Studies of $B_s^0 \to \pi^0 \pi^0(0)$ decays in the pQCD approach

Xin Liua, Zhen-Jun Xiaoby, Hui-Sheng Wangc

a: Department of Physics, Zhejiang Ocean University, Zhoushan, Zhejiang 316000, P. R. China

b: Department of Physics and Institute of Theoretical Physics, Nanjing Normal University, Nanjing, Jiangsu 210097, P. R. China and

c: Department of Applied Mathematics and Physics, Anhui University of Technology and Science, Wuhan, Anhui 241000, P. R. China

(Dated: April 4, 2013)

Abstract

We calculate the CP-averaged branching ratios and CP-violating asymmetries for $B_s^0 \to \pi^0 \pi^0$ and $B_s^0 \to \phi \phi(0)$ decays in the perturbative QCD (pQCD) approach here. The pQCD predictions for the CP-averaged branching ratios are $\mathcal{B}(B_s^0 \to \pi^0 \pi^0) = 14.2^{+18.3}_{-7.9} \times 10^{-6}$, $\mathcal{B}(B_s^0 \to \phi \phi(0)) = 12.4^{+18.2}_{-7.9} \times 10^{-6}$, and $\mathcal{B}(B_s^0 \to \phi \phi(0)) = 9.2^{+15.3}_{-4.9} \times 10^{-6}$, which agree well with those obtained by employing the QCD factorization approach and also be consistent with available experimental upper limits. The gluonic contributions are small in size: less than 7% for $B_s^0 \to \pi^0 \pi^0$ decays, and around 18% for $B_s^0 \to \phi \phi(0)$ decay. The CP-violating asymmetries for three decays are very small: less than 3% in magnitude.

PACS numbers: 13.25.Hw, 12.38.Bx, 14.40.Nd
Among various $B_s \rightarrow M_1M_2$ decay channels (here M_1 refers to the light pseudo-scalar or vector mesons), the decays involving the isosinglet or 0 mesons in the final state are phenomenologically very interesting and have been studied extensively during the past decade because of the so-called K^0 puzzle or other special features [1,2,3,4].

Motivated by the large number of B_s production and decay events expected at the forthcoming LHC experiments, the studies about the B_s meson decays become more attractive than ever before. Very recently, some two-body B_s ! M_1 (0) decays, such as B_s ! ($; ;!;)$ (0) decays have been studied in Refs. [3,4] in the perturbative QCD (pQCD) factorization approach [5,6,7,8]. In this paper, we would like to calculate the branching ratios and CP asymmetries for the three B_s ! $; 0$ and 0 decays by employing the low energy effective Hamiltonian [10] and the pQCD approach. Besides the usual factorizable contributions, we here are able to evaluate the non-factorizable and the annihilation contributions to these decays.

On the experimental side, only the poor upper limit on $\text{Br}(B_s^0 \rightarrow \phi K^+ K^-)$ is available now [11] (upper limit at 90% C.L.):

$$\text{Br}(B_s^0 \rightarrow \phi K^+ K^-) < 1.5 \times 10^{-3};$$ (1)

Of course, this situation will be improved rapidly when LHC experiment starts to run at the end of 2007.

This paper is organized as follows. In Sec. I, we calculate analytically the related Feynman diagrams and present the various decay amplitudes for the studied decay modes. In Sec. II, we show the numerical results for the branching ratios and CP asymmetries of $B_s^0 \rightarrow \phi K^+ K^-$. A short summary and some discussions are also included in this section.

