeq 2 \times 10^9\) GeV \([40]\) for a zero initial \(N_1\) abundance. Since this bound also determines the lowest reheating temperature allowed after inflation, it could be problematic in supersymmetric theories due to the overproduction of light particles like the gravitino \([41]\).

It should be emphasized, that the above bounds are model-dependent in the sense that they can be avoided, if the heavy Majorana neutrino spectrum is no longer hierarchical. For example, if at least two of the \(N_i\) are quasi-degenerate in mass, i.e. \(M_1 \approx M_2\), then the leptonic CP asymmetry relevant for leptogenesis exhibits the resonant behavior \(\eta_i \approx \frac{M_2 - M_1}{M_2 + M_1}\) \([20,21]\). In this case, it is possible to show that the upper bound on the CP asymmetry is independent of the light neutrino masses and successful leptogenesis simply requires \(M_2\) to be above the electroweak scale for the sphaleron interactions to be effective. The quasi-degeneracy may also be achieved in soft leptogenesis where a
small splitting is induced by the soft supersymmetry breaking terms \([42]\).

Another possibility which has been recently explored \([16,17]\) relies on the fact that radiative effects, induced by the renormalization group (RG) running from high to low energies, can naturally lead to a sufficiently small neutrino mass splitting at the leptogenesis scale. In the latter case, sufficiently large CP asymmetries are generated.

In the minimal seesaw scenario with only two heavy neutrinos the resulting baryon asymmetry in the SM turns out to be below the observed value \([16]\). On the other hand, this mechanism can be successfully implemented in its minimal supersymmetric extension (MSSM) \([17]\).

It has been shown \([18]\) that the above problems in the SM can be overcome in a more realistic scenario where the effects of a third heavy neutrino are also taken into account. In \([18]\), leptogenesis was studied in the framework of a model where there are three right-handed neutrinos, with masses \(M_1 < M_2 < M_3\). We will discuss this scenario below as a special limit of the M LFV framework.

In view of the above, it is important to analyze leptogenesis in the extended M LFV framework, where CP violation is allowed both at high and low energies. In the M LFV scenario, right-handed neutrinos are assumed to be exactly degenerate at a high energy scale. In the limit of exact degeneracy, no lepton-asymmetry can be generated. However, as previously emphasized, even if exact degeneracy is assumed at a high energy scale, renormalization group effects lead to a splitting of right-handed neutrino masses at the scale of leptogenesis, thus offering the possibility of viable leptogenesis in the extended M LFV framework.

5.2 \textbf{B A U in the RRL and Flavour Effects}

In leptogenesis scenarios the baryon asymmetry of the universe \(B\) arises due to non-perturbative sphaleron interactions that turn a lepton asymmetry into a baryon asymmetry. The predicted value of \(B\) has to match the results of WMAP and the BBN analysis for the primordial deuterium abundance \([43]\)

\[
B = \frac{n_B}{n} = (6.3 : 0.3) \times 10^{10} \quad (49)
\]

The lepton asymmetry is generated by out-of-equilibrium decays of heavy right-handed
Majorana neutrinos N_i and is proportional to the CP asymmetry n_i with

$$n_i = \frac{(N_i ! L_i !)}{(N_i ! L_i !)} + (N_i ! L_i !)$$

and l denoting the lepton flavour, that arises at one-loop order due to the interference of the tree level amplitude with vertex and self-energy corrections.

A characteristic of the M LFV framework is that only admissible BAU with the help of leptogenesis is radiative and thereby resonant leptogenesis. The mass splittings of the right-handed neutrinos induced by the RGE are of similar size $M_{\text{O}} (M_{Y Y'})$ as the decay widths $O (M_{Y Y'})$. This is the condition of resonant leptogenesis. The CP asymmetry is for the lepton flavour l given by

$$n_i = \frac{1}{(Y Y')_{ij}} X = ((Y Y')_{ij} (Y')_{ij} g (M_i^2; M_j^2; 2_j))$$

where $g (M_i^2; M_j^2; 2_j)$ is an abbreviation for the full result given in [21]. The total CP asymmetries n_i are obtained summing over the lepton flavours l.

