The tensor part of the Skyrme energy density functional. I. Spherical nuclei

T. Lesinski,1 M. Bender,2,3 K. Bennaceur,1,2 T. Duguet,4 and J. Meyer1

1Université de Lyon, F-69003 Lyon, France; Institut de Physique Nucléaire de Lyon, CNRS/IN2P3, Université Lyon 1, F-69622 Villeurbanne, France
2DM/DAPNIA/SPbN, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France
3Université Bordeaux 1; CNRS/IN2P3; Centre d’Études Nucléaires de Bordeaux Gradignan, UMR 5797, Chemin du Solarium, BP120, F-33175 Gradignan, France
4National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA

(Dated: April 4, 2007)

We perform a systematic study of the importance of the J2 tensor term in the Skyrme energy functional on properties of spherical nuclei. In the Skyrme energy functional, the tensor term originates both from zero-range central and tensor forces. We build a set of 36 parametrizations which cover a wide range of the parameter space of the isoscalar and isovector tensor coupling constants with a protocol very similar to that of the successful SLy parametrizations. We analyze the importance of the tensor term on a large variety of observables in spherical mean-field calculations, such as the spin-orbit splittings and single-particle spectra of doubly-magic nuclei, the evolution of spin-orbit splittings along chains of semi-magic nuclei, mass residuals of spherical nuclei, and known anomalous levels of radioactivity. The main findings of our study are (i) tensor terms should not be added perturbatively to existing parametrizations, a complete set of the entire parameter set is imperative. (ii) The free variation of the tensor term does not lower the width of a standard Skyrme energy functional. (iii) For certain regions of the parameter space of their coupling constants, the tensor terms lead to instabilities of the spherical shell structure, or even the coexistence of two configurations with different spherical shell structure. (iv) The standard spin-orbit interaction does not scale properly with the principal quantum number, such that single-particle states with one or several nodes have too large spin-orbit splittings, while those of nodeless intruder levels are tentatively too small. Tensor terms with realistic coupling constants cannot cure this problem. (v) Positive values of the coupling constants of proton-neutron and like-particle tensor term allow for a qualitative description of the evolution of spin-orbit splittings in chains of Ca, Ni and Sn isotopes. (vi) For the same values of the tensor coupling constants, however, the overall agreement of the single-particle spectra in doubly-magic nuclei is deteriorated, which can be traced back to features of the single-particle spectra that are not related to the tensor term. We conclude that the currently used central and spin-orbit parts of the Skyrme energy density functional are not flexible enough to allow for the presence of large tensor terms.

I. INTRODUCTION

The strong nuclear spin-orbit interaction in nuclei is responsible for the observed magic number patterns in heavy nuclei. While a simple spin-orbit interaction allows for a qualitative description of the global features of shell structure, the available data suggest that single-particle energies evolve with neutron and proton number in a manner that cannot be related to the geometrical growth of the single-particle potential with N and Z. Many anomalous features of shell structure have been identified that do not fit into simple empirical systematics, and that challenge any global model of nucleon structure.

The evolution of shell structure with N and Z as a feature of self-consistent mean-field models has been known for long. To quote the pioneering study of shell structure in a self-consistent model performed by Bender et al.1, the most striking effect is the appearance of N = 16, 34 and 56 as neutron magic numbers for unstable nuclei, together with a weakening of the shell closure at N = 20 and 28. Various mechanisms that modify the appearance of gaps in the single-particle spectra have been discussed in detail in the literature. The two most prominent ones that were worked out by Dobaczewski et al. in Ref. 2, however, play a mainly a role for weakly-bound exotic nuclei far from stability, as they are directly or indirectly related to the physics of loosely bound single-particle states, namely that the enhancement of the difference of neutron density distribution reduces the spin-orbit coupling in neutron-rich nuclei on the one hand, and the interaction between bound orbitals and the continuum results in a quenching of shell effects in light and medium systems on the other hand. The former effect was also extensively discussed in the framework of relativistic mean-field models by Laizyssels et al.3,4, while the latter triggered a number of studies that discussed the potential relevance of this so-called Bogoliubov enhanced shell
quenching" to explain the abundance pattern from the astrophysical-process of nucleosynthesis [10,11,12].

These two effects take place in neutron-rich nuclei. In proton-rich nuclei, the Coulomb barrier suppresses both the di-neutron density and the coupling of bound proton states to the continuum. But the Coulomb interaction itself can also modify the shell structure: for super-heavy nuclei, it begins to destabilize the nucleus as a whole. Mean-field models predict that it amplitudes the shell oscillations of the densities for incompletely filled oscillator shells, which leads to strong variations of the density profile that feed back onto the single-particle spectra [13,14].

Interestingly, most theoretical papers about the evolution of shell structure from the last decade have speculated about new effects that mainly affect neutron shells in nuclei far from stability in the anticipation of the rare-isotope physics that might become accessible with the next generation of experimental facilities. The known anomalous, some of which have been known for a long time, and many more have been identified recently, concern also proton shells and already appear seemingly close to stability that "exotic phenomena can be ruled out for their explanation." In most cases, to paraphrase the authors of Ref. [15]. By contrast, this suggests that there exists a mechanism that induces a strong evolution of single-particle spectra already in stable nuclei that has been overlooked for long.

There is a prominent ingredient of the nucleon-nucleon interaction that has been ignored for decades in virtually all global nuclear structure models for medium and heavy nuclei, be it in microscopic or mesoscopic approaches or self-consistent mean-field methods. It is only very recently, that the systematics of discrepancies between mean-field predictions and experiment have triggered a renaissance of the tensor force in the description of finite medium- and heavy-mass nuclei.

The tensor force is a crucial and necessary ingredient of the bare nucleon-nucleon interaction [16,17], and consequently is contained in all ab-initio approaches that are available for light, mainly p-shell nuclei [18,19]. One of the first experimental signatures of the tensor force was the small, but finite quadrupole moment of the deuteron. In a boson-exchange picture of the bare nucleon-nucleon interaction, the tensor force originates from the exchange of pseudoscalar pions, which have both central and tensor couplings, see for example section 2.3 in Ref. [20] or appendix 13A of ref. [21]. In a nucleon-nucleon any-body system, the bare tensor forces induce a strong correlation between the spatial and spin orientations in the two-body density matrix. For two nucleons with parallel spins, the tensor force energetically favors the configuration where the distance vector is aligned with the spins, while for antiparallel spins the tensor force prefers when the distance vector is perpendicular to the spins, see the discussion of Fig. 13 in Ref. [22] and of Fig. 3 in Ref. [23]. The authors of these papers also demonstrate very nicely the well-known fact [20,25] that in an approach that starts from the bare nucleon-nucleon interaction, nuclei are not bound without taking into account the two-body correlations induced by the tensor force.

The role of the tensor force, however, manifests itself differently in self-consistent mean-field models, otherwise called energy density functional (EDF) methods, the tool of choice for medium and heavy nuclei. The latter methods use an independent-particle state as a reference state to express the energy of the correlated nuclear ground state. Thus, correlations are not explicit present in the higher-order density matrices of the reference state, but rather included under the form of a more elaborated functional of the (locally and nonlocally) one-body density matrix of that reference state. In such a scheme, most of the effect of the bare tensor force on the binding energy is integrated out through the renormalization of the coupling constants associated with a collective active vertex, in a similar fashion as the tensor part of the bare interaction is renormalized into the central one when going from the bare nucleon-nucleon force to a bare nucleon-G matrix. The tensor term of the EDF relates to a residual vertex, which gives nothing but a correction to the spin-orbit splittings, which for light p-shell nuclei might be of the same order as the contribution from the genuine spin-orbit force. The interplay of spin-orbit and tensor forces in the mean-field G-matrix and heavy nuclei was explored in Refs. [24,27,28], where the particular role of spin-un saturated shells was pointed out.

There are two widely used effective interactions for non-relativistic self-consistent mean-field models, the zero-range non-local Skyrme e interaction [30,31,32,33] on the one hand and the non-range G-matrix on the other hand.

In fact, the effective zero-range non-local interaction proposed by Skyrme in 1956 [30,31,32,33] already contained a zero-range tensor force. The first applications of Skyrme interaction in self-consistent mean-field models that became available around 1970, however, neglected the tensor force, and the simplest effective Skyrme interaction used in the seminal paper by Vautherin and Brink [34] soon became the standard Skyrme interaction that was used in most applications ever since. Until very recently, there was only very little exploratory work on Skyrme e interaction. In their early study, Stancu, Brink and Flocard [35], who added the tensor force perturbatively to the III parametrization, pointed out that some spin-orbit splittings in magic nuclei can be improved with a tensor force. A complete treatment including the term s from the tensor force that contribute to spherical nuclei was attempted by Tondeur [36], with the relevant coupling constants of the spin-orbit and tensor terms adjusted to selected spin-orbit splittings in 160,40Ca and 208Pb. Another complete treatment of a generalized Skyrme e interaction including a tensor force was performed by Liu et al. [37], but the authors did not investigate the effect of the tensor force in detail, nor was the resulting parameterization ever used in the literature thereafter.

Similarly, the seminal paper by Gogny [38] on the eval-
neutron, and the tensor force is slightly different in Skyrme and Gogny interactions. In the Gogny force, the contributions from the central and tensor parts remain explicitly distinct, although, of course, this does not prevent a certain entanglement of their physical effects. In the context of Skyrme's functional, however, the contribution of a zero-range tensor force to the spherical mean-α state of an even-even nucleus has exactly the same form as a particular exchange term from the non-local part of the central Skyrme force. When looking at spherical nuclei only, adding Skyrme's tensor force simply allows one to decouple a term that is already provided by the central force. This indeed makes the eective interaction-resstricted functional more editable, as the additional degrees of freedom from the tensor force remove an interdependence between the eective mass, the surface term s, and the tensor term s. However, one must always keep in mind that both the central and tensor part of the eective vertex contribute to the so-called J^2 tensor term s of the functional.