I. PERTURBATIVE CALCULATIONS

Since the b quark is rather heavy we consider the B_s meson at rest for simplicity. It is convenient to use light-cone coordinates $(p^+; p^-; p_T)$ to describe the meson's momenta: $p = (p^0; p^3) = \frac{1}{2} (p^+ + p^-)$ and $p_T = (p^1; p^2)$. Using the light-cone coordinates the B_s meson and the two final state meson momenta can be written as

$$P_1 = \frac{M_{B_s}}{2} (1; 1; 0_T); \quad P_2 = \frac{M_{B_s}}{2} (1; 0; 0_T); \quad P_3 = \frac{M_{B_s}}{2} (0; 1; 0_T);$$ (2)

respectively, here the light meson masses have been neglected. Putting the light (anti-) quark momenta in B_s, 0 and 0 mesons as k_1, k_2, and k_3, respectively, we can choose

$$k_1 = (x_1 P_1^+ ; 0; k_{1T}); \quad k_2 = (x_2 P_2^+ ; 0; k_{2T}); \quad k_3 = (0; x_3 P_3 ; k_{3T});$$ (3)

Then, after the integration over k_1, k_2, and k_3^+, the decay amplitude for B_s ! 0 decay, for example, can be conceptually written as

$$A(B_s ! ^0) \ dx_1 dx_2 dx_3 d\lambda_3 d\sigma_2 d\sigma_1 d\beta_2 d\beta_1 db_3 db_2 db_1 db \times$$

$$\text{Tr} C(t) B_s (x_1; \lambda_3) \phi (x_2; \sigma_2) \phi (x_3; \sigma_1) H (x_1; \beta_2; \beta_1) S_T (x_1) e^{-i S(t)};$$ (4)
where k_i are mom ena of light quarks included in each meson, term T_r denotes the trace over Dirac and color indices, $C(t)$ is the W 1son coef cient evaluated at scale t, the function $H(k_1,k_2;k_3,t)$ is the hard part and can be calculated perturbatively, the function \mathcal{M} is the wave function, the function $S_{\mathcal{I}}(x_i)$ describes the threshold ream mation \cite{12} which smears the end-point singularities on x_i, and the last term $e^{S(t)}$, is the Sudakov form factor which suppresses the soft dynam i e e ctively . We will calculate analytically the function $H(x_i,b_i;t)$ for the considered decays in the rst order in α_s expansion and give the con voluted am pitudes in next section.

For the two-body charm less B_s meson decays, the related weak eective H amiltonian H_{eff} can be written as \cite{10}

$$
H_{\text{eff}} = \frac{G_F}{2} V_{ub} V_{eq} (C_1(\gamma) O_{1\gamma_1}(\gamma) + C_2(\gamma) O_{1\gamma_2}(\gamma)) \ V_{ub} V_{eq} C_1(\gamma) O_{1\gamma_1}(\gamma) ; \quad (5)
$$

where $C_i(\gamma)$ are W 1son coef cients at the renom alization scale , and $O_{1\gamma}$ are the four- f e m ion operators for the case of $b \rightarrow q$ ($q = d,s$) transition \cite{3,14}. For the W 1son coef cients $C_i(\gamma)$ ($i = 1,\ldots,10$), we will use the leading order (LO) expressions, although the next-to-leading order (NLO) results already exist in the literature \cite{10}. This is the consistent way to cancel the explicit dependence in the theoretical f omulae. For the renom alization group evolution of the W 1son coef cients from higher scale to lower scale, we use the f omulae as given in Ref.\cite{13} directly.

A. Decay am pitudes

We rstly take $B_s^0 \rightarrow 0^0$ decay m ode as an exam pl e, and then extend our study to $B_s^0 \rightarrow 0^0$ decays. Similar to the $B_s^0 \rightarrow 0^0$ decays in \cite{3}, there are 8 type diagram s contributing to the $B_s^0 \rightarrow 0^0$ decays, as illustrated in Fig.1. We rst calculate the usual factorizable diagram s (a) and (b). Operators $O_{1\mathcal{I},\mathcal{J}}$ are $(V\ A)(V\ A)$ currents, the sum of their am pitudes is given as

$$
F_e = \sum_{\mathcal{I}} \sum_{\mathcal{J}} C_F m_{B_s}^4 \ dx_1 dx_3 \ \ b_1 \ M_{B_s} (x_1; b_1) \ b_2 \ M_{B_s} (x_1; b_2) \ b_3 \ b_4 \ x_1 \ b_5 \ b_6 \ \ b_7 \ b_8 (x_1; b_1)
$$

