Measurement of CP Asymmetry in a Time-Dependent Dalitz Analysis of $B^0 \rightarrow (\rho \pi)^0$
and a Constraint on the Quark Mixing Matrix Angle ϕ_2

A. Kusaka,37 C. C. Wang,27 H. Ishino,48 K. Abe,9 K. Abe,45 I. Adachi,9 H. Aihara,47 D. Anipko,1 V. Aulchenko,1 T. Aushev,19,14 A. M. Bakich,42 E. Barberio,22 A. Bay,19 I. Bedny,1 K. Belous,13 U. Bitenc,15 I. Bizjak,15 S. Blyth,25 A. Bondar,1 A. Bozek,28 M. Bracko,9,21,15 T. E. Browder,8 M.-C. Chang,4 P. Chang,27 Y. Chao,27 A. Chen,25 K.-F. Chen,27 W. T. Chen,25 B. G. Cheon,7 R. Chistov,14 S.-K. Choi,6 Y. Choi,41 Y. K. Choi,41 S. Cole,42 J. Dalseno,22 M. Danilov,14 M. Dash,51 J. Dragic,9 A. Drutskoy,3 S. Eidelman,1 S. Fratina,15 M. Fujikawa,24 N. Gabyshev,1 A. Garmash,28 T. Gershon,9 G. Gokhroo,43 B. Golob,20,15 H. Ha,17 J. Habu,9 T. Hara,33 N. C. Hastings,47 K. Hayasaka,23 H. Hayashii,24 M. Hazumi,9 D. Heffernan,33 T. Hokuue,23 Y. Hoshi,45 S. Hou,25 W.-S. Hou,27 Y. B. Hsiung,27 T. Iijima,23 K. Ikado,23 A. Imoto,24 K. Inami,23 A. Ishikawa,47 R. Itoh,9 M. Iwasaki,47 Y. Iwasaki,9 H. Kaji,23 H. Kakuno,47 J. H. Kang,32 P. Kapusta,28 N. Katayama,9 H. Kawai,2 T. Kawasaki,30 H. R. Khan,48 H. Kichimi,9 Y. J. Kim,5 K. Kinoshita,3 S. Korpar,21,15 P. Križan,20,15 P. Krokovny,9 R. Kulasiri,3 R. Kumar,34 C. C. Kuo,25 A. Kuzmin,1 Y.-J. Kwon,52 J. Lee,39 M. J. Lee,39 S. E. Lee,39 T. Lesiak,28 A. Limosani,9 S.-W. Lin,27 D. Liventsev,14 F. Mandl,12 D. Marlow,36 T. Matsumoto,49 K. Miyabayashi,24 H. Miyake,23 R. Mizuk,14 T. Mori,23 E. Nakano,32 M. Nakao,9 H. Nakazawa,9 Z. Natkaniec,28 S. Nishida,9 O. Nisho,50 S. Noguchi,24 S. Ogawa,44 T. Ohshima,23 S. Okuno,16 Y. Onuki,37 H. Ozaki,9 P. Pakhlov,14 G. Pakhlova,14 H. Park,18 K. S. Park,11 L. S. Peak,42 R. Pestotnik,15 L. E. Piilonen,51 A. Poluektov,1 Y. Sakai,9 N. Satoyama,40 O. Schneider,19 J. Schümann,26 A. J. Schwartz,3 R. Seidl,10,37 K. Senyo,23 M. E. Sevior,22 M. Shapkin,14 K. Shibuya,44 J. B. Singh,34 A. Somov,3 N. Soni,34 S. Stanič,31 M. Starič,15 H. Stoeck,42 S. Y. Suzuki,9 O. Tajima,9 F. Takasaki,9 K. Tamai,9 M. Tanaka,9 G. N. Taylor,22 Y. Teramoto,32 X. C. Tian,39 I. Tikhomirov,14 K. Trabelsi,9 T. Tsushima,23 T. Tsuchimoto,9 S. Uehara,9 T. Uglow,14 Y. Unno,7 S. Uno,9 P. Urquiolo,22 Y. Ushiroda,9 Y. Usov,1 G. Varner,8 S. Villa,19 C. H. Wang,26 M.-Z. Wang,27 Y. Watanabe,48 R. Wedd,22 E. Won,17 Q. L. Xie,11 B. D. Yabsley,12 A. Yamaguchi,46 Y. Yamashita,29 L. M. Zhang,58 Z. P. Zhang,58 V. Zhilich,1 and A. Zupanc15

(The Belle Collaboration)