In the context of relativistic mean-α models, the equivalent of the non-relativistic tensor force appears as the exchange term of the eective eils with the quantum numbers of the pion, which by construction do not appear in the standard relativistic Hartree models. Only relativistic Hartree-Fock or models contain this tensor force, with the rst predictive param eterizations becoming available just recently [43].

We also mention that there is a large body of work on the tensor force in the interacting shell model, see Ref. [44] for a review, that concentrates on a completely di erent aspect of the tensor force, namely its unique contribution to excitations with unnatural parity.

The recent interest in the eect of the tensor force in the context of self-consistent mean-α models was triggered by the observed evolution of single-particle levels of one nucleon species in dependence of the number of the other nucleon species. Otsuka et al. [44] proposed that at least part of the eect is caused by the proton-neutron tensor force from pion exchange. Many groups attempted to explain known, but so far unresolved, anomalous shell structure in terms of a tensor force. A particularly popular playground is the relative shift of the proton 1g_{7/2} and 1h_{11/2} levels in tin isotopes, which is interpreted as the reduction of the spin-orbit splittings of both levels with their respective partners with increasing neutron number [45].

Otsuka et al. [44] added a Gaussian tensor force, adjusted on the long-range part of a one-pion exchange potential, to a standard Gogny force. After a consistent readjustment of the parameter of its central and spin-orbit parts, they were able to explain coherently the anomalous relative evolution of some single-particle levels without ever being able to describe their absolute distance in energy. Dobaczewski [47] has pointed out that a perturbatively added tensor interaction, with suitably chosen coupling constants in the Skyrme energy density functional, does not only modify the evolution of shell structure, but does also improve the description of nuclear masses around magic nuclei. Brown et al. [48] have added a Skyrme interaction with added zero-range tensor force with emphasis on the reproduction of single-particle spectra. While the authors appreciate the qualitatively correct description of evolution of relative level distances, they point out that the combination of zero-range spin-orbit and tensor forces does not and cannot correctly describe the dependence of spin-orbit splittings. Colò et al. [49], and Brink et al. [50] have added Skyrme's tensor force perturbatively to the existing standard param eterization SLy5 [51, 52], and to the SLyIII [5] one, respectively. They have investigated some single-particle energy di erences: the 1h_{11/2} and 1g_{9/2} proton states in tin isotopes as well as 1g_{9/2} and 1h_{11/2} neutron states in N = 82 isotones and propose similar param eter sets as in Ref. [48]. The eect of the tensor force on the centroid of the GT giant resonance is also estimated by Colò et al. using a sum-rule approach and found to be substantial. Long et al. [53], demonstrate that the tensor force that emerges naturally in relativistic Hartree-Fock also improves the relative shifts of the proton 1g_{7/2} and 1h_{11/2} levels in tin isotopes.

The work on the tensor force published so far aims at an optimally simple parameterization, that establishes a best t to either the underlying bare tensor force or empirical data [44, 48, 49]. The published results, as well as our rst exploratory studies, however, suggest that adding a tensor force to the existing mean-α models gives only a local improvement of the relative change of certain single-particle energies, but not necessariy a global trend in the case of single-particle spectra or other observables. In the framework of the Skyrme interaction, that we will explore throughout this work, there is also the already mentioned ambiguity that the contribution from the tensor force to spherical nuclei has the same structure as a term from the central force. In view of this situation, we will pursue a di erent strategy and in-

1 As we will outline below, and as was already pointed out in Ref. [43], this argument does not hold for deformed even-even nuclei or any situation where intrinsic time-reversal is broken, for example odd nuclear dynamical cases. Thus, the tensor and non-local central parts of the eective Skyrme interaction give contributions to the mean-α eils and the binding energy with di erent analytical expressions. This will be discussed in a companion article [43].
investigate the effect of the tensor terms on a multitude of observables in nuclei through a set of Skyrme interaction with systematically varied coupling constants of the tensor terms.

The present study was motivated by the finding that the performance of the existing Skyrme-type effective interactions for mass and spectroscopic properties is limited by systematic deficiencies of the single-particle spectra [54,55,56,57] that seem to be impossible to remove within the standard Skyrme interaction. The details of single-particle spectra were so far somewhat outside the focus of self-consistent mean-field methods, on the one hand as they do not correspond directly to empirical single-particle energies (we will come back to that below), and on the other hand because many of the observables that are usually calculated with self-consistent mean-field methods are not very sensitive to the exact placement of single-particle levels. By contrast, there is an enormous body of work that examines the infinite and semi-infinite nuclear matter properties of the effective interactions that are the analog of liquid-drop and droplet parametrizations in great detail. The reason is, of course, that the global trends over the whole chart of nuclei have to be understood before one can look into details. The last few years have seen an increasing demand for very predictive power. Moreover, beyond-m mean-field approaches of the projected generator coordinate method (GCM), or Bohr-Hamiltonian type, have become widely used tools to analyze and predict spectroscopic properties in medium and heavy nuclei, employing either Gogny interactions or Skyrme interactions. The underlying single-particle spectra thus now deserve more attention, as many of the spectroscopic properties of interest turn out to be extremely sensitive to even subtle details of the single-particle spectra. As the tensor force is the most obvious missing piece in all standard mean-field approaches, it is the natural starting point for the systematic investigation of possible generalizations with the ultimate goal to improve the predictive power of the interactions for spectroscopy.

In the present paper, we will outline the formalism of a Skyrme interaction with added tensor force, describe the form of the parametrizations, analyze the role of the tensor term in single-particle spectra, mass and radii of spherical and even-even nuclei. A second paper [48] studies the surface and deformation properties of these Skyrme interactions for even-even nuclei, and future work will examine the stability of nuclear matter and the role of the tensor force in odd and rotating nuclei. Only deformations and, in particular, observables sensitive to the tensor contributions, will possibly allow to distinguish cleanly between the non-local central and tensor parts of the Skyrme force.

II. THE SKYRME INTERACTION WITH TENSOR TERMS

A. The energy density functional

The usual ansatz for the Skyrme effective interaction [51,52] leads to an energy density functional which can be written as the sum of a kinetic term, the Skyrme potential energy functional that models the effective strong interaction in the particle-hole channel, a pairing energy functional corresponding to a density-dependent contact pairing interaction, the Coulomb energy functional (calculated using the Slater approximation [58]) and correction terms to approximately remove the excitation energy from spurious motion caused by broken symmetries

$$ E = E_{\text{kin}} + E_{\text{Skyrme}} + E_{\text{pairing}} + E_{\text{Coulomb}} + E_{\text{corr}} :$$

B. The Skyrme energy density functional

Throughout this work, we will use an effective Skyrme energy functional that corresponds to an antisymmetrized density-dependent two-body vertex in the particle-hole channel of the strong interaction, that can be decomposed into a central, spin-orbit and tensor contribution

$$ v^{\text{Skyrme}} = v^C + v^S + v^{LS} :$$

Other choices for the writing of the Skyrme energy functional are possible and have been made in the literature, which might affect the form of the effective interaction, its interpretation and the results obtained from it. We will come back to that in Section III.D below.

The Skyrme energy density functional is a functional of local densities and currents

$$ E_{\text{Skyrme}} = \int d^3r H^{\text{Skyrme}}(r);$$

which has many technical advantages compared to range-force such as the Gogny force. A exchange terms have the same structure as the direct terms, which greatly reduces the number of necessary integrations during a calculation.

1. Local densities and currents

Throughout this paper we will assume that we have pure proton and neutron states. The formalism of the general case including proton-neutron mixing is discussed in Ref. [59]. Without making reference to any single-particle basis, we start from the density matrices of protons and neutrons in coordinate space [60]

$$ q(r; \gamma, \delta) = \int d^3r \phi_{\gamma} \bar{\psi}_{\delta} q^{\dagger} = \frac{1}{2} q(r; \gamma^0) \gamma + \frac{1}{2} \delta q(r; \gamma^0) \gamma^0 j^i j^i :$$

(4)
The Skyrme energy functional up to second order in derivatives that we will introduce below can be expressed in terms of seven local densities and currents \([53] \) that are defined as

\[
q_0 (r; \tau^0) = X q(r; \tau^0) \quad \text{and} \quad s_0 (r; \tau^0) = X s(r; \tau^0)
\]

\[
q(r) = X q(r; \tau^0) \quad \text{and} \quad s(r) = X s(r; \tau^0)
\]

\[
T_{q_0} (r) = X T_{q_0} (r; \tau^0) \quad \text{and} \quad J_{q_0} (r) = X J_{q_0} (r; \tau^0)
\]

\[
q (r) = x^0 q_0 (r; \tau^0) \quad \text{and} \quad s (r) = x^0 s_0 (r; \tau^0)
\]

\[
T_{q} (r) = x^0 T_{q_0} (r; \tau^0) \quad \text{and} \quad J_{q} (r) = x^0 J_{q_0} (r; \tau^0)
\]

\[
F_{q_0} (r) = \frac{1}{2} x^2 J (r; \tau^0) + \frac{1}{2} x^2 J (r; \tau^0) + J^{(2)}_q (r; \tau^0) \quad \text{and} \quad F_{q} (r) = \frac{1}{2} x^2 J (r; \tau^0) + \frac{1}{2} x^2 J (r; \tau^0) + J^{(2)} (r; \tau^0)
\]

which are the density \(q(r) \), the kinetic density \(q (r) \), the current (vector) density \(j (r) \), the spin (pseudovector) density \(s_0 (r) \), the spin kinetic (pseudovector) density \(T_{q_0} (r) \), the spin-current (pseudotensor) density \(J_{q_0} (r) \), and the tensor-kinetic (pseudovector) density \(F_{q_0} (r) \).

\(q_0 (r; \tau^0) \), \(q (r) \) and \(J_{q_0} (r) \) are time-even, while \(s_0 (r) \), \(T_{q_0} (r) \), \(J_{q_0} (r) \) and \(F_{q_0} (r) \) are time-odd. For a detailed discussion of their symmetries see Ref. [53]. There are other local densities up to second order in derivatives that can be constructed, but when constructing an energy functional they either cannot be combined with others to form symmetric entities or they lead to terms that are not independent from the others [53].