$$
(1 + x_3)^h_{e} (x_3; b_3) \ + (1 + 2x_3)^h_{e} (x_3; b_3) \ + (1 + 2x_3)^h_{e} (x_3; b_3) \ exp\{ S_{ab}(t^e_{1})\}
$$

$$
+ 2r (x_3; b_3) \ M_{B_s} (x_1; b_1; b_2; b_3) \ M_{B_s} (x_1; b_1; b_2; b_3) \ \ exp\{ S_{ab}(t^e_{1})\} ;
$$

where $r = m_0^2 m_B^2 ; C_F = 4 = 3$ is a color factor. The explicit expressions of the function h_{e}, the scales t^e_{1} and the Sudakov factors S_{ab} can be found Ref.\cite{3}. The form factors of B_s to decay, $F_{B_s^0}^{0^0}(0)$, can thus be extracted from the expression in Eq.\cite{6}.

The operators $O_{5\mathcal{I},\mathcal{J}}$ have a structure of $(V\ A)(V\ A)$. Some of these operators can contribute to the decay amplitude in a factorizable way, but others may contribute after making a Fierz trans formation in order to get right avor and color structure for

3
FIG. 1: Typical Feynman diagrams contributing to the $B_s \to \eta' \eta$ decays, where diagram (a) and (b) contribute to the $B_s \to \eta' \eta$ form factor $F_{0,1}^{B_s}$. Factorization to work. Such kinds of contributions can be written as

$$F_{e}^{P1} = F_{e}: \quad (7)$$

$$F_{e}^{P2} = 16 \ C_F \ m_{B_s}^{4} \ \frac{(f_0^s f_0^u) m_{B_s}^2}{2m_{s} m_{B_s}} \ Z_1 \ \int dx_1 dx_3 \ b_3 b_2 db_3 b_2 b_3 \ 0 \ b_3 b_2 db_3 b_2 b_1 (x_1; b_1)$$

$$A \ (x_3; b_3) + \ x_3 (2 + x_3)^p (x_3; b_3) \ x_3 T (x_3; b_3))$$

$$s(t_e^3) h_{e} (x_1; x_3; b_3; b_2) \ exp \{ S_{ab}(t_e^3) \} + x_1 A \ (x_3; b_3) 2(x_1; 1) x_1^p (x_3; b_3)$$

$$s(t_e^3) h_{e} (x_1; x_3; b_3; b_2) \ exp \{ S_{ab}(t_e^3) \} : \quad (8)$$

For the non-factorizable diagrams 1(c) and 1(d), the corresponding decay amplitudes
can be written as

\[M_e = \frac{16}{3} C_F m_{B_s}^4 \int_0^1 dx_1 dx_2 dx_3 b_3 b_4 b_5 b_6 B_s (x_1; b_1) A_6 (x_2; b_2) \]

\[2 x_3 r^T (x_3; b_3) x_3 (x_3; b_3) \]

\[s(t_r) h_r (x_1; x_2; x_3; b_1; b_2) \exp \left(S_{\text{ef}} (t_r) \right) ; \tag{9} \]

\[M_e^{P1} = 0; \tag{10} \]

\[M_e^{P2} = M_e : \tag{11} \]

For the non-factorizable annihilation diagram 1(e) and 1(f), we find

\[M_a = \frac{16}{3} C_F m_{B_s}^4 \int_0^1 dx_1 dx_2 dx_3 b_3 b_4 b_5 b_6 B_s (x_1; b_1) \]

\[x_2 A (x_3; b_2) A_6 (x_2; b_2) \]

\[+ r r o (x_2 + x_3 + 2) p_s (x_2; b_2) + (x_2 - x_3) T_0 (x_2; b_2) p_s (x_2; b_2) \]

\[+ r r o (x_2 - x_3) p_s (x_3; b_3) + (x_2 + x_3 - 2) T_0 (x_2; b_2) T_0 (x_3; b_2) \]