The baryon to photon number ratio B can then be calculated solving the Boltzmann equations for the lepton asymmetry and converting it into B using suitable dilution and sphaleron conversion factors. Which Boltzmann equation to use depends on the temperature scale at which leptogenesis takes place. We will follow a simplistic approach ignoring all subtleties generically coming into play in the intermediate regime between different mechanisms at work. Our main conclusions, however, will not be affected by this omission. We will simply divide the temperature scale into a region up to which all three lepton flavour have to be taken into account and a region above which the single flavour approximation works.

Below some temperature $T_{eq} \approx 10^9$ GeV [44,45,46] and muon and tau charged lepton Yukawa interactions are much faster than the expansion H rendering the and Yukawa couplings in equilibrium. The correct treatment in this regime requires the solution of lepton flavour specific Boltzmann equations. In the strong washout regime B is independent of the initial abundances and an estimate including flavour effects is given by [12]

$$B = 10^2 X^3 \sum_{i=1}^3 \frac{K_i}{K}$$

\[6\] We will choose $T_{eq} \approx 10^{10}$ GeV in our analysis as an effective boundary between the unavoured and 'fully avoured' regime, where we (respectively) neglect avoured and distinguish all three avours. The main conclusions are, however, not affected by the precise choice.
where $M_{p1} = 1.22 \times 10^9$ GeV and K_1 is the washout factor due to the inverse decay of the Majorana neutrino N_i into the lepton avour. The impact of lepton avour effects on B is discussed in [44,19,45,46,47]. As we shall also see below, the inclusion of avour effects generally leads to an enhancement of the resulting B. This is due to two effects: (1) the washout gets reduced since the interaction with the Higgs is with the avour eigenstates only and (2) an additional source of CP violation arises due to lepton avour specific CP asymmetries.

For higher values of $T > 10^{12}$ GeV the charged lepton Yukawa couplings do not break the coherent evolution of the lepton doublets produced in heavy neutrino decays anymore. In this regime avour effects can be ignored and an order of magnitude estimate is given by

$$B' \approx 10^{-2} \frac{X^3}{\sum_{i=1}^3} \exp \left(m_{i1}^2 M_{11} \right) \frac{1}{K^{1/2}}$$

with $K = \prod_{i=1}^3 K_i$. This agrees with a recent analytical estimate by [48] up to factors of $O(1)$ for the region of interest in parameter space, where the estimate of [48] generally leads to a smaller efficiency and smaller B. We have also compared the analytical estimate of [48] and [55] with the numerical solution of the Boltzmann equations using the LeptoGen code [19]. For the relevant ranges of the input parameters the analytical estimate of [55] and the full numerical solution agree quite well, whereas the estimate of [48] leads to an efficiency and B generally smaller by a factor of 5 to 10. This is shown in Fig.8. These estimates, however, do not take into account the potentially large lepton avour effects included in (52).

Let us remark in passing that in the avour independent region we are always in the strong washout regime, since

$$K = K_1 + K_2 + K_3 = \frac{1}{m} \text{tr} R d R_y \left(\frac{m_{2\text{atm}}^2}{m} \right)^{1/2} = 50;$$

where $m = O(10^3)$. This inequality holds since the trace is linear function of the neutrino masses with positive coefficients, which reaches its minimum for $y_{ij} = 0$. We also made sure that the estimate [52] including avour effects is applicable [19] and

\[\text{http://www.iop.dur.ac.uk/~teji/leptogen/}\]
checked that the inequality
\[K^1_1 > 1 \]
(57)
is always satisfied for the points considered in the plots. Since both (56) and (57) are satisfied, a simple decay-plus-inverse decay picture is a good description and the estimates (52) and (53) independent of the initial abundances give a good approximation of the numerical solution of the full Boltzmann equations.

We have performed the leptogenesis analysis specifically for the SM. We do not expect large deviations in the MSSM from the SM if the same \(Y(M) \) and \(M^i(M) \) are given. The main differences come (1) from the CP-asymmetries, which now include contributions from the supersymmetric particles, (2) from the washout, and (3) from conversion and dilution factors. The supersymmetric CP asymmetries have the sameavour structure as in the SM and using [30] one can show that \(m^i_{\text{SM}} < 2 m^i_{\text{SM}} \) for quasi-degenerate heavy neutrinos. We also expect the correction by the decay widths to be similar in size.