The cartesian spin-current pseudotensor density \(J \) (or \(J^{[1]} \)) can be decomposed into pseudoscalar (antisymmetric vector and symmetric tensor traceless pseudotensor parts, all of which have well-defined transformation properties under rotations

\[
J (r) = \frac{1}{2} \left[J^{[0]} (r) + \frac{x^2}{x} J^{[1]} (r) + J^{[2]} (r) \right] \quad \text{and} \quad J^{[1]} (r) = \left(\frac{x^2}{x} - \frac{1}{2} \right) J (r)
\]

where \(\times \) is the Kronecker symbol and the Levi-Civita tensor. The pseudoscalar, vector and pseudotensor parts expressed in terms of the cartesian tensor are given by

\[
J^{[0]} (r) = \frac{x^2}{x} J (r)
\]

\[
J^{[1]} (r) = \frac{x^2}{x} J (r)
\]

\[
J^{[2]} (r) = \frac{1}{2} \left(J (r) + J (r) \right) + \frac{x^2}{x} J (r)
\]

The vector spin current density \(J^{[1]} (r) \) \(J (r) \) is often called spin-orbit current, as it enters the spin-orbit energy density.

For the formal discussion of the physical content of the Skyrme energy functional it is of advantage to recouple the proton and neutron densities to isoscalar and isovector densities, for example

\[
\iota (r) = n (r) + p (r);
\]

\[
i (r) = n (r) - p (r)
\]

and similar for all others. As we assume pure proton and neutron states, only the \(T_z = 0 \) component of the isovector density is non-zero, which we exploit to drop the index \(T_z \) from the isovector densities \(i \) (e. g. \(\iota \)) etc.

2. Skyrme's central force

We will use the standard density-dependent central Skyrme force

\[
\nu^C (R; \tau r) = t_0 \left(1 + x_0 \tau^0 \right) \left(R \right) \quad \text{and} \quad \nu^C (R; \tau r) = \frac{1}{6} t_0 \left(1 + x_1 \tau^1 \right) \left(R \right) \quad \text{and} \quad \nu^C (R; \tau r) = \frac{1}{6} t_0 \left(1 + x_2 \tau^2 \right) \left(R \right)
\]

where we use the shorthand notation

\[
r = r_1 + r_2 ;
\]

\[
R = \frac{1}{2} (r_1 + r_2);
\]

while \(\hat{k} \) is the usual operator for relative momenta

\[
\hat{k} = \frac{1}{2} (r_1 - r_2)
\]

and \(\hat{k}^2 \) its complex conjugated acting on the left. Finally, \(\tau^k \) is the spin exchange operator that controls the relative strength of the \(S = 0 \) and \(S = 1 \) channels for a given term in the two-body interaction

\[
\hat{\tau}^k = \frac{1}{2} \left(1 + \tau^1 \tau^2 \right)
\]

As said above, we restrict ourselves to a parametrization of the Skyrme energy functional as obtained from the average value of an eective two-body vertex in the reference Slater determinant. We decompose the isoscalar and isovector parts of the resulting energy density functional \(\hat{H} \) into a part \(\hat{H}^{even} \) that is connected entirely of tim-e-even densities and currents, and a part \(\hat{H}^{odd} \) that contains terms which are bilinear in tim-e-odd densities.

\[\text{Somue authors call } J (r) \text{ spin density, which is ambiguou so confusing when discussing the complete energy density functional including terms that contain the tim-e-odd } s (r).\]
and currents and vanishes in intrinsically time-reversal invariant system

\[H^c_{t}(r) = \frac{X}{\hbar} H^c_{t}^{\text{even}}(r) + H^c_{t}^{\text{odd}}(r) ; \quad t>0\mu \]

Both \(H^c_{t}^{\text{even}} \) and \(H^c_{t}^{\text{odd}} \) are of course constructed such that they are time-even; they are given by \[52,54\]

\[H^c_{t}^{\text{even}} = A_t^c [0] \frac{X}{\hbar} + A_t^c t^t + A_t^c t^t X^t J_{ti}^t ; \]
\[H^c_{t}^{\text{odd}} = A_t^c [0] s^t + A_t^c s^t + A_t^c s^t T ; \]

where \(A_t^c [0] \) and \(A_t^c [0] \) are density dependent coupling constants that depend on the total (isoscalar) density. The detailed relations between the coupling constants of the functional and the central Skyrme energy functional are given in appendix A. The notation re-echoes that two pairs of terms in \(H^c_{t}^{\text{even}} \) and \(H^c_{t}^{\text{odd}} \) are connected by the requirement of local gauge invariance of the Skyrme energy functional [53].

3. A zero-range spin-orbit force

The spin-orbit force used with most standard Skyrme interactions

\[v^S(r) = i W(\hat{\mathbf{r}})^2 \frac{X}{\hbar} \hat{\mathbf{r}} \hat{\mathbf{r}}^2 \]

is a special case of the one proposed by Bell and Skyrme [32,33]. Again, the corresponding energy functional [53,54] can be separated into a time-even and a time-odd term

\[H^I_S(r) = \frac{X}{\hbar} H^I_{t}^{\text{even}}(r) + H^I_{t}^{\text{odd}}(r) \]

where

\[H^I_{t}^{\text{even}} = A_t^F J^F \frac{X}{\hbar} \]
\[H^I_{t}^{\text{odd}} = A_t^F s^t \frac{X}{\hbar} \]

which share the same coupling constant as again both terms are linked by the local gauge invariance of the energy functional. The relation between the \(A_t^F J^F \) and the one coupling constant of the two-body spin-orbit force \(W_0 \) is given in appendix A.

4. Skyrme's tensor force

By convention, the tensor operator in the tensor force is constructed using the unit vectors in the direction of the relative coordinate \(r = \mathbf{r}_1 - \mathbf{r}_2 \) and subtracting \(\hat{\mathbf{r}}_1 \hat{\mathbf{r}}_2 \)

\[\hat{S}_{12} = 3(\hat{\mathbf{r}}_1 \hat{\mathbf{r}}_2 + \hat{\mathbf{r}}_2 \hat{\mathbf{r}}_1) \]

such that its mean value vanishes for a relative state, which decouples the central and tensor channels of the interaction. The operator \(\hat{S}_{12} \) commutes with the total spin \(\hat{S}_z = 0 \), therefore it does not mix partial waves with different spins, i.e., spin singlet and spin triplet states. In particular, it does not act in spin singlet states at all, as \(\hat{S}_{12} \hat{S}_z = 0 \) (see section 13.6 of Ref. [21]). As a consequence, there is no point in multiplying a tensor force with an exchange operator \((1 + x \hat{F}) \) as done for the central force, as this will only lead to an overall rescaling of its strength.

The derivation of the general energy functional from a zero-range two-body tensor force is discussed in detail in Refs. [53,54]. We repeat here the details relevant for our discussion, starting from the two zero-range tensor forces proposed by Skyrme [32,33].

\[v^T(r) = \frac{i}{2} t_e \frac{X}{\hbar} \left(\frac{1}{2} \hat{\mathbf{r}}_1 \hat{\mathbf{r}}_2 \right) + \frac{i}{2} \left(\frac{1}{2} \hat{\mathbf{r}}_1 \hat{\mathbf{r}}_2 \right) \]

where \(r, \hat{\mathbf{r}}, \hat{\mathbf{F}} \) are defined as above, Eqs. [14] and [15]. The corresponding energy density functional can again be decomposed in a time-even and a time-odd part

\[H^t_{t}^{\text{even}}(r) = \frac{X}{\hbar} H^t_{t}^{\text{even}}(r) + H^t_{t}^{\text{odd}}(r) ; \]

with \[53]\n
\[H^t_{t}^{\text{even}} = B_t^F J_{ti}^t J_{ti}^t + \left(\frac{1}{2} B_t^F X^t \right) \]
\[H^t_{t}^{\text{odd}} = B_t^F s_t \frac{X}{\hbar} + B_t^F s_t \frac{X}{\hbar} \]

where

\[H^t_{t}^{\text{even}} = A_t^F J^F \frac{X}{\hbar} \]
\[H^t_{t}^{\text{odd}} = A_t^F s^t \frac{X}{\hbar} \]

and

\[H^t_{t}^{\text{even}} = A_t^F J^F \frac{X}{\hbar} \]
\[H^t_{t}^{\text{odd}} = A_t^F s^t \frac{X}{\hbar} \]

(18)
where we already used the local gauge invariance of the energy functional \([23]\) for the expressions of the coupling constants. The actual expressions for the coupling constants expressed in terms of the two coupling constants \(t_c\) and \(t_r\) of the tensor force are given in appendix A.

The \(\text{"even"}\) term proportional to \(t_r\) in the two-body tensor force \([23]\) mixes relative S and D waves, while the \(\text{"odd"}\) term proportional to \(t_c\) mixes relative F and G waves. Thus, due to the fact that both act in spin-triplet states only, antisymmetrization implies that the former acts in isospin-singlet states (and hence contributes to the neutron-proton interaction only) and the latter in isospin-triplet states (contributing both to the like-particle and neutron-proton interactions). The central spin-orbit interactions as usual are constrained, however, not to contain D or F wave interactions. From this point of view, one might suspect a mismatch when combining the various interaction terms. From the point of view of the energy functional \([22]\), however, all contributions from the zero-range tensor force are of the same order in derivatives as the contributions from the non-local part of the central Skyrme force \([15]\) and from the spin-orbit force \([13]\).

In the time-even part of the energy functional \(H_{t_{\text{even}}}^\text{t}\) there appear three different combinations of the Cartesian components of the spin current tensor. The term proportional to \(B_{x}^{c}\) contains the symmetric combination \(J^2J^2\) as it already appeared in the energy functional from the central Skyrme interaction \([15]\), while the term proportional to \(B_{x}^{c}\) contains two different terms, namely the antisymmetric combination \(J^2J^2\) and the square of the trace of \(J\).