\[s(t_r^2) h_r^2 (x_1; x_2; x_3; b_1; b_2) \exp \left(S_{\text{ef}} (t_r^2) \right) ; \tag{12} \]

\[M_a^{P1} = \frac{16}{3} C_F m_{B_s}^4 \int_0^1 dx_1 dx_2 dx_3 b_3 b_4 b_5 b_6 B_s (x_1; b_1) \]

\[(x_3 - 2) r^A (x_2; b_2) (p_s (x_3; b_2) + T_0 (x_3; b_2)) \]

\[(p_s (x_3; b_2) + T_0 (x_3; b_2)) s(t_r^2) h_r^2 (x_1; x_2; x_3; b_1; b_2) \exp \left(S_{\text{ef}} (t_r^2) \right) \]

\[x_3 r^A (x_2; b_2) (p_s (x_3; b_2) + T_0 (x_3; b_2)) \]

\[x_2 r^A (x_3; b_2) (p_s (x_2; b_2) + T_0 (x_2; b_2)) \]

\[s(t_r^2) h_r^2 (x_1; x_2; x_3; b_1; b_2) \exp \left(S_{\text{ef}} (t_r^2) \right) ; \tag{13} \]

\[M_a^{P2} = \frac{16}{3} C_F m_{B_s}^4 \int_0^1 dx_1 dx_2 dx_3 b_3 b_4 b_5 b_6 B_s (x_1; b_1) \]

\[x_3 A (x_3; b_2) A_6 (x_2; b_2) \]

\[+ r r o (x_2 + x_3 + 2) p_s (x_2; b_2) + (x_2 - x_3) T_0 (x_2; b_2) p_s (x_2; b_2) \]

\[+ r r o (x_2 - x_3) p_s (x_3; b_3) + (x_2 + x_3 - 2) T_0 (x_2; b_2) T_0 (x_3; b_2) \]

\[s(t_r^2) h_r^2 (x_1; x_2; x_3; b_1; b_2) \exp \left(S_{\text{ef}} (t_r^2) \right) ; \tag{14} \]
For the factorizable annihilation diagrams s 1(g) and 1(h), we have
\[F_a = F_a^{P_1} = 8 \, C_F \, m^4_{B_a} \int_0^1 dx_2 \, dx_3 \, b_2 b_2 b_2 b_2 x_3 \, A \left(x_3, b_3 \right) A \left(x_2, b_2 \right) \]
\[+ 2 r \, r \left(x_3 + 1 \right) P^r \left(x_3, b_3 \right) + x_3 \, T^r \left(x_3, b_3 \right) F_0 \left(x_2, b_2 \right) \]
\[s \left(t^4 \right) A \left(x_2, x_3, b_2, b_3 \right) \exp \left[S_{gh} \left(t^4 \right) \right] \]
\[x_2 \, A \left(x_3, b_3 \right) A \left(x_2, b_2 \right) \]
\[+ 2 r \, r \left(x_2 + 1 \right) P^r \left(x_2, b_2 \right) + x_2 \, T^r \left(x_2, b_2 \right) F_0 \left(x_2, b_2 \right) \]
\[s \left(t^4 \right) A \left(x_2, x_3, b_2, b_3 \right) \exp \left[S_{gh} \left(t^4 \right) \right] \]
\[x_2 \, A \left(x_3, b_3 \right) A \left(x_2, b_2 \right) \]
\[+ 2 r \, r \left(x_2 + 1 \right) P^r \left(x_2, b_2 \right) + x_2 \, T^r \left(x_2, b_2 \right) F_0 \left(x_2, b_2 \right) \]
\[s \left(t^4 \right) A \left(x_2, x_3, b_2, b_3 \right) \exp \left[S_{gh} \left(t^4 \right) \right] \]
\[x_2 \, A \left(x_3, b_3 \right) A \left(x_2, b_2 \right) \]...