Next, the washout in the strong washout regime is about a factor of \(\frac{2}{3} \) larger [43] in the MSSM, whereas the dilution and sphaleron conversion factors stay almost unchanged. Concluding, we find that in the scenario considered the predicted values roughly satisfy \(m^i_{\text{SM}} \) for the same set of input parameters \(Y(M) \) and \(M^i(M) \). The RGE induced values of \(Y(M) \) and \(M^i(M) \), however, are model dependent and lead to in general different \(Y(M) \) and \(M^i(M) \) for the same boundary conditions at the GUT and low-energy scale, as discussed in Section 3.4. Especially sensitive is the region \(M < 10^{12} \) GeV where the CP asymmetries are dominantly generated by the tau Yukawa coupling, which is enhanced by a factor of \(\tan^2 \) in the MSSM. Note also that in the MSSM, \(T_{eq} \) and \(T_{eq} \) should be rescaled by a factor \((1 + \tan^2) \) to take account of the larger Yukawa couplings [59], which should make a more prominent effect.

5.3 Twoavour limit

As a first step we discuss the special case of \(y_{12} \) being non-vanishing at the GUT scale and all other \(y_{ij} = 0 \). This corresponds approximately to one of the scenarios considered in a recent study of radiative leptogenesis [18] with two right-handed neutrinos quasi-degenerate and a third right-handed neutrino decoupled. It only \(y_{12} \neq 0 \) the calculation of \(B \) proceeds in the same way since to a good approximation only \(\frac{1}{\tilde{R}} \) and \(\frac{1}{\tilde{R}} \) contribute to the CP asymmetry. The only difference comes from the enhanced washout. Since the third heavy neutrino is now also contributing, the lower bound on the washout \(K \) in [56] is in our case relatively enhanced by a factor \(\left(\frac{\tilde{m}_{\text{SM}}}{\tilde{m}_{\text{SM}}} \right)^{1/2} = \left(\frac{\tilde{m}_{\text{SM}}}{\tilde{m}_{\text{SM}}} \right)^{1/2} \).

\[\text{We thank S. Antusch for drawing our attention to this point.} \]
Figure 4: Resulting B for the case in which only $y_{12} \neq 0$ (effective two flavour case) as a function of M for the normal hierarchy of light neutrinos: the orange crosses and red triangles show the unphysical limit setting the charged lepton Yukawas $Y_e = 0$ in the renormalization group evolution with and without including lepton flavour eects in the calculation of B, respectively. Setting the charged lepton Yukawas to their physical values, the blue circles and the green squares correspond to including and ignoring lepton flavour eects in the calculation, respectively.

We have checked this correspondence for B also numerically. Ignoring flavour subtleties in leptogenesis for a moment, the CP violating eects due to renormalization group eects are induced only by the charged lepton yukawa couplings, see Section 3.4, and the total CP asymmetries for each heavy Majorana neutrino take the form [13]

\[
\eta_{12} = \frac{\eta_{12}'}{1 + D_{2\mu}'; \quad \eta_3' = 0; \quad (58)\]

and

\[
\eta_j = \frac{3y^2}{32} \frac{\text{Im}[(H_{21})_{33}]}{H_{11}} \left[(Y_{23})_{13} (Y_{31})_{12} \right] = \frac{3y^2}{64} \frac{m_j (m_1 + m_2)}{(m_1 m_2)} \frac{m_1 m_2 \sinh(2y_{12})}{\cosh^2 y_{12} + m_1 m_2 \sinh^2 y_{12}}} ; \quad (59)

\]

\[
D_j = \frac{2}{4} \frac{H_{11}^{2}}{ \left(H_{22} H_{11}^{2} \ln^2 (M = \text{M}_{\text{GUT}}) \right)^2} = \frac{m_j^2 \cosh^2 y_{12} + m_j m_2 m_2 \sinh^2 y_{12}}{2 m_2 m_1 \ln (M = \text{M}_{\text{GUT}})} ; \quad (60)
\]

where D_j are regularization factors coming from the heavy Majorana decay widths. We immediately see that the total CP asymmetries only bare a very mild dependence on
the heavy M_{majorana} scale. The almost negligible dependence on M_{1} has to be compared with the power-suppression in M_{1} in the hierarchical case ($M_{1} < M_{2} < M_{3}$). We end this expectation confirmed in Fig. 4, where the resulting B_{χ} is shown as a function of M.