5. Combining central and tensor interactions

The Skyrme energy functional representing central, tensor, and spin-orbit interactions is given by

\[
E_{\text{Skyrme}} = \frac{1}{2} \sum_{x} \left(C_t^0 \phi^2_{(0)} + C_t^2 \phi^2_{(2)} + C_t^4 \phi^4_{(4)} \right) + C_t^8 \phi^8_{(8)} + C_t^4 \phi^4_{(4)} + C_t^6 \phi^6_{(6)} + C_t^8 \phi^8_{(8)} + C_t^{10} \phi^{10}_{(10)}
\]

This functional contains all possible bilinear terms up to second order in the derivatives that can be constructed from local densities and that are invariant under spatial and time inversion, rotations, and local gauge transformations \([23]\).

Some of the coupling constants are completely determined by the standard central Skyrme force, i.e. \(C_t^0 = A_t^0\), \(C_t^2 = A_t^2\), \(C_t^4 = A_t^4\), \(C_t^6 = A_t^6\), and \(C_t^8 = A_t^8\), two by the spin-orbit force, \(C_t^r = A_t^r\), others by the tensor force, \(C_t^c = B_t^c\) and \(C_t^s = B_t^s\), while some are the sum of coupling constants from both central and tensor forces, \(C_t^t = A_t^t + B_t^t\), and \(C_t^s = A_t^s + B_t^s\).

The three terms bilinear in \(J\) can be recoupled into tensor bilinear in its pseudoscalar, vector, and pseudotensor components \(J^{(0)}, J^{(1)}, J^{(2)}\), Eq. \([8]\), which is preferred by some authors \([23]\).

After combining \([23]\) with the kinetic, Coulomb, pairing and other contributions from \([1]\), the mean-field equations are obtained by standard functional derivative techniques from the total energy functional \([23, 24]\).
The complete Skyrme energy functional [23] has quite a different form and structure, and in the most general case leads to seven distinct mean fields in the single-particle Hamiltonian [23]. As already mentioned, we want to divide the examination of those terms that contain two derivatives and two Pauli matrices in the complete functional, i.e., those terms from the central Skyrme force that are often neglected and all the terms from the tensor Skyrme force, into three distinct steps: First, in the present paper, we enforce spherical symmetry which removes all time-odd densities and all but one out of the nine components of the spin current tensor \(J \) as will be outlined in the following section. A subsequent paper [31] will discuss deformations even-even nuclei where the complete spin current tensor \(J \) is present, and future work will address the time-odd part of the energy functional [23].

C. The Skyrme energy functional in spherical symmetry

For the rest of this paper, we will concentrate on spherical nuclei, enforcing spherical symmetry of the N-body wave functions. As a consequence, the canonical single-particle wave functions \(\Psi_{njl} \) can be labeled by \(j, l, m \), and \(n \). The index \(n \) labels the different states with the same \(j \) and \(l \). The functions are separated into a radial part and an angular part, represented by a tensor spherical harmonic.

\[
\Psi_{njl}(r, \theta, \phi) = R_{nl}(r) Y_{jl}^m(\theta, \phi) \quad (26)
\]

Spherical symmetry also enforces that all magnetic substates of \(\Psi_{njl} \) have the same occupation probability \(\rho_{nljm} \) for all \(j \) and \(m \). For a static spherical state, all time-odd densities are zero \(\rho_{nljm} = 0 \), as are the corresponding mean fields in the single-particle Hamiltonian.

Enforcing spherical symmetry also greatly simplifies the spin-current tensor, both the pseudoscalar and pseudotentor parts of \(J \) vanish. From the vector spin-orbit current, only the radial component is non-zero, which is given by [23]

\[
J_{\ell}(r) = \frac{1}{4} \sum_{\ell}^{\infty} \frac{2J + 1}{J + \ell + 1} \rho_{njl}\frac{1}{2} \frac{1}{2} \frac{1}{\sqrt{\pi}} \tilde{R}_{nl}(r) \quad (27)
\]

so that there is only one out of the nine components of the spin-current tensor density that contributes in spherical nuclei. Unlike the total density and the kinetic density, which are bulk properties of the nucleus and grow with the size of the nucleus, the spin-orbit current is a shell effect that shows strong fluctuations. A sum of the two shells with same \(n \) and \(\ell \), which are split by the spin-orbit interaction, one coupled with the spin to \(j = \ell + \frac{1}{2} \), the other to \(j = \ell - \frac{1}{2} \). It is easy to verify that their contributions to \(J_{\ell}(r) \) are equal but of opposite signs such that they cancel when \(\ell \) is both shells are completely filled and (ii) their radial wave functions are identical. A further condition is never exactly fulfilled, this demonstrates that the spin-orbit current is not a bulk property, but a shell effect that strongly saturates with \(N \) and \(Z \). It nearly vanishes in so-called spin-saturated nuclei, where all spin-orbit partners are either completely occupied or empty, and it might be quite large when only the \(j = \ell + 1 \) level out of one or even several pairs of spin-orbit partners is filled.

A. Together, the Skyrme energy functional in spherical nuclei is reduced to

\[
H^{\text{Skyrme}} = X \sum_{\ell=0}^{\infty} \left(\frac{1}{2} C_{\ell}^T + \frac{1}{4} C_{\ell}^P J_{\ell}^2 \right) = \left(\frac{1}{2} C_{\ell}^T + \frac{1}{4} C_{\ell}^P J_{\ell}^2 \right)^2 \quad (29)
\]

where we have introduced an effective coupling constant \(C_{\ell}^\ell \) of the \(J_{\ell}^2 \) tensor term s at sphericity, such that the corresponding contribution to the energy functional is given by

\[
H^T = X \sum_{\ell=0}^{\infty} \left(\frac{1}{2} C_{\ell}^T + \frac{1}{4} C_{\ell}^P J_{\ell}^2 \right) \quad (30)
\]

which are given by

\[
A_{\ell}^0 = \frac{1}{\ell} \left(t_{\ell} + \frac{1}{2} x_1 \right) \quad B_{\ell}^0 = \frac{1}{\ell} \left(t_{\ell} + \frac{1}{2} x_2 \right)
\]

\[
A_{\ell}^\ell = \frac{1}{\ell} \left(t_{\ell} - \frac{1}{2} x_1 \right) \quad B_{\ell}^\ell = \frac{1}{\ell} \left(t_{\ell} - \frac{1}{2} x_2 \right)
\]

where we also give the expressions using the notation \(T = 3t_{\ell} \) and \(U = 3t_{\ell} \) employed in [33, 44, 54].

For the following discussion it will be also illuminating to recouple this expression to a representation that uses proton and neutron densities, where we use the notation introduced in Ref. [23]

\[
H^T = \frac{1}{2} \left(J_{\ell}^p + J_{\ell}^n \right) + J_{\ell}^p J_{\ell}^n \quad (32)
\]

with

\[
J_{\ell}^p = C_{\ell}^J + C_{\ell}^\ell \quad J_{\ell}^n = C_{\ell}^J - C_{\ell}^\ell \quad C_{\ell}^J = \frac{1}{2} \left(+ \frac{1}{2} \right) \quad C_{\ell}^\ell = \frac{1}{2} \left(- \frac{1}{2} \right)
\]

The proton-neutron coupling constants \(= c + \frac{1}{2} \) and \(= c - \frac{1}{2} \) can again be separated into contributions.
from central and tensor forces

\[c = \frac{1}{6} (t_i \ t_j) - \frac{1}{2} (t_i \ x_j + t_j \ x_i); \]
\[c = \frac{1}{6} (t_i \ x_j + t_j \ x_i); \]
\[\tau = \frac{1}{2} t_i \ t_j; \]
\[\tau = \frac{1}{2} (t_i + t_j) = \frac{1}{2} (T + U); \]

As could be expected, the isospin-singlet tensor force contributes only to the proton-neutron term, while the isospin-triplet tensor force contributes to both.

The spin-orbit potential of the neutrons is given by

\[W_n (r) = \frac{E}{J_n (r)} \varphi; \]
\[= W_0 \ 2r \ n_r + r \ p + J_n + J_p; \]

The expression for the protons and neutrons in spherical symmetry, the tensor force gives a contribution to the spin-orbit potential, but does not alter the structure of the spin-orbit terms in the single-particle Hamiltonian as such. This will be di erent in the case of deformed mean fields.

The dependence of the spin-orbit potential \(W_q (r) \) on the spin-orbit current \(J_q (r) \) through the tensor term \(s \) is the source of a potential instability. \(W \) when the spin-orbit splitting becomes larger than the splitting of the centroids of single-particle states with di erent orbital angular \(m \) on. Hence, the reordering of levels might increase the number of spin-unstable levels, which increases the spin-orbit current \(J_n \) and feeds back on the spin-orbit potential by increasing it even further, which ultimately leads to an unphysical shell structure. An example will be given in appendix E.

D. A brief history of tensor terms in the central Skyrme energy functional

For the interpretation of the parametrizations we will describe below it is inportant to point out that with our choice of the e ective Skyrme interaction as an antisymmetric vertex the two coupling constants of the contribution from the central force to \(H^T \), Eq. (22), either represented through \(A_2, A_2^* \) or through \(c, c \), are not independent from the coupling constants \(A_0, A_1, A_0, \) and \(A_1 \), that appear in Eq. (28). Through the expressions given in appendix A, all six of them are detemined by the four coupling constants \(t_i, t_j, x_j \) and \(x_i \) from the central Skyrme force, Eq. (30). As a consequence, a tensor force is absolutely necessary to decouple the values of the \(C_2^s \) from those of the \(C_0 \) and \(C_1 \), which detemine the isoscalar and isovector e ective m masses and give the dominant contribution to the surface and surface asymmetry coe cients, respectively.