1Budker Institute of Nuclear Physics, Novosibirsk
2Chiba University, Chiba
3University of Cincinnati, Cincinnati, Ohio 45221
4Department of Physics, Fu Jen Catholic University, Taipei
5The Graduate University for Advanced Studies, Hayama, Japan
6Gyeongsang National University, Chinju
7Hanyang University, Seoul
8University of Hawaii, Honolulu, Hawaii 96822
9High Energy Accelerator Research Organization (KEK), Tsukuba
10University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
11Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
12Institute of High Energy Physics, Vienna
13Institute of High Energy Physics, Protvino
14Institute for Theoretical and Experimental Physics, Moscow
15J. Stefan Institute, Ljubljana
16Kanagawa University, Yokohama
17Korea University, Seoul
18Kyungpook National University, Taegu
19Swiss Federal Institute of Technology of Lausanne, EPFL, Lausanne
20University of Ljubljana, Ljubljana
21University of Maribor, Maribor
22University of Melbourne, Victoria
23Nagoya University, Nagoya
24Nara Women’s University, Nara
25National Central University, Chung-li
26National United University, Miaoli
27Department of Physics, National Taiwan University, Taipei
28H. Niewodniczanski Institute of Nuclear Physics, Krakow

KEK Preprint 2006-65
Belle Preprint 2007-4
Here, $(A_{3\pi})$ is the Lorentz-invariant amplitude of the $B^0(\bar{B}^0) \to \pi^+\pi^-\pi^0$ decay, q_{tag} is the b-flavor charge ($q_{tag} = +1 (-1)$ when f_{tag} is a $B^0(\bar{B}^0)$ flavor eigenstate), and Δt is the decay time difference of the two B mesons $(t_{3\pi} - t_{tag})$. The parameters p and q define the mass eigenstates of neutral B mesons as $pB^0 \pm q\bar{B}^0$, with an average lifetime τ_{B^0}. The Dalitz plot variables s_+, s_-, and s_0 are defined as

$$s_+ \equiv (p_+ + p_0)^2, \quad s_- \equiv (p_- + p_0)^2, \quad s_0 \equiv (p_+ + p_-)^2,$$
where \(p_+, p_-, \) and \(p_0 \) are the four-momenta of the \(\pi^+, \pi^- \), and \(\pi^0 \), respectively, in the decay of \(B^0 \to \pi^+\pi^-\pi^0 \).

The amplitudes \(\overline{A}_{3\pi} \) have the following Dalitz plot dependences

\[
A_{3\pi}(s_+, s_-) = \sum_{\kappa=\{+, -, 0\}} f_\kappa(s_+, s_-) A^\kappa, \tag{3}
\]

\[
\frac{d}{dp} A_{3\pi}(s_+, s_-) = \sum_{\kappa=\{+, -, 0\}} \overline{f}_\kappa(s_+, s_-) \overline{A}^\kappa, \tag{4}
\]

where \(A^\kappa(\overline{A}^\kappa) \) are complex amplitudes corresponding to \(B^0(\overline{B}^0) \to \rho^+\pi^- - \rho^-\pi^+, \rho^0\pi^0 \) for \(\kappa = \{+, -, 0\} \). Here we neglect possible contributions to the \(B^0 \to \pi^+\pi^-\pi^0 \) decay other than that of \(B^0 \to (\rho\pi)^0 \to \pi^+\pi^-\pi^0 \) and take account of them as systematic uncertainties. The functions \(\overline{f}_\kappa \) incorporate the kinematic and dynamical properties of \(B^0 \to (\rho\pi)^0 \) decays and can be written as

\[
\overline{f}_\kappa(s_+, s_-) = T^s_{\pi,\kappa}(s_+) \overline{T}^s_{\pi,\kappa}(s_-) \quad (\kappa = \{+, -, 0\}), \tag{5}
\]

where \(T^s_{\pi,\kappa} \) and \(\overline{T}^s_{\pi,\kappa} \) correspond to the helicity distribution and the lineshape of \(\rho^0 \), respectively. The lineshape is parameterized with Breit-Wigner functions corresponding to the \(\rho(770) \) and its radial excitations:

\[
\overline{T}^s_{\pi,\kappa}(s) = \text{BW}_{\rho(770)} + \overline{\beta}_\kappa \text{BW}_{\rho(1450)} + \overline{\gamma}_\kappa \text{BW}_{\rho(1700)}, \tag{6}
\]