Fig. 4 also nicely illustrates the relative importance of avouree ects in leptogenesis. If no cancellations occur, we nd that avouree ects generate an B_{χ} which is of the same order of magnitude (blue circles), however almost always larger than the one calculated ignoring avouree ects (green squares).

If we now consider the unphysical limit of setting $Y_{e} = 0$ in the renormalization group running only, we nd that the total CP asymmetries and B_{χ} should vanish since no CP violation eects are induced by the RGE, see Section 3.4. We con rm this behavior in Fig. 4 (red triangles). A very di erent picture emerges once we include avouree ects. The relevant quantity for leptogenesis is then $= \sum_{i<j} Y_{Y}Y_{\bar{Y}}Y_{\bar{Y}}Y_{\bar{Y}}$ with no summation over the charged lepton index l. Although no total CP asymmetries are generated via the RGE evolution in the limit $Y_{e} = 0$, the CP asymmetries for a specic lepton avoure are non-vanishing. Additionally, the resulting B_{χ} now shows a M_{1} dependence which stems from the RGE contributions due to Y_{e} only, which are absent in the total CP asymmetries in the two avoure limit (orange crosses).

All plots have been generated assum ing a normal hierarchy of the light neutrino masses. We have checked that the results for the inverted hierarchy are similar, although B_{χ} turns out to be generally smaller and below the observed value, in accordance with the ndings of [13]. Including avouree ects it is however still possible to generate a B_{χ} of the correct order of magnitude. In Fig. 5 we additionally show the dependence of B_{χ} on y_{12} and m_{1}. We nd that avouree ects enlarge the y_{12} range where successful baryogenesis is
possible and slightly soften the upper bound on the light neutrino mass scale. The left panel even demonstrates that leptogenesis in the M LFV scenario is possible for a real R matrix. Then lepton avour e ects are essential for a successful leptogenesis [45,46].

5.4 General case

Now we consider the general case with all three phases y_{ij} non-vanishing. We have varied the parameters as described in Section 4. The regularization of the resonant CP asymmetry by the D_4 turns out to be important for values of $\eta > 10^6$, see Fig. 6. As seen there, in the regime where avour e ects are important we nd an upper bound on the light neutrino mass of $m_1 < 0.2$ eV in order to generate the right amount of B. Beyond the temperature scale where avour e ects play a role, no relevant bound can be found. This is due to the enhancement of the CP asymmetry which approximately grow linearly for values of $M > 10^{12}$ G eV, see the discussion in Section 4.4.

Figure 6: (left) B for the general case with $0.01 < y_{ij} < 1$ as a function of m_1 (right). The black circles are obtained including lepton avour e ects whereas the red crosses are calculated ignoring them. The avour blind results (red crosses) reach higher values due to the CP asymmetries growing as M gets bigger in this regime. (right) The total CP asymmetry y_{ij} for the general case with $0.01 < y_{ij} < 0.8$ as a function of $y_{tot} = (y_{12}^2 + y_{13}^2 + y_{23}^2)^{\frac{1}{2}}$ for input values that result in the right order of magnitude of B. The red circles are obtained using the uncorrected CP asymmetries and the black squares include the corrections by the decay widths.

In Fig. 6, we compare different calculations of B:

- the avour independent estimate of [48] used in Cirigliano et al. [13] (red boxes),
Figure 7: B for the general case with $0.01 < {\gamma}_{jj} < 1$ as a function of M. The circles are obtained including lepton avoure ects and the red crosses are calculated ignoring them.

- the numerical solution of the avour independent Boltzmann equations using the LeptoGen package (black circles),

- the recent estimate by Blanchet and DiBar [47] that includes avoure ects (green triangles),

- the approximate expression of [19] given in [52] that also includes avoure ects (brown crosses).

We end that

- the avour blind estimate of [48] used in Cirliglano et. al. [13] lies consistently below the numerical solution of the avour independent Boltzmann equations. For $M \sim 10^{3} \text{ GeV}$ this turns out to be unimportant as avoure ects in this region are small and we confirm the increase of B with M in this region found by these authors.

- Potentially large avoure ects that have been left out in [13] generally enhance the predicted B, in particular for $M \sim 10^{3} \text{ GeV}$, in accordance with the existing literature.