For the B_s^0 decay, besides the Feynman diagrams as shown in Fig. 1 where the upper emitted meson is the 0, the Feynman diagrams obtained by exchanging the position of 0 and 0 also contribute to this decay mode. The corresponding expressions of amplitudes for new diagrams will be similar to those as given in Eqs. (15), since the 0 and 0 are all light pseudoscalar mesons and have the similar wave functions. The expressions of amplitudes for new diagrams can be obtained by the replacements
\[A \mapsto s; \quad P \mapsto P_0; \quad T \mapsto T_0; \quad r \mapsto r_0; \quad (17) \]

For example, we find that:
\[F_{e, s} = F_{e}; \quad F_a, s = F_a; \quad F_a^{P_1} = F_a^{P_1}; \quad F_a^{P_2} = F_a^{P_2}; \]
\[(18) \]

Before we write down the complete decay amplitude for the studied decay modes, we first give a brief discussion about the 0 mixing and the gluonic component of the 0 meson. There exist two popular mixing basis for 0 system, the octet-singlet and the quark flavor basis, in literature. Here we use the SU(3)_c octet-singlet basis with the two mixing angle (1, 8) scheme [14] to describe the mixing of 0 and 0 mesons. In the numerical calculations, we will use the following mixing parameters [14]
\[\theta = 21.2; \quad \bar{s} = 9.2; \quad f_1 = 11.7f; \quad f_8 = 1.26f; \]
\[(19) \]

In this paper, we first take 0 and 0 as a linear combination of light quark pairs uu dd and ss, and then estimate the possible gluonic contributions to B_s^0 (3) (3) decays by using the formulae as presented in Ref. [14]. We found that the possible gluonic contributions are indeed small.
B. Complete decay amplitudes

For B_0^0 decay, by combining the contributions from different diagrams, the total decay amplitude can be written as

$$M(0) = F_e F^d_{2f} + F_e F^0_{2f} \ u \ C_1 + \frac{1}{3} C_2$$

$$F_e F^d_{2f} + F_e F^0_{2f}$$

$$t \ \left[\frac{7}{3} C_3 + \frac{5}{3} C_4 - 2 C_5 \ \frac{2}{3} C_6 + \frac{1}{2} C_7 + \frac{1}{6} C_8 + \frac{1}{3} C_9 + \frac{1}{3} C_{10} \right]$$

$$F^p_{eF_2} + F^p_{eF_0} \ t \ \left[\frac{1}{3} C_5 + C_6 \ \frac{1}{6} C_7 + \frac{1}{2} C_8 \right]$$

$$+ (M_e + M_{e^0}) F^0_{2F_2} \ u \ C_2 \ t \ \left[C_3 + 2 C_4 \ \frac{1}{2} C_9 + \frac{1}{2} C_{10} \right]$$

$$[M_e F^0_{1F_2} + M_{e^0} F^0_{1F_2}] \ t \ \left[C_4 \ \frac{1}{2} C_{10} \right]$$

$$M^p_{eF_2} + M^p_{e^0} \ F^0_{2F_2} \ t \ \left[2 C_5 + \frac{1}{2} C_8 \right]$$

$$M^p_{eF_2} + M^p_{e^0} \ F^0_{1F_2} \ t \ \left[C_6 \ \frac{1}{2} C_8 \right]$$

$$+ (M_a + M_{a^0}) F^0_{1F_1} \ u \ C_2 \ \left[C_3 + 2 C_4 \ \frac{1}{2} C_9 + \frac{1}{2} C_{10} \right]$$

$$(M_a + M_{a^0}) F^0_{2F_2} \ t \ \left[C_4 \ \frac{1}{2} C_{10} \right]$$

$$M^p_{aF_2} + M^p_{a^0} \ F^0_{2F_2} \ t \ \left[C_5 \ \frac{1}{2} C_7 \right]$$

$$M^p_{aF_2} + M^p_{a^0} \ F^0_{1F_1} \ t \ \left[2 C_5 + \frac{1}{2} C_8 \right]$$