where the amplitudes \(\overline{\beta}_\kappa \) and \(\overline{\gamma}_\kappa \) (denoting the relative sizes of two resonances) are complex numbers. We use the Gounaris-Sakurai (GS) model \[10\] for the Breit-Wigner shape and the world average \[11\] for the mass and width of each resonance. Though \(\overline{\beta}_\kappa \) and \(\overline{\gamma}_\kappa \) can be different for each of six decay modes of \(B^0(\overline{B}^0) \to (\rho\pi)^0 \) in general, we assume no such variation, i.e., \(\overline{\beta}_\kappa = \beta \) and \(\overline{\gamma}_\kappa = \gamma \), in our nominal fit, and address possible deviations from this assumption in the systematic error. This assumption leads to the relation

\[
T^s_{\pi,\kappa}(s_+, s_-) = f_\kappa(s_+, s_-).
\]

With this relation and Eqs. \(3\) and \(4\), the coefficients of Eq. \(11\) are

\[
|A_{3\pi}|^2 \pm \overline{A}_{3\pi}|^2 = \sum_{\kappa=\{+, -, 0\}} |f_\kappa|^2 U^\kappa_0 \pm 2 \sum_{\kappa < \sigma \in \{+, -, 0\}} (\text{Re}[f_\kappa f^*_\sigma] U^\pm_{\kappa\sigma} \text{Re} - \text{Im}[f_\kappa f^*_\sigma] U^\pm_{\kappa\sigma} \text{Im}) \tag{7}
\]

\[
\text{Im} \left(\frac{d}{dp} A_{3\pi} \overline{A}_{3\pi} \right) = \sum_{\kappa=\{+, -, 0\}} |f_\kappa|^2 I^\kappa_0 \pm \sum_{\kappa < \sigma \in \{+, -, 0\}} (\text{Re}[f_\kappa f^*_\sigma] I^\kappa_{\kappa\sigma} \text{Re} + \text{Im}[f_\kappa f^*_\sigma] I^\kappa_{\kappa\sigma} \text{Im}) \tag{8}
\]

with

\[
U^\pm_\kappa = |A^\kappa|^2 \pm |\overline{A}^\kappa|^2, \tag{9}
\]

\[
I^\kappa_0 = \text{Im} \left(A^\kappa \overline{A}^\kappa \right), \tag{10}
\]

\[
U^\pm_{\kappa\sigma} \text{Re} = \text{Re} (\text{Im} \left[A^\kappa A^\sigma^* \pm \overline{A}^\kappa \overline{A}^\sigma^* \right]), \tag{11}
\]

\[
I^\kappa_{\kappa\sigma} \text{Re} = \text{Re} (\text{Im} \left[A^\kappa A^\sigma^* - (+) \overline{A}^\kappa \overline{A}^\sigma^* \right]). \tag{12}
\]

The 27 coefficients \(9\)–\(12\) are the parameters determined by the fit \[12\]. The parameters \(9\)–\(10\) and \(11\)–\(12\) are called non-interfering and interfering parameters, respectively. This parameterization allows us to describe the differential decay width as a linear combination of independent functions, whose coefficients are fit parameters in a well behaved fit. We fix the overall normalization by requiring \(U^+_0 = 1\). Thus, 26 of the 27 coefficients are free parameters in the fit.

In contrast to a quasi-two-body \(CP\) violation analysis, a TDPA includes measurements of interfering parameters, which are measurements of \(CP\)-violating asymmetries in mixed final states. In principle, these measurements allow us to determine all the relative sizes and phases of the amplitudes \(A^\kappa\) and \(\overline{A}^\kappa\), which are related to \(\phi_2\) through an isospin relation \[12\] by

\[
e^{+2i\phi_2} = \overline{A}^+ + A^- + 2A^0. \tag{13}\]

Consequently, in the limit of high statistics, we can constrain \(\phi_2\) without discrete ambiguities.