Both avour estimates and the numerical solution of the avour independent Boltzmann equations show solutions with B of the measured order of magnitude without
imposing a stringent lower bound on the value of M.

The last finding is in contrast to the analysis of Cirigliano et al. [13] which using the
avour independent estimate of $[48]$ nds a lower bound on M of 0×10^{12} GeV as clearly
represented by the red boxes in Fig. 8. The same qualitative conclusion holds for B using the RGE induced CP asymmetries in the MSSM. The tan β enhancement of the
CP asymmetries as discussed in Section 4.4 even facilitates the generation of an B of
the right size.

Our analysis that includes avour eects demonstrates that baryogenesis through lepto-
togenesis in the framework of M LFV is a stable mechanism and allows a successful
generation of B over a wide range of parameters. The absence of a lower bound on M
found here has of course an impact on the LFV processes, which we will discuss next.

Figure 8: Different determinations of B for the general case with $0.01 < j_{ij} < 1$
as a function of M. The black circles are obtained numerically solving the avour
independent Boltzmann equations using the LeptoGen package, the green triangles and
the brown crosses show estimates including avour eects of $[47]$ and $[52]$, respectively.
Finally the red boxes show the estimate of $[48]$ used in Cirigliano et al. [13] which igores
avour eects.

In Fig. 9 we show $B(\!\to\! e)$ vs. M for the parameter ranges described above and
a lepton avour violation scale of 1 TeV. We highlighted the points where successful
baryogenesis is possible (black squares). We nd that $B(\!\to\! e)$ can be made small
Figure 9: $B(\mu \rightarrow e \gamma)$ as a function of M for $\text{LFV} = 1 \text{ TeV}$. The black squares show points where a baryon asymmetry in the range $2 \times 10^0 < B < 10 \times 10^0$ is possible.

enough to evade bounds from current and future experiments and one can have successful baryogenesis through leptogenesis at the same time. This is another ending of our paper which is in contrast to a recent analysis [13]. We will summarize the differences to [13] in the next paragraph.

5.5 Comparison with [13]

Recently in an independent analysis Cirigliano, Isidori and Porretti [13] generalized M LFV formulation in [10] to include CP violation at low and high energy. Similarly to us they found it convenient to use for Y the parametrization of Casas and Ibarra. They have also pointed out that in the M LFV framework the most natural is the resonant leptogenesis.

On the other hand, these authors neglected flavour dependent effects in the evaluation of B, that we end in agreement with other authors to be important [44,13,45,46,47]. This has important consequences already at the qualitative level. Their qualitative discussion of the splittings of the M_i at the see-saw scale is similar to ours and we agree with the main physical points made by these authors in this context. On the other hand, while we have demonstrated explicitly by means of a renormalization group analysis that
successful RRL can be achieved, Cirelli et al. condensed their analysis to parameterizing possible radiative effects in terms of a few parameters. In this context a new point made by us (see discussion Section 3.3) is that the coefficients c_i in (20) are in fact not independent of each other. Indeed the leading logarithmic contribution to c_i are related by the renormalization group. This can in principle increase the predictivity of M LFV. The three most interesting messages of (13) are

A successful resonant leptogenesis within the M LFV framework implies a lower bound $M_{\text{LFV}} > 10^{12}$ GeV.

With $M_{\text{LFV}} = 0$ (1 TeV), this lower bound implies the rate for $\mu \to e$ close to the present exclusion limit.

M LFV implies a specific pattern of charged LFV rates: $B(\mu \to e) < B(\mu \to \tau)$.

For $M_{\text{LFV}} > 10^{12}$ GeV, in spite of some differences in the numerics as discussed above, we basically confirm these findings. Unfortunately, for lower values of M_{LFV} our results differ from theirs. In particular, as we have demonstrated in Fig. 3, the observed value of $B(\mu \to e)$ can be obtained for M_{LFV} by several orders of magnitude below the bound in (13), in accordance with other analyses of leptogenesis. Once M_{LFV} is allowed to be far below 10^{12} GeV, $M_{\text{LFV}} = 0$ (1 TeV) does not imply necessarily $B(\mu \to e)$ close to the inclusion limit, as clearly seen in Fig. 3.