This interpretation of the Skyrme interaction is, however, far from being common practice and a source of confusion and potential inconsistencies in the literature. Many authors have used parametrizations of the central and spin-orbit Skyrme energy functional with coupling constants that in one way or the other do not exactly correspond to the functional obtained from Eqs. (16) and (18), which, depending on the point of view, can be seen as an approximation to or a generalization of the original Skyrme interaction. As the most popular model concerns the tensor term, a few comments on the subject are in order. Again, the practice goes back to the seminal paper by Vautherin and B anck[33], who state that the contribution of this term to the spin-orbit potential is quite small. Since it is difficult to include such a term in the case of deformed nuclei, it has been neglected. This choice was further motivated by the interpretation of the e ective Skyrme interaction as a density-matrix expansion (DME) [25, 66, 51, 68]. A brief history of tensor terms in the central Skyrme force value [41] or strictly to zero. The exception is Ref. [33] by Tondeur, where an independent of the coupling constants of the \(J^2 \) term was assumed, m aking explicit reference to a DME interpretation of the energy functional.

Setting the coupling constants of a term to zero when one does not know how to adjust its parameters is of course an acceptable practice when permitted by the chosen framework. For Skyrme interactions tied without the \(J^2 \) term, the situation becomes confusing when one looks at deformed nuclei and any situation that breaks timereversal invariance. First of all, Galilean invariance of the energy functional dictates that the coupling constant of the tensor force is also set to zero, as already indicated by the presentation of the energy functional in Eq. (22). Second, using a DME interpretation of the Skyrme energy functional in one place, but the interpolations from the two-body Skyrme force in all others is not entirely satisfactory. M any authors who drop the \(J^2 \) term rarely show scurries to keep most of the timereversal invariance terms in the Skyrme energy functional [23] with coupling constants \(A_2 \) and \(A_2^* \) from [41], although they are not at all constrained in the common protocols employing properties of even-even nuclei and spin-saturated nuclear matter. For a list of exceptions see Sect. IIA 2.d of...
interaction to the Landau parameters. For example, almost all applications of Skyrme terms in the Skyrme energy functional (23) such that force (16) existing terms in the isospin mix of the corresponding terms in the Skyrme energy functional (23) such that $A_{0}^{J} = 3 A_{1}^{J} (20)$. There are a few parametrizations asSM SkA [78], SKI3 [78, 79], T6 [71], SkO’ [73] and BSk9 [81]. On the other hand, many recent parametrizations including a tensor term, i.e. Skxta [48, 50], Skxb [51, 52] as well as those published by Cole et al. [49] and Brink and Stancu [50], most fall in a region of negative C_{ij} and vanishing C_{ij}^{2}, that is, the lower left of Fig. 1. Parametrizations of this region, which also includes a part of the triangle advocated in the perturbative study of Stancu et al. [33], gave unsatisfactory results for many observables. Moreover, when attempting to use parametrizations with large negative coupling constants, we sometimes obtained unrealistic single-particle spectra or even ran into the instabilities already mentioned and outlined in appendix A. Parametrizations further to the lower and upper right also have unrealistic deformation properties. The contribution from the J^{2} term vanishes for T22, which will serve as the reference point. For the parametrizations T2J, only the proton-proton and neutron-neutron terms in h_{1}^{2} are non-zero ($= 0$), while for the parametrizations T12, only the proton-neutron term in h_{1}^{2} contributes ($= 0$). Note that the earlier parametrizations T6 and Z have a pure like-particle J^{2} term as a consequence of the constraint $x_{1} = x_{2} = 0$ employed for both (and most other early parametrizations of Skyrme's interaction).

III. THE FITS

A. General remarks

In order to study the effect of the J^{2} terms, we have built a set of 36 effective interactions that systematically cover the region of coupling constants C_{ij}^{0} and C_{ij}^{2} that give a reasonable description of finite nuclei in connection with the standard central and spin-orbit Skyrme forces. At variance with the perturbative approach used in Refs. [33, 53], each of these parametrizations has been tuned separately, following a procedure nearly identical to that used for the construction of the SLy parametrizations [33, 53], so that we can keep the connection between the near-neighbor parametrizations that have been applied to a large variety of observables and phenomena. The Sactay-Lyon protocol focuses on the simultaneous reproduction of nuclear bulk properties such as binding energies and radii of finite nuclei and the empirical characteristics of finite nuclear matter (i.e. symmetric and pure neutron matter). The latter establishes an important, though highly idealized, limiting case as it permits one to confront the energy functional with calculations from first principles using the bare nucleon-nucleon force [30].

The region of effective coupling constants (C_{ij}^{0}, C_{ij}^{2}) of the J^{2} term acting in spherical nuclei, as defined in Eq. (23), that we will explore is shown in Fig. 1. The parameterizations are labeled T1J, where indices I and J refer to the proton-neutron (I) and like-particle (J) coupling constants in Eq. (23) such that

$$
\begin{align*}
&= 60 (J) \text{ MeV fm}^{5}; \\
&= 60 (I) \text{ (} 2) \text{ MeV fm}^{5};
\end{align*}
$$

The corresponding values are found through Eq. (30) or from Fig. 4. On the one hand, we cover the positions of the most popular existing Skyrme interactions that take the J^{2} term from the central force into account, which are SLy5, SLY6 [83], Z [72, 73], T6 [71], SkO’ [73] and BSk9 [81]. On the other hand, many recent parametrizations including a tensor term, i.e. Skxta [48, 50], Skxb [51, 52] as well as those published by Cole et al. [49] and Brink and Stancu [50], most fall in a region of negative C_{ij} and vanishing C_{ij}^{2}, that is, the lower left of Fig. 1. Parametrizations of this region, which also includes a part of the triangle advocated in the perturbative study of Stancu et al. [33], gave unsatisfactory results for many observables. Moreover, when attempting to use parametrizations with large negative coupling constants, we sometimes obtained unrealistic single-particle spectra or even ran into the instabilities already mentioned and outlined in appendix A. Parametrizations further to the lower and upper right also have unrealistic deformation properties. The contribution from the J^{2} term vanishes for T22, which will serve as the reference point. For the parametrizations T2J, only the proton-proton and neutron-neutron terms in h_{1}^{2} are non-zero ($= 0$), while for the parametrizations T12, only the proton-neutron term in h_{1}^{2} contributes ($= 0$). Note that the earlier parametrizations T6 and Z have a pure like-particle J^{2} term as a consequence of the constraint $x_{1} = x_{2} = 0$ employed for both (and most other early parametrizations of Skyrme's interaction).

B. The protocol and procedure

The list of observables used to construct the cost function χ^{2} minimized during the fit (see Eq. (41) in Ref. [53]) reads as follows: binding energies and charge radii of $^{40,48,50,58,64,70,74,80}_{\text{Ca}},^{100,112,132}_{\text{Sn}}$ and $^{208}_{\text{Pb}}$; the binding energy of $^{100}_{\text{Sn}}$; the spin-orbit splitting of the neutron $3p$ state in $^{208}_{\text{Pb}}$; the empirical energy per particle and density at the saturation point of symmetric nuclear matter; and finally, the equation of state of neutron matter as predicted by W. Irga et al. [13].

Futhermore, some properties of finite nuclear matter are constrained through analytic relations between
coupling constants in the same manner as they were in Refs. [51, 52]: the incompressibility modulus K_1 is kept at 230 MeV, while the volume symmetry energy coefficient is set to 32 M eV. The isoscalar effective mass, expressed through the Thomas-Reiche-Kuhn sum rule enhancement factor γ, is taken such that $\gamma = 0.25$.

When using a single density-dependent term in the central Skyrme force [10], the isoscalar effective mass m_0 cannot be chosen independently from the incompressibility modulus for a given exponent of ρ. We follow here the prescription used for the SLy parameterizations [53, 54] and use $\rho_0 = 1$, which leads to an isoscalar effective mass close to 0.7 in units of the bare nucleon mass for all T1J parameterizations. This value allows for a correct description of dynamical properties, as for example the energy of the giant quadrupole resonance [55]. Using such a protocol we cannot reproduce the isovector effective mass consistent with recent ab-initio predictions [56]. Regarding the present exploratory study of the tensor term this is not a critical limitation, in particular as the invariance of this quantity on static properties of nuclear nuclei turns out to be small.

There are three modifications of the τ protocol compared to [51, 52]. The obvious one is that the values for C_0^τ and C_1^τ are fixed beforehand as the parameter sets that will later on label and classify the τs. The second is that we have added the binding energies of 100Zr and 198Sn to the set of data. Indeed, we observed that the latter nucleus is usually signiﬁcantly overbound when not included in the τ. The third is that we have dropped the constraint $x = 1$ that was imposed on the SLy parameterizations [51, 52] to ensure the stability of nuclear homogeneous neutron matter against a transition into a ferromagnetic state. On the other hand, the tensor force brings many new contributions to the energy per particle of polarized nuclear matter that lead to a much more complex stability criterion. We postpone the entire discussion concerning the stability in polarized systems in the presence of a tensor force to future work that will also address finite-size instabilities [57]. It also has to be stressed that the actual stability criterion, as all properties of the tensor part of the Skyrme energy functional, depends on the choices made for the interpretation of its coupling constants, i.e. antisymmetric vertex or density functional [58].

The properties of the nine nuclei entering the τ are computed using a Slater determinant without taking pairing into account. The cost function 2 was minimized using a simulated annealing algorithm. The annealing schedule was an exponential one, with a characteristic time of 200 iterations (also referred to as "simulated quenching"). Thus, assuming a reasonably smooth cost function, we strive to obtain satisfactory convergence to its absolute minimum in a single run, allowing a systematic and straightforward production of a large series of forces. The coupling constants for all 36 parameterizations can be found in the Phys.Rev. archive [59].

Figure 2 displays the value of 2 after minimization as
a function of the recoupled coupling constants \(B \) and \(\beta \). The most striking feature is the existence of a valley at \(\beta = 0 \), i.e., a pure-like-particle tensor term \((J^e_p + J^e_n)\). The abrupt rise of \(\beta \) around this value can be attributed to the tensor term depending on nuclear binding energies, as sharp variations of energy residuals can be seen between neighboring magic nuclei with functionals of the T6J series \((T = 240)\). For example, \(\beta \) for \(^{48}\)Ca and \(^{90}\)Zr tend to be significantly overbound in this case. We will come back later to discussing the implications for the quality of the functionals.