To reconstruct candidate \(B^0 \to \pi^+\pi^-\pi^0\) decays, we combine pairs of oppositely charged tracks with \(\pi^0\) candidates. The selection criteria for charged tracks are the same as in the previous \(B^0 \to \rho^\pm\pi^\mp\) analysis \[12\]. Candidate \(\pi^0\)’s are reconstructed from \(\gamma\) pairs having \(M_\gamma\gamma\) in the range 0.1178–0.1502 GeV/c\(^2\), corresponding to \(\pm 3\) standard deviations \((\sigma)\) in \(M_\gamma\gamma\) resolution, and momenta greater than 0.1 GeV/c in the laboratory frame. We require \(E_\gamma > 0.05\) (0.1) GeV in the barrel (endcap) of the electromagnetic calorimeter \[3\], which subtends \(32^\circ–129^\circ\) \((17^\circ–32^\circ\) and \(129^\circ–150^\circ\)\) with respect to the beam axis. Candidate \(B\) mesons are reconstructed using two variables calculated in the center-of-mass frame: the \(B\) invariant mass calculated using the beam energy in place
of the reconstructed energy (M_{bc}), and the energy difference between the B candidate and the beam energy (ΔE). We define a signal region $-0.1 \text{GeV} < \Delta E < 0.08 \text{GeV}$ and $5.27 \text{GeV}/c^2 < M_{bc}$, and a large fitting region $|\Delta E| < 0.2 \text{GeV}$ and $5.2 \text{GeV}/c^2 < M_{bc}$.

The procedure used to measure Δt and to determine the flavor of the decaying B^0 meson, q_{tag}, and its quality, l, are described elsewhere. The dominant background is $e^+ e^- \rightarrow q\bar{q}$ ($q = u, d, s, c$) continuum events. To distinguish these jet-like events from the spherical B decay signal events, we combine modified Fox-Wolfram moments and the B flight angle with respect to the beam direction into a signal (background) likelihood variable $L_{\text{sig}}(l_{\text{bc}})$ and impose requirements on the likelihood ratio $R \equiv L_{\text{sig}}/(L_{\text{sig}} + L_{\text{bkg}})$. These requirements depend on the quality of flavor tagging. When more than one candidate in the same event is found in the large fitting region, where the Dalitz plot distribution is fitted only for events inside the $\Delta E-M_{bc}$ signal region. The fit function includes signal; incorrectly reconstructed signal, which we call self-cross-feed (SCF); continuum; and $B\bar{B}$ background components. The probability density function (PDF) for each component is the same as that used for the TDPA described below, but integrated over Δt and summed over q_{tag}. The fit yields 971 ± 42 $B^0 \rightarrow \pi^+ \pi^- \pi^0$ events in the signal region, where the errors are statistical only.

Using the same data sample as described above but performing a time-integrated Dalitz plot fit with a wider Dalitz plot acceptance, $0.0 (0.55) \text{GeV}/c^2 < \sqrt{s_{\pm 0}} < 1.5 \text{GeV}/c^2$, we determine the ρ lineshape parameters β and γ. We use the results obtained for the TDPA below. We also put upper limits on the possible deviations of $(\mu_{\rho}, \tau_{\rho})$ from the nominal (β, γ), which we use to estimate systematic errors.

To determine the 26 coefficients, we define the following event-by-event PDF:

$$P = \sum_{x = \text{sig}, \text{bg}} f_x P_x(\Delta E, M_{bc}, m', \theta', \Delta t, q_{\text{tag}}, l) ,$$

where P_{sig}, P_{bg}, and $P_{\text{sig}, \text{bg}}$ are the PDF's of signal including SCF, continuum, and $B\bar{B}$ components, respectively, and $f_{\text{sig}}, f_{\text{bg}}$, and $f_{\text{sig}, \text{bg}}$ are the corresponding fractions that satisfy $f_{\text{sig}} + f_{\text{bg}} = 1$. Here, P_{sig} and $P_{\text{sig}, \text{bg}}$ are modeled based on Monte Carlo (MC), though a small correction is applied to P_{sig} to take account of the difference between data and MC, while P_{bg} is modeled using data. The signal PDF, P_{sig}, is the sum of a correctly reconstructed PDF (P_{true}) and an SCF PDF, where

$$P_{\text{true}} = F_{\text{true}}(\Delta E, M_{bc}) (m', \theta'; l) \times P_{\text{true}}(m', \theta', \Delta t, q_{\text{tag}}, l) .$$

Here F_{true}, $P_{\text{true}}(\Delta E, M_{bc})$, $(m', \theta'; l)$, and $P_{\text{true}}(m', \theta', \Delta t, q_{\text{tag}}, l)$ are event fractions in each category of tagging quality l, a $\Delta E-M_{bc}$ PDF, a Dalitz plot dependent efficiency, and a Dalitz-Δt PDF for the correctly reconstructed signal component, respectively. The Dalitz-Δt PDF corresponds to the right-hand side of Eq. (1) with the following modifications: (i) it is convoluted with the Δt resolution function; (ii) it is multiplied by the determinant of the Jacobian for the transformation $(s_+, s_-) \rightarrow (m', \theta')$; and (iii) the wrong tag fractions, w_1, and the difference between B^0 and $B\bar{B}$ decays, Δw_1, are taken into account. A more detailed description of the PDF can be found elsewhere.