One of the reasons for the discrepancy between our result with regard to M_{LFV} and the one of (13) is the neglect of flavour effects in leptogenesis in the latter paper. Fig. 3 illustrates that flavour effects in leptogenesis matter.

Concerning $B(\mu \to e) < B(\mu \to \tau)$, we confirm the result of (13) in the limit of very small y_{12}, but as shown in Fig. 3, this is not true in general, as also found in (26,29). Consequently, this hierarchy of charged LFV rates cannot be used as model independent signature of M LFV.

6 Sum m ary and C onclusions

In this paper we have generalized the proposal of minimal flavour violation in the lepton sector of (10) to include CP violation at low and high energy. While the definition proposed in (10) could be considered to be truly minimal, it appears to us too restrictive and not as general as the one in the quark sector (MFV) in which CP violation at low energy is automatically included (1) and in fact all flavour violating effects proceeding
through SM Yukawa couplings are taken into account [2]. The new aspect of M LFV in the presence of right-handed neutrinos, when compared with MFV, is that the driving source of flavour violation, the neutrino Yukawa matrix Y, depends generally also on physics at very high scales. This means also on CP violating sources relevant for the generation of baryon-antibaryon asymmetry with the help of leptogenesis. The first discussion of CP violation at low and high energy has been presented in [13]. Our conclusions for $M < 10^2$ agree basically with these authors. However, they differ in an essential manner for lower values of M.

The main points of our paper have been already summarized in the introduction. Therefore it suffices to conclude our paper with the following messages:

A new aspect of our paper is the realization that in the context of M LFV the only admissible BAU with the help of leptogenesis is the one through radiative resonant leptogenesis (RRL). Similar observations have been made in [13]. In this context our analysis benefited from the ones in [16,17,20,21]. The numerous analyses of leptogenesis with hierarchical right-handed neutrinos present in the literature are therefore outside the M LFV framework and the differences between the results presented here and the ones found in the literature for M_1, M_2, M_3 can be used to distinguish M LFV from these analyses that could be acted by new flavour violating interactions responsible for hierarchical right-handed neutrinos.

We have demonstrated explicitly within the SM and the M SSM at low tan b that within a general M LFV scenario the right size of B can indeed be obtained by means of RRL. The important property of this type of leptogenesis is the very weak sensitivity of B to the see-saw scale M so that for scales as low as 10^6 GeV but also as high as 10^{13} GeV, the observed B can be found.

Flavour effects, as addressed by several authors recently in the literature [44,19, 45,46,47], play an important role for $M < 10^{10}$ GeV as they generally enhance B. Moreover, they allow for a successful leptogenesis within M LFV even when the R-m matrix is real (left panel of Fig. 5).

As charged LFV processes, like, are sensitive functions of M, while B is not in the RRL scenario considered here, strong correlations between the rates for these processes and B, found in new physics scenarios with other types of leptogenesis can be avoided.

Except for this important message, several of the observations made by us with regard to the dependence of charged LFV processes on the complex phases in the
matrix R and the Majorana phases have been already made by other authors in the rich literature on LFV and leptogenesis. But most of these analyses were done in the context of supersymmetry. Here we would like to emphasize that various effects and several patterns identified there are valid also beyond low energy supersymmetry, even if supersymmetry allows a definite realization of M LFV provided right-handed neutrinos are degenerate in mass at the GUT scale.

One of the important consequences of the messages above is the realization that the relations between the flavour-violating processes in the charged lepton sector, the low energy parameters in the neutrino sector, the LHC physics and the size of B are much richer in a general M LFV framework than suggested by $\cite{14,13}$. Without a specific M LFV model no general clear cut conclusions about the scale LFV on the basis of a future observation or non-observation of $\mu - e$ with the rate $O(10^{-13})$ can be made in this framework.

On the other hand we fully agree with the point made in $\cite{10}$ that the observation of $\mu - e$ with the rate at the level of 10^{-13}, is much easier to obtain within the M LFV scenario if the scales λ_{LFV} and M are sufficiently separated from each other. We want only to add that the necessary size of this separation is sensitive to the physics between M_Z and M_{GUT}, Majorana phases and CP violation at high energy. In this manner the lepton-flavour violating processes, even in the M LFV framework, probe scales well above the scales attainable at LHC, which is not necessarily the case within M FV in the quark sector.