$$M^p_{aF_2} + M^p_{a^0} \ F^0_{2F_2} \ t \ \left[C_6 \ \frac{1}{2} C_8 \right]$$

$$f_B \ \left[F^p_{aF_2} + F^p_{a^0} \ F^0_{2F_2} \ t \ \left[\frac{1}{6} C_5 + C_6 \ \frac{1}{6} C_7 + \frac{1}{2} C_8 \right] \right]$$

$$; \ (20)$$
where \(u = V_{ub}V_{us} \) and \(t = V_{tb}V_{ts} \), and the relevant mixing parameters and decay constants are
\[
F_1 = \frac{1}{2} \sin \theta + \frac{1}{2} \cos \theta; \quad F_2 = \frac{1}{3} \sin \theta + \frac{1}{3} \cos \theta; \quad F_1^0 = \frac{1}{6} \sin \theta + \frac{1}{6} \cos \theta; \quad F_2^0 = \frac{1}{3} \sin \theta + \frac{1}{3} \cos \theta; \quad (21)
\]
\[
f^d = \frac{f_{6}^s}{6} \cos \theta + \frac{f_{1}^s}{3} \sin \theta; \quad f^a = \frac{f_{6}^s}{3} \cos \theta + \frac{f_{1}^s}{3} \sin \theta; \quad (22)
\]
\[
f^d_0 = \frac{f_{6}^s}{6} \sin \theta + \frac{f_{1}^s}{3} \cos \theta; \quad f^a_0 = \frac{f_{6}^s}{3} \sin \theta + \frac{f_{1}^s}{3} \cos \theta; \quad \ (23)
\]
Similarly, the decay amplitudes for \(B_s^0 \) and \(B_s^0 \) decay can be obtained easily from Eq. (20) by the following replacements
\[
f^d; f^a \rightarrow f^d_0; f^a_0; F_1(1; 8) \to F_1^0(1; 8); \quad F_2(1; 8) \to F_2^0(1; 8); \quad (25)
\]
Note that the contributions from the possible gluonic component of \(0 \) meson have not been included here.

II. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we will calculate the CP-averaged branching ratios and CP violating asymmetries for those considered decay modes. The input parameters and the wave functions to be used are given in Appendix A. In numerical calculations, central values of input parameters will be used in plicity unless otherwise stated.

Using the decay amplitudes obtained in last section, it is straightforward to calculate the branching ratios. By employing the two mixing angle scheme of \(0 \) system and using the mixing parameters as given in Eq. (19), one finds the CP-averaged branching ratios for the considered three decays as follows
\[
Br(B_s^0 \to \tau^- \nu) = 142^{+52}_{-42} \times 10^{-6} \quad (26)
\]
\[
Br(B_s^0 \to \mu^- \bar{\nu}) = 124^{+57}_{-50} \times 10^{-6} \quad (27)
\]
\[
Br(B_s^0 \to \mu^- \bar{\nu}) = 9.2^{+3.5}_{-2.5} \times 10^{-6} \quad (28)
\]
where the main errors are induced by the uncertainties of \(\Delta m = 0.00 \pm 0.05 \) GeV, and \(m_{s} = [1.49 \pm 2.38] \) GeV (corresponding to \(m_s = 130 \pm 20 \) GeV), respectively. The above pQCD predictions agree well with those obtained in the QCD factorization approach [4].