C. General properties of the ts

The coupling constants of the energy functional for spherical nuclei \([23]\) obtained for T22 are very similar to those of SLy4, except for a slight readjustment coming from the inclusion of the binding energies of \(^{90}\)Zr and \(^{100}\)Sn in the t and as well as the abandonded constraint on \(x_2 \). With its value of 0.945, the \(x_2 \) obtained for T22 still stays close to the value 1 enforced for SLy4, which means that this is not too severe a constraint for param et erization, even if it is not strictly enforced. Increasing the e ective tensor term coupling constants \(C \), however, the values for \(x_2 \) start to deviate strongly from the region around 1, which is to a large extent due to the feedback from the contribution of the J2 term s to the surface and surface symmetry energy core clients in the presence of constraints on isoscalar and isovector effective masses, all of which also depend on \(x_2 \). A more detailed discussion of the contribution of the J2 term s to the surface energy coefficients will be given elsewhere \([41]\).

From the constrained coupling constants \(C \) and \(\beta \), the respective contributions \(B \) and \(\beta \) from the tensor force can be deduced afterwards using the expressions given in Sect. II C. Their values, shown in Fig. 3, are less regularly distributed, which is a consequence of the non-linear interdependence of all coupling constants. Still, a general trend can be observed, such that all param et erizations are shifted towards the south-west compared to Fig. 1. In turn, this indicates that the contribution from the central Skym e force always stays in the same range outlined by SkP, SLy5, \(Z \), etc in Fig. 1, with values that range between 28 and 104 MeV f m\(^5\) for A\(^0\) and between 38 to 62 MeV f m\(^5\) for A\(^1\), respectively. This justifies a posteriori to use the tensor force as a motivation to decouple the J\(_t \) term s from the central part of the e ective Skym e vertex. We note in passing that all our param et erizations T14 correspond to an almost pure proton-neutron or isospin-singlet tensor force, i.e., the term / \(t \), in Eq. 40, as they are all located close to the \(\tau = 0 \) line.

We also nd a particularly strong and systematic variation of the coupling constant \(W_0 \) of the spin-orbit force, which varies from \(W_0 = 103.7 \) MeV f m\(^5\) for T11 to \(W_0 = 195.3 \) MeV f m\(^5\) for T66, see Fig. 3. This variation is of course correlated to the strength of the tensor force. As already shown, the tensor force has the tendency to reduce the spin-orbit splittings in spin-unsaturated nuclei. To maintain a given spin-orbit splitting in such a nucleus, the spin-orbit coupling constant \(W_0 \) has to be increased.
A spin-orbit current clearly reflects the spatial probability distribution of the single-particle wave function in pairs of unsaturated spin-orbit partners, with a given shell, the high- states contribute at the surface, represented by the solid line on the base of Fig.5, while low- states contribute at the interior. The peak from the high- orbitals, however, is always located on the inside of the nuclear surface, as defined by the radius of half saturation density. Second, with a given shell, the largest contributions to the spin-orbit current density obviously come from the levels with largest 'r', as they have the largest degeneracy factors in (27), and because they do not have nodes, which leads to a single, sharply peaked contribution. Third, the spin-orbit current is not exactly zero for non-frinially \(\text{spin-saturated} \) nuclei, exemplified by the N = 20 and N = 40 isotopes in Fig.5, as the radial single-particle wave functions are not exactly identical for all pairs of spin-orbit partners, which is a necessary requirement to obtain \(J_n = 0 \) at all radii (cf. the example of the 2d states in \(^{132}\text{Sn}\) in Fig.1 below). Fourth, pairing and other correlations will always smooth out the fluctuations in the spin-orbit current with nucleon numbers, as levels in the vicinity of the Fermi energy will never be completely full or empty.

Next, we compare the contributions from the tensor terms and from the spin-orbit force to the spin-orbit potentials of protons and neutrons, Eq. (35). The contributions from the tensor force to the spin-orbit potential are proportional to the spin-orbit currents of protons and neutrons. For the N is isotopes, the proton spin-orbit current is very similar to that of the neutrons at N = 28 displayed in Fig.5. For the param e terization T44, we use here as an example, we have contributions from both proton and neutron spin-orbit currents, which come with equal weights. Their combined contribution to the spin-orbit potential of the neutron \(\omega_n \) might be as large as \(4 \text{MeV} \), see Fig.5. This is more than a third of the maximum contribution from the spin-orbit force to \(\omega_n \), see Fig.4. The latter is proportional to a combination of the gradients of the proton and neutron densities, \(2\pi r_n(r) + r_p(r) \), see Eq. (35). As a consequence, it has a smooth behavior as a function of particle number,
FIG. 6: (Color online) Contribution from the tensor term to the neutron spin-orbit potential for the chain of Ni isotopes as obtained with the parameterization T44. The solid line on the base plot indicates the radius where the isoscalar density ρ crosses half its saturation value.

FIG. 7: (Color online) Contribution from the spin-orbit force to the neutron spin-orbit potential for the chain of Ni isotopes as obtained with the parameterization T44. The solid line on the base plot indicates the radius where the isoscalar density ρ crosses half its saturation value.

FIG. 8: (Color online) Total neutron spin-orbit potential for the chain of Ni isotopes as obtained with the parameterization T44. The solid line on the base plot indicates the radius where the isoscalar density ρ crosses half its saturation value.

FIG. 9: (Color online) Total proton spin-orbit potential for the chain of Ni isotopes as obtained with the parameterization T44. The solid line on the base plot indicates the radius where the isoscalar density ρ crosses half its saturation value.

Adding the contributions from the proton and neutron tensor terms to that from the spin-orbit force, the total neutron spin-orbit potential for neutrons in Ni isotopes is shown in Fig. 8. For the parameterization T44 used here (and most others in the sample of parameterizations used in this study) the dominating contributions from the spin-orbit and tensor forces to the spin-orbit potential are of opposite sign. For Ni isotopes J_p is always quite large, while J_n varies as shown in Fig. 8. Notably, both are peaked inside of the surface. When examining
the combined contribution from the spin-orbit and tensor forces to the spin-orbit potential \[\varepsilon_i\], one must keep in mind that they are peaked at different radii. Moreover, the variation of tensor-term coupling constants among a set of parametrizations implies a rearrangement of the spin-orbit term strength, as will be discussed later. As a consequence, taking into account the tensor force modifies the width and localization of the spin-orbit potential \(W_q(r)\) much more than it modifies its depth through the variation of the spin-orbit currents.

Our observations also confirm the finding of Otaka et al. [23] that the spin-orbit splittings might be more strongly modified by the tensor force than they are by neutron skins in neutron-rich nuclei through the reduction of the gradient of the density.

Figure 9 shows the spin-orbit potential of the protons for the chain of Ni isotopes. Here, the contribution from the spin-orbit force has a larger contribution coming from the gradient of the proton density that just grows with the mass number, without being subject to varying shell structures. The same holds for the proton contribution from the tensor term. Only the neutron contribution from the tensor term varies rapidly, proportional to \(J_n\), displayed in Fig. 4, which has a very limited effect on the total spin-orbit potential, though.

With that, we can examine how the tensor term affects the evolution of single-particle spectra. To that end, Fig. 10 shows the single-particle energies of protons and neutrons along the chain of Ni isotopes for the parametrization T22 with vanishing combined J^2 term. The thick solid line in the upper panel denotes the Fermi energy for neutrons.

FIG. 10: (Color online) Single-particle spectra of neutrons (upper panel) and protons (lower panel) for the chain of Ni isotopes, as obtained with the parametrization T22 with vanishing combined J^2 terms. The thick solid line in the upper panel denotes the Fermi energy for neutrons.

The strong variation of the spin-orbit current with nucleon numbers is typical for light nuclei up to about mass 100. For heavier nuclei, its variation becomes much smaller. This is exemplified in Fig. 12 for the neutron spin-orbit current in the chain of Pb isotopes. There remain the fast fluctuations at small radii which we already saw for the Ni isotopes and that we expect the subsequent illing of low-\(\nu\) levels with many nodes, but which give a very limited impact on the spin-orbit splittings when fed into the spin-orbit potential. The dominating peak of the spin-orbit current, just beneath the surface shows only small fluctuations, as the overlapping spin-orbit splittings of levels with different \(\nu\) give rise to a spin-saturated conduction in heavy nuclei.

FIG. 11: (Color online) The same as Fig. 10, obtained with T44 with proton-neutron and like-particle tensor terms of equal strength.
nant of the energy differences is directly constructed as a Slater determinant of eigenstates of $\hat{\epsilon}_i$; hence, the corresponding eigenvalues are directly connected to the fundamental building blocks of the theory and the mean ϵ_i in the nucleus. The density of single-particle levels around the Fermi surface drives the magnitude of pairing correlations, the relative distance of single-particle levels at sphericity and their quantum numbers determine to a large extent the detailed structure of the deformation energy landscape which, in turn, determines the collective spectroscopy. The spectroscopic properties of even-even nuclei, in particular when they exhibit shape coexistence, provide valuable benchmarks for the underlying single-particle spectrum. The link between the spectrum of single-particle energies on the one hand and the collective excitation spectrum on the other hand, however, always remains an indirect task.

On the other hand, "single-particle" states near the Fermi level of a magic nucleus can be observed by adding or removing a particle in one of these states, and thus correspond to the ground and excited states of the neighboring odd-A states. A summing in an in situ magic core, which is neither subject to any rearrangement nor polarization, nor to any collective excitations following the addition (or removal) of a nucleon, the separation energies within the states of the odd-A states are equal to the single-particle energies as deduced through $\mathbf{187}$. This highly idealized situation is modeled by static $\mathbf{89}$ and dynamical $\mathbf{89,90}$ correlations, often called a "core polarization" (see chapter 7 of Ref. $\mathbf{91}$) and "particle-vibration coupling" (see section 9.3.3 of Ref. $\mathbf{24}$) in the literature, that alter the separation energies. The main effect of the correlations is that they con press the spectrum, pulling down the levels from above the Fermi energy and pushing up those from below. The gross features, i.e., the ordering and relative placement of single-particle states, however, are more weakly affected by correlations. The particle-vibration coupling, however, is also responsible for the fractionization of the single-particle strength. When the latter is too large, the naive comparison between the calculated and the energy of the lowest experimental state which is not necessarily a meaningful quantum number is not even qualitatively meaningful $\mathbf{48}$.