An unbinned-maximum-likelihood fit to the 2824 events in the signal region yields the results listed in Table 1. With a toy MC study, we find that the errors estimated by the likelihood function do not give correct 68.3% confidence level (C.L.) coverage for the interfering parameters. In the table, we multiply the error estimates from the likelihood function by a factor of 1.17, which is calculated from the MC study, to obtain errors with correct coverage. We find that U^+_0 is 4.8σ above zero, corresponding to clear evidence for the presence of the decay $B^0 \rightarrow \rho^0 \pi^0$ in agreement with our previous measurement. Figure 2 shows the mass and helicity distributions, and the background-subtracted Δt asymmetry plot for each $\rho\pi$ enhanced region. We define the asymmetry in each Δt bin by $(N_+ - N_-)/(N_+ + N_-)$, where N_{\pm} corresponds to the background-subtracted number of events with $q_{\text{tag}} = \pm 1$. The $\rho^0 \pi^+$ enhanced region shows a significant cosine-like asymmetry.

![Figure 1](https://example.com/figure1.png)

FIG. 1: (a) M_{bc} and (b) ΔE distributions within the ΔE and M_{bc} signal regions. Solid, dot-dashed, dotted, and dashed hatched histograms correspond to correctly reconstructed signal, SCF, $B\bar{B}$, and continuum PDF's, respectively.
TABLE I: Results of the time-dependent Dalitz fit (left three columns), and the associated quasi-two-body CP violation parameters (rightmost column), whose definitions can be found elsewhere [13]. The first and second errors are statistical and systematic, respectively. The correlation coefficient between \(\mathcal{A}_\rho^{\pi+} \) and \(\mathcal{A}_\pi^{\rho+} \) (\(\mathcal{A}_{\rho^{\pi 0}} \) and \(\mathcal{S}_{\rho^{\pi 0}} \)) is +0.47 (−0.08).

<table>
<thead>
<tr>
<th>(U_+^+)</th>
<th>(U_0^+)</th>
<th>(I_+)</th>
<th>(\mathcal{A}_\rho^{\pi+})</th>
<th>(\mathcal{A}_\pi^{\rho+})</th>
</tr>
</thead>
<tbody>
<tr>
<td>+1 (fixed)</td>
<td>+0.23±0.15±0.07</td>
<td>−0.01±0.11±0.04</td>
<td>−0.12±0.05±0.04</td>
<td>0</td>
</tr>
<tr>
<td>+1.27±0.13±0.09</td>
<td>−0.62±0.16±0.08</td>
<td>+0.09±0.10±0.04</td>
<td>+0.13±0.09±0.05</td>
<td>0</td>
</tr>
<tr>
<td>+0.29±0.05±0.04</td>
<td>+0.15±0.11±0.08</td>
<td>+0.02±0.09±0.05</td>
<td>+0.36±0.10±0.05</td>
<td>0</td>
</tr>
<tr>
<td>+0.49±0.86±0.52</td>
<td>−1.18±1.61±0.72</td>
<td>+1.21±2.59±0.98</td>
<td>+0.06±0.13±0.05</td>
<td>0</td>
</tr>
<tr>
<td>+0.29±0.50±0.35</td>
<td>−2.37±1.36±0.60</td>
<td>+1.15±2.26±0.92</td>
<td>−0.08±0.13±0.05</td>
<td>0</td>
</tr>
<tr>
<td>+0.25±0.60±0.33</td>
<td>−0.53±1.44±0.65</td>
<td>−0.92±1.34±0.80</td>
<td>+0.21±0.08±0.04</td>
<td>0</td>
</tr>
<tr>
<td>+1.18±0.86±0.34</td>
<td>−2.32±1.74±0.91</td>
<td>−1.93±2.39±0.89</td>
<td>+0.16±0.11</td>
<td>0</td>
</tr>
<tr>
<td>−0.57±0.35±0.51</td>
<td>−0.41±1.00±0.47</td>
<td>−0.40±1.86±0.85</td>
<td>−0.49±0.36±0.28</td>
<td>0</td>
</tr>
<tr>
<td>+1.34±0.60±0.47</td>
<td>−0.02±1.31±0.83</td>
<td>−2.03±1.62±0.81</td>
<td>+0.17±0.57±0.35</td>
<td>0</td>
</tr>
</tbody>
</table>

arising from a non-zero value of \(U_-^- \). Note that this is not a CP-violating effect, since \(\rho^- \pi^+ \) is not a CP-eigenstate. No sine-like asymmetry is observed in any of the regions (g)–(i).