As for the gluonic contributions, we follow the same procedure as being used in Ref. [4] to include the possible gluonic contributions to the \(B_s^0 \) \(\to \pi^+ \pi^- \) transition form factors \(F_{B_s^+}^\pi \) and found that the gluonic contributions to the branching ratios are less than 3% for \(B_s^0 \) \(\to \tau^- \nu \) decay, 7% for \(B_s^0 \to \mu^- \bar{\nu} \) decay, and around 18% for \(B_s^0 \to \mu^- \bar{\nu} \) decay. The central values of the pQCD predictions for \(B_s^0 \) \(\to \pi^+ \pi^- \) decays after the inclusion of possible gluonic contributions are the following
\[
Br(B_s^0 \to \tau^- \nu) = 137^{+63}_{-45} \times 10^{-6} \quad (29)
\]
\[
Br(B_s^0 \to \mu^- \bar{\nu}) = 115^{+53}_{-45} \times 10^{-6} \quad (29)
\]
\[
Br(B_s^0 \to \mu^- \bar{\nu}) = 10.2^{+3.7}_{-2.4} \times 10^{-6} \quad (29)
\]
Now we turn to the evaluation of the CP-violating asymmetries of B_s !\(^{15,16}\). For B_s^0 meson decays, a non-zero ratio (γ) is expected in the SM \(^{15,16}\). For B_s^0 !\(^{15,16}\) decays, three quantities to describe the CP violation can be defined as follows \(^{16}\):

\[
A_{CP}^{\text{dir}} = \frac{j_{CP}^2 - 1}{1 + j_{CP}^2}; \quad A_{CP}^{\text{mix}} = \frac{2\text{Im}(c_{CP})}{1 + j_{CP}^2}; \quad A_{\gamma} = \frac{2\text{Re}(c_{CP})}{1 + j_{CP}^2};
\]

with

\[
c_{CP} = \frac{V_{ub}V_{ts}h_f H_{\text{eff}} B_s^0 + i}{V_{ub}V_{ts}h_f H_{\text{eff}} B_s^0 + i};
\]

in a very good approximation. Here A_{CP}^{dir} and A_{CP}^{mix} means the direct and mixing-induced CP violation respectively, while the third term A_{γ} is related to the presence of a non-negligible γ. By using the mixing parameters as given in Appendix A, one found the pQCD predictions for $A_{CP}^{\text{dir}}, A_{CP}^{\text{mix}}$ and H_f:

\[
A_{CP}^{\text{dir}}(B_s^0) = 0.2 + i(0.1) \quad \text{with} \quad A_{CP}^{\text{mix}}(B_s^0) = 0.3(0.1) \quad \text{and} \quad H_f = 0.2(0.1);
\]

\[
A_{CP}^{\text{dir}}(B_s^0) = 0.2 + i(0.1) \quad \text{with} \quad A_{CP}^{\text{mix}}(B_s^0) = 0.3(0.1) \quad \text{and} \quad H_f = 0.2(0.1);
\]

\[
A_{CP}^{\text{dir}}(B_s^0) = 0.2 + i(0.1) \quad \text{with} \quad A_{CP}^{\text{mix}}(B_s^0) = 0.3(0.1) \quad \text{and} \quad H_f = 0.2(0.1);
\]

where the dominant errors come from the variations of CKM angle $= 60 \pm 10 \degree$, $\gamma = 0.50 \pm 0.05$ GeV and $m_s^{\text{eff}} = [1.49 \pm 0.03]$ GeV (corresponding to $m_s = 130 \pm 30$ MeV), respectively. It is easy to see that both the direct and mixing-induced CP violations of the considered B_s decays are very small in magnitude, and thus almost impossible to measure in the LHC experiments. The above pQCD predictions are also consistent with the QCD predictions \(^{11,12}\).

In short, we calculated the branching ratios and CP-violating asymmetries of B_s^0 !\(^{15,16}\), B_s^0 and $B_s^{0,0}$ decays at the leading order by using the pQCD factorization approach. Besides the usual factorizable diagrams, the non-factorizable and annihilation diagrams are also calculated analytically in the pQCD approach. From our calculations and phenomenological analysis, we found the following results:

Using the two mixing angle scheme, the pQCD predictions for the CP-averaged branching ratios are

\[
B_r(B_s^0) = 14.2^{+18.6}_{-7.6} \times 10^{-6};
\]

\[
B_r(B_s^0) = 12.4^{+18.2}_{-7.9} \times 10^{-6};
\]

\[
B_r(B_s^0) = 9.2^{+15.3}_{-4.9} \times 10^{-6};
\]

where the various errors as specified previously have been added in quadrature. The pQCD predictions for the three decay channels agree well with those obtained by employing the QCD approach.
The gluonic contributions are small in size: less than 7% for B_s^0 and B_s^0 decays, and around 18% for B_s^0 decay.