We mention that a part of the static correlations originate from the non-vanishing time-odd densities in the mean A-state of an odd-A nucleus, that also cannot be truly spherical, so that the complete energy functional from Eq. $\mathbf{23}$ should be considered in a fully self-consistent calculation of the separation energies.

The effective single-particle energies that are used to characterize the underlying shell structure in the interacting shell model $\mathbf{33}$ have a slightly different meaning. Their definition usually renormalizes polarization and particle-vibration coupling effects from a doubly-magic nucleus whereas their evolution is discussed in terms of monopole shifts $\mathbf{34}$. A collection of effective single-particle energies and their evolution was collected by Green $\mathbf{29,50}$. Note that the SkX parameterization of the Skyrme energy functional by Brown and its variants $\mathbf{48,57}$ were constructed aiming at a description of effective single-particle energies along these lines.

It should be kept in mind that the obvious, coarse discrepancies between the calculated spectra and the empirical single-particle energies are often larger than the uncertainties coming from the missing correlations, as long as one observes some elementary precautions. We took care to ensure that the states used in the analysis below were one-quasiparticle states weakly coupled...
to core phonons. First, we checked that the even-even nucleus of interest could be described as spherical, indicated by a sufficiently high-lying 2^+ state. Second, we avoided all levels which were obviously correlated with the energies of 2^+ states in the adjacent semi-magic series, as this indicates strong coupling with core excitations. Finally, we carefully examined states, lying above the 2^+ energy and/or twice the pairing gap of adjacent semi-magic nuclei, in order to eliminate those cores accurately described as an elementary core excitation coupled to one or more quasi-particles, which generally appear as a multiplet of states. We did not attempt to use energy centroids calculated with use of spectroscopic factors, as these are not systematically available. Indeed, our requirement is that if some collectivity is present, it should be similar among all nuclei considered, in order to be easily subtracted out. Empirical single-particle levels shown below are determined from the lowest states having given quantum numbers in an odd-mass nucleus.

1. Spin-orbit splittings

The primary effect one expects from a tensor term is that it acts on spin-orbit splittings by altering the strength of the spin-orbit field in spin-un saturated nuclei, according to Eq. (34). One should remember, though, that the spin-orbit coupling itself is readjusted for each pair of coupling constants C_{ij}, and C_{ji}. The effect of this readjustment is generally opposite to that of the variation of the isoscalar tensor term coupling constant. It should thus be stressed that the effects described result from the balance between the variation of tensor and spin-orbit term, which for most of our parameterizations pull into opposite directions.

Common wisdom states that the energy spacing between levels that are both above or both below the magic gap are not much affected by correlations, even when their absolute energy changes; hence it is common on practice to confront only the spin-orbit splittings between pairs of particle or hole states with calculated single-particle energies from the spherical mean field. Figure 13 shows the relative error of single-particle splitting of such levels for doubly-magic nuclei throughout the chart of nuclides. The calculated values are typically 20 to 60% larger than the experimental ones, with the exception of 16O, where the splittings of the neutron and proton $1p$ states are acceptably reproduced at least for the parameterizations T22, T24 and T42, i.e., those with the weakest tensor term in the sameclide.

It is noteworthy that the calculated splittings depend much more sensitively on the tensor term for light nuclei with spin-saturated shells (protons and neutrons in 16O, protons in 90Zr) than for the heavy doubly-magic 132Sn and 208Pb, which are quite robust against a variation of the tensor term. The reason will become clear below.

2. Connection between tensor and spin-orbit term

The finding that our parameterizations systematically overestimate the spin-orbit splittings deserves an explanation. It was earlier already noted that all standard Skyrme interactions, including the SLy parameterizations that share our t protocol, have an unresolved trend that overestimates the spin-orbit splittings in heavy nuclei 14, 22, 23]. Adding the tensor term, however, further deteriorates the overall description of spin-orbit splittings, instead of improving it. It is particularly disturbing that the spin-orbit splitting of the $3p$ level in 208Pb that was used to constrain W_0 in the t is overestimated by 30 to 40%, which is larger than the relative tolerance of 20% included in the t protocol. In fact, it turns out that the coupling constant W_0 of the spin-orbit force is more tightly constrained by the binding energies of light nuclei than by this or any other spin-orbit splitting. In the HF approach used during the t, the structure of 40Ca, 48Ca, and 54Ni is determined by the occupation of the neutron and proton $1f_{5/2}$ levels. First, we have to note that the term s in the energy functional that
contain the spin-orbit current play an important role for the energy difference between 40Ca and 56Ni. The combined contribution from the tensor and spin-orbit term varies from a near-zero value in the spin-saturated 40Ca to about 60 MeV in 56Ni for all input parameterizations, which is a large fraction of the 142 MeV energy difference in total binding energy between both nuclei. The $Z = 40$ subshell and $Z = 50$ shell are another example of abrupt variation of the spin-orbit current with the filling of the $1g_{9/2}$ level, which strongly affects the total binding energy of $N = 50$ isotones 50Zr and 100Sn. Second, the t to t' phenom-enological data can take advantage of the large relative variation of these terms to lock up missing physics in the energy functional that should contribute to the energy difference, but that is absent in it. The consequence will be a spurious increase of the spin-orbit and tensor term coupling constants. The resulting energy functional will incorrectly describe the mass difference, but not the physics of the spin-orbit and tensor terms.

In order to test the above interpretation, we perform a test of selected TJJ parameterizations without taking into account the mass of 40Ca, 48Ca, 50Ni and 50Zr in the t' procedure. In the resulting parameterizations, the spin-orbit coefficient is typically 20% lower than in the original ones. As a consequence, the empirical value for the spin-orbit splitting of the neutron $3p$ level in 208Pb is met well within tolerance, at the price of binding energy residuals in light nuclei being unacceptably large, i.e., 56Ni being underbound by 5 MeV while 40Ca and 50Zr are overbound by up to 10 MeV. While the global trend of the spin-orbit splittings shown in Fig. 13 is enormous proved with these tests, in particular for heavy nuclei, the overall agreement of the single-particle spectra with experiment is not, so that we had to discard these parameterizations. This ending hints at a deeply rooted deficiency of the Skyrme energy functional. The spin-orbit and, when present, tensor terms indeed do simulate light nuclei losing physics of the energy functional at the price of unrealistic spin-orbit splittings. This also hints why perturbative studies, as performed in Refs., give much more promissing results than what we will nd below with our complete test. We will discuss mass residuals in more detail in Sect. 4 C below.

During the t, the masses of light nuclei do not only constrain the spin-orbit splittings, they also establish a correlation between W_0 and C_0^J in all parameterizations. The combined spin-orbit and spin-current energy of a given spherical nucleus (N,Z) is given by (keeping only the isoscalar part since we shall focus on the $N = Z$ nuclei 40Ca and 56Ni)

$$E_0^{\text{spin}}(N;Z) = C_0^J I_0^J(N;Z) + C_0^J I_0^J(N;Z)$$

with

$$I_0^J(N;Z) = \frac{1}{2} x_0 r J$$

$$I_0^J(N;Z) = \frac{1}{2} x_0 r J$$

The difference of E_0^{spin} between 56Ni and 40Ca

$$E_0^{\text{spin}}(56\text{Ni}) - E_0^{\text{spin}}(40\text{Ca}) = E_0^{\text{spin}}$$

turns out to be fairly independent from the paramaterization. Averaged over all 36 parameterizations TJJ used here, E_0^{spin} has a value of 58.991 MeV with a standard deviation as small as 3.202 MeV, or 5.4%.

The integrals in Eqs. (38, 39) are fairly independent from the actual paramaterization. For a rough estimate, we can replace them in Eq. (38) by their average values. Plugging into Eq. (42) this yields

$$C_0^J = \frac{E_0^{\text{spin}}}{\text{hI}_0^J(56\text{Ni}) - \text{hI}_0^J(40\text{Ca})}$$

Figure 14 compares the values of C_0^J as obtained through Eq. (42) with the values for the actual parameterizations. The estimate works very well, which demonstrates that $C_0^J = \frac{1}{2} W_0$ and C_0^J are indeed correlated and cannot be varied independently with a high quality of the energy functional. As the combined strength of the spin-orbit and tensor terms in the energy functional is mainly determined by the mass difference of the two $N = Z$ nuclei 40Ca and 56Ni, the spin-orbit coupling constant W_0 depends more or less linearly on the isoscalar tensor coupling constant C_0^J, while for all practical purposes it is independent from the isovector one, see also Fig. 3 above.

3. Splitting of high- state and the role of the radial form factor

As stated above, it is common practice to confront only the spin-orbit splittings between pairs of particle or hole states with calculated single-particle energies from the spherical mean field. The spin-orbit splitting of intruder states is rarely examined. Figure 15 displays the relative
deviation of the spin-orbit splittings of the intruder states with \(3\) that span across major shell closures and are thus given by the energy difference of a particle and a hole state. These splittings are not "safe", i.e., they can be expected to be strongly decreased by polarization and correlation effects [86, 89, 90]. To leave room for this effect, a mean-field calculation should overestimate the empirical spin-orbit splittings. We observe, however, that mean-field calculations done here give values that are quite close to the experimental ones, or even smaller for parametrizations with large positive isoscalar tensor coupling (cf. the evolution from T22 to T66).

This means that the spin-orbit splittings are not too large in general, as might be concluded from Fig. 13, but that there is a wrong trend of the splittings with \(3\) with the strength of the spin-orbit potential establishing a compromise between the in-shell splittings of small \(3\) orbits that are too large and the across-shell splittings of the intruders that are tentatively too small. In fact, the levels in Fig. 13 obviously have in common that their radial wave functions do not have nodes, while the levels in Fig. 13 have one or two nodes, with the notable exception of the 1p levels in \(^{16}\text{O}\), for which we also find smaller deviations of the spin-orbit splittings than for the other levels in Fig. 13.