Finally, but very importantly, M LFV being very sensitive to new physics at high energy scales, does not generally solve possible CP and flavour problems. This should be contrasted with the M FV in the quark sector, where the sensitivity to new physics at scales larger than 1 TeV is suppressed by the GIM mechanism.

Note

During the preparation of this revised version, one of us (S.U.) has investigated parametric dependences in the present scenario for the case of a real R in more detail $\cite{60}$.

Acknowledgements

We would like to thank P. DiBari, M. Beneke, R G. Felipe, F R. Joaquim, M. Plumacher,
A Iterative solution of the renormalization group equations

The goal of our numerical analysis of Section 4 is to determine the neutrino Yukawa matrix Y and the masses of the right-handed neutrinos at the scale M taking into account the constraints on the masses and mixings of light neutrinos measured at low energies and imposing the GUT condition characteristic for the M LFV

$$M_1(\text{GUT}) = M_2(\text{GUT}) = M_3(\text{GUT}); \quad (61)$$

As discussed in Section 2 the latter condition implies

$$\text{Re}(R(\text{GUT})) = 0; \quad (62)$$

but $\text{Im}(R(\text{GUT}))$ must be kept non-zero in order to have CP-violation at high energy.

The RG evolution from GUT down to M generates small splittings between $M_1(M)$ and a non-vanishing $\text{Re}(R(M))$, both required for the leptogenesis. As the splittings between $M_1(M)$ turn out to be small, we integrate the right-handed neutrinos simultaneously at $= M$ imposing, up to their splittings,

$$M_1(M) \quad M_2(M) \quad M_3(M) \quad M; \quad (63)$$

In view of various correlations and mixing under RG between different variables we reach the goal outlined above by means of the following recursive procedure:

Step 1

We associate the values for the solar and atmospheric neutrino oscillation parameters given in (40)-(41) with the scale $= M_Z$ and set θ_{13} and the smallest neutrino mass m_{lightest} to particular values corresponding to $= M_Z$.

40
Step 2
For a chosen value of M, the RG equations, specific to a given MLFV model, are used to find the values of the parameters of Step 1 at $\mu = M$. For instance, we find $m_1(M)$ and similarly for other parameters.

Step 3
We choose a value for GUT and set $m_1(GUT) = m_1(M)$ and similarly for other parameters evaluated in Step 2. Setting next

$$M_1(GUT) = M_2(GUT) = M_3(GUT) = M$$

(64)

and choosing the matrix R, that satisfies (62), allows also to construct $Y(GUT)$ by means of the parametrization in (14).

Step 4
Having determined the initial conditions for all the parameters at $\mu = GUT$ we use the full set of the RG equations [52] to evaluate these parameters at M. In the range M_{GUT} we use

$$m_1(\mu) = \tilde{Y}^T(\mu)M_1(\mu)Y(\mu):$$

(65)

The RG effects between GUT and M will generally shift $m_1(M)$ to new values

$$m_1(M) = m_1(M) + m_1$$

(66)

with similar shifts in other low energy parameters. If these shifts are very small all our goal is achieved and the resulting $Y(M)$ and $M_1(M)$ can be used for lepton flavour violating processes and leptogenesis. If the shifts in question are significant we go to Step 5.

Step 5
The initial conditions at $\mu = GUT$ are adjusted in order to obtain the correct values for low energy parameters at $\mu = M$ as obtained in Step 2. In particular we set

$$m_1(GUT) = m_1(M) + m_1$$

(67)

with m_1 defined in (66). Similar shifts are made for other parameters. If the condition (63) is not satisfied in Step 4, the corresponding shift in (64) should be made. Choosing R as in Step 3 allows to construct an improved $Y(GUT)$. Performing RG evolution with new input from GUT to M we find new values for the low energy parameters at M that should now be closer to the values found in Step 2 than it was the case in Step 4. If necessary, new iterations of this procedure can be performed until the values of Step 2 are reached. The resulting $Y(M)$ and $M_1(M)$ are the ones we were looking for.
B Basic Formulae for i_j

B.1 Preliminaries

In what follows we will present two generalizations of the formulae for i_j in [10] in the approximation of degenerate right-handed neutrinos. We have checked that the splitting of M_i by RGE has very small impact on these formulae. All the expressions for i_j are meant to be valid at M. Similar formulae have been given for instance in [23,26,27,28,31], but we think that the formulae given below are more transparent.