The direct and mixing-induced CP violations of the considered three decay modes are very small: less than 3% in magnitude.

Note added: After completion of this paper, the paper in Ref. [13] appeared, and where a systematic study for the B_s^0 M_1M_2 decays in the pQCD factorization approach has been done. Since different mixing-scheme of B_s^0 system have been used, the explicit expressions of the decay amplitudes of the relevant decays are different in these two papers, but the numerical predictions for branching ratios and CP violations agree well with each other. The possible gluonic contributions are estimated here.

Acknowledgments

X. Liu would like to acknowledge the financial support of The Scientific Research Start-up Fund of Zhejiang Ocean University under Grant No. 21065010706. This work was partially supported by the National Natural Science Foundation of China under Grant No. 10575052, and by the Specialized Research Fund for the Doctoral Program of Higher Education (SRFDP) under Grant No. 20050319008.

APPENDIX A: INPUT PARAMETERS AND WAVE FUNCTIONS

In this Appendix we show the input parameters and the light meson wave functions to be used in the numerical calculations.

The masses, decay constants, QCD scale and B_s^0 meson lifetime are

$$
\begin{align*}
M_s^f &= 250\text{ MeV} ; & f &= 130\text{ MeV} ; & f_{B_s} &= 230\text{ MeV} ; \\
m_0 &= 1\text{ MeV} ; & m_s &= 130\text{ MeV} ; & f_K &= 160\text{ MeV} ; \\
M_{B_s} &= 5.37\text{ GeV} ; & M_{W} &= 80.41\text{ GeV} ; & B_{s}^0 &= 1.46 \times 10^{-12}\text{ s} \quad (A1)
\end{align*}
$$

For the CKM matrix elements, here we adopt the Wolfenstein parametrization for the CKM matrix, and take $\lambda = 0.2272; A = 0.818; = 0.221$ and $B = 0.340 [11]$. For the B_s meson wave function, we adopt the model

$$
B_s(x;b) = N_{B_s} x^2(1-x)^2 \exp \left(\frac{M_{B_s}^2}{2! B_s^2} \right) \frac{1}{2} (\lambda b)^2 ; \quad (A2)
$$

where b is a free parameter and we take $\lambda_b = 0.50$ and 0.05 GeV^2 in numerical calculations, and $N_{B_s} = 63.67$ is the normalization factor for $b = 0.50$.

For the distribution amplitudes A_{dd}^T, A_{dd}^P, and T_{dd}^T, we utilize the result from the light-cone sum rule [17] including twist-3 contribution. For the corresponding Gegenbauer moments and relevant input parameters, we here use $a_2^{dd} = 0.115; a_4^{dd} = 0.015$, $a_4^{dd} = m$, $a_2^{dd} = 3 = 0.015$ and $a_3 = 3.0$. We also assume that the wave function of uu is the
same as the wave function of dd. For the wave function of the ss components, we also use the same form as dd but with \(m_{0}^{ss} \) and \(f_y \) instead of \(m_{0}^{dd} \) and \(f_x \), respectively:

\[q \]
\[f_x = f; \quad f_y = \frac{2f_{K}}{f^{2}} \]

(A3)

These values are translated to the values in the two mixing angle method:

\[f_1 = 1524 \text{MeV}; \quad f_{8} = 1638 \text{MeV}; \]
\[\theta = \frac{9.2}{8} = 21.2 \]

(A4)

The parameters \(m_{0}^{i}(i = dd, uu; ss) \) are defined as:

\[m_{0}^{dd(uu)} = m_{0}^{ss} \frac{m^{2}}{(m_{u} + m_{d})} \quad m_{0}^{ss} = \frac{2M_{K}^{2}}{(2m_{s})} \]

(A5)