The non-interfering parameters can be interpreted as the quasi-two-body parameters of the process \(B^0 \rightarrow \rho^+ \pi^- \), whose definitions can be found elsewhere [13], and the CP violation parameters of the process \(B^0 \rightarrow \rho^0 \pi^0 \): \(\mathcal{A}_{\rho^{\pi 0}} = -U_0^+/U_+^+ \) and \(\mathcal{S}_{\rho^{\pi 0}} = 2I_0/U_0^+ \). These are also listed in the Table I.

There are several sources of systematic uncertainty. To determine their magnitudes, we vary each possible contribution to the systematic error by its uncertainty in the data fit or in the MC, and take the resultant deviations in the fitted parameters as errors. We add each contribution in quadrature to obtain the total systematic uncertainty. The largest contribution for the interfering parameters comes from radiative excitations. We take account of possible deviations of \(\beta, \gamma \) from the \((\beta, \gamma) \) values, and uncertainties of \(\beta, \gamma \), and the mass and width of each resonance. Large contributions to the systematic errors for the non-interfering parameters come from potential backgrounds such as \(B^0 \rightarrow f_0(980)\pi^0, f_0(600)\pi^0, \omega \pi^0 \), and non-resonant \(\pi^+ \pi^- \), which we neglect in our nominal fit. We perform fits to toy MC including these backgrounds with the branching fractions at their 68.3% C.L. upper limits, which we obtain from our data or world averages [11, 20]; the largest variations are taken as systematic errors. Comparable contributions also come from vertex reconstruction, background PDF’s, and tag-side interference [21]; more detail can be found elsewhere [18].

We constrain \(\phi_2 \) from the 26 parameters measured in our analysis following the formalism of Ref. [3] and the statistical treatment using toy MC described in Ref. [22]. The resulting 1−C.L. function is shown in Fig. 3 as a dotted curve. To incorporate all available knowledge, we combine our measurement with results on the branching fractions for \(B^0 \rightarrow \rho^+ \pi^- \) and \(B^+ \rightarrow \rho^0 \pi^0 \), and flavor asymmetries of the latter two [20]. Assuming isospin (pentagon) relations [6, 7] and following the same procedure as above, we perform a full Dalitz and pentagon combined analysis, the result of which is shown in Fig. 3 as the solid curve. We obtain 68° < \(\phi_2 < 95° \) as the 68.3% confidence interval for the solution consistent

FIG. 2: Mass (a)–(c) and helicity (d)–(f) distributions, and background subtracted asymmetry plots in the good tagging quality region \(l \geq 3 \) (g)–(i), corresponding to the \(\rho^+ \pi^- \) [(a),(d),(g)], \(\rho^0 \pi^+ \) [(b),(e),(h)], and \(\rho^0 \pi^0 \) [(c),(f),(i)] enhanced regions. The notations for histograms (a)–(f) are the same as Fig. 1.

FIG. 3: 1−C.L. vs. \(\phi_2 \). Dotted and solid curves correspond to the result from the TDPA only and that from the TDPA and an isospin (pentagon) combined analysis, respectively.
with the SM expectation. A large SM-disfavored region (0° < \phi_2 < 5°, 23° < \phi_2 < 34°, and 109° < \phi_2 < 180°) also remains. In principle, with more data we may be able to remove the additional \phi_2 solutions.

In summary, using 414 fb^{-1} of data we have performed a full Dalitz plot analysis of the \(B^0 \rightarrow \pi^+\pi^-\pi^0\) decay mode, where the observables include the first measurement of \(S_{\rho\pi\pi}\). A full time-dependent Dalitz plot analysis with the pentagon isospin relation is performed for the first time and a constraint on the angle \phi_2 is obtained.

We thank the KEKB group for excellent operation of the accelerator, the KEK cryogenics group for efficient solenoid operations, and the KEK computer group and the NII for valuable computing and Super-SINET network support. We acknowledge support from MEXT and JSPS (Japan); ARC and DEST (Australia); NSFC and KIP of CAS (China); DST (India); MOEHRD, KOSEF and KRF (Korea); KBN (Poland); MIST (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE (USA).

[3] Throughout this Letter, the inclusion of the charge conjugate decay mode is implied unless otherwise stated.
[4] Another naming convention, \alpha (= \phi_2), is also used in the literature.