In order to obtain transparent expressions for i_j it is useful to introduce the mass differences

$$21 = m_2 - m_1; \quad 31 = m_3 - m_1; \quad (68)$$

$$\sim_{21}(y_{12}) = 21 \cosh(2y_{12}); \quad \sim_{31}(y_{12}) = 31 + m_1(1 - \cosh(2y_{12})) \quad (69)$$

and collect the dependence on Majorana phases in the following two functions

$$F_1(\cdot) = e^{i \theta_1} + 2\mathbf{i} c^2 \sin(\cdot); \quad (70)$$

$$F_2(\cdot; \cdot) = s_3 c^2 \cos(\cdot + \cdot) + i c s \sin(\cdot) + s_3 s^2 \cos(\cdot); \quad (71)$$

B.2 Real and U Complex

In this case we find

$$e = \frac{M}{2\mathbf{v}^2}(s c_{21} + e^{i}s_{13}31); \quad (72)$$

$$e = \frac{M}{2\mathbf{v}^2}(s c_{21} + e^{i}s_{13}31); \quad (73)$$

$$= \frac{M}{2\mathbf{v}^2}(c_{21} + 31); \quad (74)$$

where we have neglected term $\mathbf{s}O(s_{13})$, whenever it was justified.

For the CP conserving cases $\theta = 0$; these formulae reduce to the formulae (24) of [10] which represent the case where both matrices, R and U are real. We note that in the presence of a real matrix R, the i_j do not depend on the Majorana phases and does not depend on θ.

42
B.3 R and U complex

Allowing for one additional phase \(y_{12} \) in \(R \), we find the generalization of \((72)-(74)\) that includes CP violation both at low and high energies represented by \(\delta \neq 0 \); and \(x_{22}; y_{12} \neq 0 \), respectively

\[
e = \frac{\mathcal{M}}{2\nu^2} \sin \theta_1 \sin \theta_2 \cos \Delta M_1 \cos \Delta M_2 \sin (2y_{12}) F_1 (\delta); \tag{75}
\]

\[
e = \frac{\mathcal{M}}{2\nu^2} \sin \theta_1 \sin \theta_2 \cos \Delta M_1 \cos \Delta M_2 \sin (2y_{12}) F_2 (\delta); \tag{76}
\]

\[
e = \frac{M}{2\nu^2} \sin \theta_1 \sin \theta_2 \cos \Delta M_1 \cos \Delta M_2 \sin (2y_{12}) F_3 (\delta); \tag{77}
\]

For \(y_{12} = 0 \) \((75)-(77)\) reduce to \((72)-(74)\). We note that relative to \((72)-(74)\) there is an additional dependence on the difference of Majorana phases \(\Delta M \) in the functions \(F_1 \) and \(F_2 \) that disappears for \(y_{12} = 0 \). This means that for \(y_{12} \) very close to zero Majorana phases in \(l_i \rightarrow l_j \) decays do not matter but can be important already for small \(y_{12} \).

Indeed, the \(\nu \)'s are very sensitive to \(y_{12} \) and the values of \(\nu \) can be enhanced by several orders of magnitude \([23,24,26,27,28,30,31,34] \) relative to the case of \(R = 1 \), even for \(y_{12} = 0 \) [1]. Indeed as seen in \((75)-(77)\), the \(\nu \) depend exponentially on the \(y_{12} \) and moreover for \(y_{12} \neq 0 \), they do not only depend on the neutrino mass differences but also on \(\mathcal{M} \) which can be much larger than \(\nu \). Thus including a non-vanishing phase in \(R \) can have in principle a very strong impact on the analysis of [10] as also discussed in [13].

The large enhancement of \(\nu \) in the case of a complex \(R \) is analogous to the large enhancement of \(B (B_{d\to s}^+ \to \bar{c}\tau) \) for large \(\tan \beta \). In the latter case the presence of new scalar operators lifts the helicity suppression of the branching ratio question. In the case of \(\nu \) the appearance of a new mass dependence \(m_i m_j \) in addition to \(m_i \) \(m_j \) has a similar effect provided \(\mathcal{M} m_i m_j \).

References