Underestimating the spin-orbit splittings of intruder levels has immediate and obvious consequences for the performance of an effective interaction, as this closes the magic gaps in the single-particle spectra and compromizes the predictions for doubly-magic nuclei, as we will demonstrate in detail below. By contrast, the spin-orbit splittings of the low-\(3\) states within the major shells have no obvious direct impact on bulk properties. Their deviation from empirical data is less dramatic, as the typical bulk observables discussed with mean-field approaches are not very sensitive to them. It is only in applications to spectroscopy that their deiciencies become evident. It is noteworthy that the param etrization T22 without effective tensor terms at sphericity provides a reasonable compromise between the tentatively underestimated splittings of the intruder levels shown in Fig. 13 and the tentatively overestimated splittings of the levels within major shells shown in Fig. 13 above, while for parametrizations with tensor terms this balance is lost.

There clearly is a proton-neutron staggering in Figs. 13 and 16, such that calculated proton splittings are relatively smaller than the neutron ones. The effect appears both when comparing proton and neutron levels with different \(3\) in the same nucleus, and when comparing proton and neutron levels with the same \(3\) in the same or different nuclei (see the 1h levels in \(^{132}\text{Sn}\) and \(^{208}\text{Pb}\)). The staggering for the intruder levels is even amplified for parametrizations with large proton-neutron tensor terms, as T62, T64 or T66. The effect is particularly prominent for the heavy \(^{132}\text{Sn}\) and \(^{208}\text{Pb}\) with a large proton-to-neutron ratio \(N/Z\), which might hint at unresolved isospin dependence of the spin-orbit interaction, although alternative explanations that involve how single-particle states in different shells should interact through tensor and spin-orbit forces are possible as well, see also the next paragraph.

Note that also the spin-orbit splittings of the low-\(3\) levels shown in Fig. 13 exhibit a staggering, which is of smaller amplitude, though. It has been pointed out by Skalski [92], that an exact treatment of the Coulomb exchange term (com pared to the Slater approximation used here and nearly all existing literature) does indeed slightly increase the spin-orbit splittings of protons across major shells. This effect might give a clue to the staggering observed for the \(N = Z\) nucleus \(^{56}\text{Ni}\), but the magnitude of the effect reported in [93] is too small to explain the large staggering we find for the heavier \(N \neq Z\) nuclei.

Next, we use the example of \(^{132}\text{Sn}\) to demonstrate why the spin-orbit splittings of nodeless high-\(3\) states are more sensitive to the tensor term than low-\(3\) states with one or several nodes, see Fig. 14. The lower panel shows the neutron spin-orbit potential in \(^{132}\text{Sn}\) for four different parametrizations, while the upper panel shows selected radial single-particle wave functions. The \(1h_{\frac{1}{2}}\)
T_{22} and T_{66}, it is striking that for T_{66} it is essentially narrowed and is in many cases pushed towards larger radii, while its depth remains unaltered. Recalling that T_{66} shows a pathological behavior of too weak spin-orbit splitting of the intruder states, it appears that a correct r-dependence of spin-orbit splittings might require to modify the radial dependence of the spin-orbit potential such that it becomes wider towards smaller radii. This uncalled-for modification of the shape of the spin-orbit energy has previously been put forward by Brown et al. [43] as an argument for a negative like-particle J^2 coupling constant. However, as will be discussed in paragraph 4.B.3 below, the evolution of single-particle levels along isotopic chains calls for $\lambda > 0$, see also [43]. Additionally, as we will show in appendix A, large negative values of λ pose the risk of instabilities towards the transition to states with unphysical shell structure.

4. Single-particle spectra of doubly-magic nuclei

After we have examined the predictions for spin-orbit splittings, we will now turn to the overall quality of the single-particle spectra of doubly-magic nuclei. Figure 17 shows the single-particle spectrum of 132Sn. It is evident that as a consequence of the underestimated spin-orbit splittings of the intruder levels that we discussed in the last section, the spectrum is deteriorated for large positive isoscalar tensor term coupling constants C_0^+ (see T_{66}), as, for example, a decrease of the spin-orbit split-
The overall situation is similar for 208Pb, see Fig. 18. Again, the high-r intruder states move too close to the $Z = 82$ and $N = 126$ gaps for large positive $C_{jj'}^r$. The effect is less obvious than for 132Sn as the intruders and their spin-orbit partners are further away from the gaps. Still, the level ordering and the size of the $Z = 82$ gap become unacceptable for parametrizations with large tensor coupling constants. For strong tensor coupling constants (both like-particle and proton-neutron), a $Z = 92$ gap opens in the single-particle spectrum of the protons that is also frequently predicted by relativistic mean-field models [12,88] but absent in experiment [100].

The single-particle spectra for the light doubly magic nuclei 40Ca (Fig. 19), 48Ca (Fig. 20), 50Ni (Fig. 21), 60Ni (Fig. 22), and 90Zr (Fig. 23), all have in common on that the relative impact of the J^2 term on the ordering and relative distance of single-particle levels is even stronger than for the heavy nuclei discussed above. But not all of the strong dependence on the coupling constants of the J^2 term is that we see in the cases due to the actual contribution of the tensor terms to the spin-orbit potential. This is most obvious for 40Ca, where protons and neutrons are spin-saturated; so that the J^2 terms do not contribute to the spin-orbit potentials. Still, increasing their coupling constants increases the spin-orbit splittings, which manifests the readjustment of the spin-orbit force to a given set of $C_{jj'}^r$ and $C_{jj''}^r$ (see Fig. 17). The evolution of the spin-orbit splittings in 40Ca visible in Fig. 13 is the background which we have to keep in mind when discussing the impact of the tensor terms on single-particle non-vanishing spin-orbit currents. Note that the spin-orbit coupling constant W_0 is correlated with isoscalar tensor coupling constant $C_{jj'}^r$, such that the single-particle spectra obtained with T_24 and T_42 are very similar, as they are for T_26, T_44 and T_62.

For 40Ca, Fig. 20, the protons are still spin-saturated with vanishing proton spin-orbit current J_p, while for neutrons we have a large J_n, depending on the nature of the tensor terms in the energy functional (i.e., like-particle or proton-neutron or a mixture of both) of the spin-orbit current will either contribute to the spin-orbit potential of the neutrons or that of the protons or both, see Eq. (44). For the parametrizations with dominating like-particle J^2 terms, for example in 24T and 26T, the situation for the protons is the same as for 40Ca: there is no contribution from the tensor terms to the proton spin-orbit splittings, but com par to 22T the proton $Z = 20$ gap is reduced through the readjustment of the spin-orbit force, leading to values that are too small. For the same parametrizations, the large contribution from J_n to W_n opens up the $N = 20$ gap to values that are tentatively too large, as it reduces the neutron spin-orbit splittings and thereby compresses, even overcomes, the effect from the readjustment of the spin-orbit force. At the same time the $N = 28$ gap is reduced. The opposite effect is seen for parametrizations with large proton-neutron tensor terms, for example in 42T or 62T. For those, the proton spin-orbit splitting is reduced, opening up the $Z = 20$ gap in the neutron spectrum.

The position of the centroid is fairly independent from the parametrization. A summing that the calculated energy of the centroid of an intruder state is more robust against corrections from core polarization and particle-vibration coupling that its spin-orbit splitting, we see that the $1h$ centroid is clearly too high in energy by about 1 MeV. In combination with its tentatively too small spin-orbit splitting, see Fig. 15, this offers an explanation for the notorious wrong positioning of the $1h_{11/2}$, $2d_{5/2}$ and $3s_{1/2}$ levels in 132Sn [23]. The near-degeneracy of the $2d_{3/2}$ and $3s_{1/2}$ levels is always well reproduced, while the $1h_{11/2}$ comes out much too high. As the $1h_{11/2}$ is the last occupied neutron level, self-consistency puts it close to the Fermi energy, which in turn, pushes the $2d_{3/2}$ and $3s_{1/2}$ levels down in the spectrum.
FIG. 19: Same as Fig. 17 for 40Ca.

FIG. 20: Same as Fig. 17 for 48Ca.

FIG. 21: Same as Fig. 17 for 56Ni.

FIG. 22: Same as Fig. 17 for 68Ni.

gap compared to T_{22}, while the neutron spin-orbit splittings are increased by the background effect from the re-adjusted spin-orbit force.

For 56Ni, Fig. 21, we have large J_n and J_p. In this $N = Z$ nucleus, the like-particle or proton-neutron parts of the tensor terms cannot be distinguished. The
spectra depend only on the overall coupling constant of the isoscalar tensor term \(C_{ij} \), on the one hand directly through the contribution of the tensor term \(s \) to the spin-orbit potential, and on the other hand through the background readjustment of \(W \). As already mentioned, results for \(T24 \) and \(T42 \) are very similar, as they are for \(T26 \), \(T44 \) and \(T62 \). All parameterizations have in common that the proton and neutron gaps at 28 are too small. The variation of the single-particle spectra among the parameterizations is smaller than for \(^{40}\text{Ca} \) mainly because the tensor term \(s \) compensates the background drift from the readjustment of \(W \).

The slightly neutron-rich \(^{68}\text{Ni} \) combines a spin-saturated sub-shell closure \(N = 40 \) that gives a vanishing neutron spin-orbit current with the magic \(Z = 28 \) that gives a strong proton spin-orbit current. The variation of the single-particle spectra in dependence of the coupling constants of the tensor term \(s \) is similar to those of \(^{40}\text{Ca} \), with the roles of protons and neutrons exchanged.

The nucleus \(^{90}\text{Zr} \) combines the spin-saturated proton sub-shell closure \(Z = 40 \) with the major neutron shell closure \(N = 50 \). The high degeneracy of the occupied \(1g_{9/2} \) level leads to a very strong neutron spin-orbit current, while the proton spin-orbit current is zero. Even in the absence of a tensor term contributing to their spin-orbit potential for parameterizations with pure like-particle tensor term \(s \), the proton single-particle spectra are dramatically changed by the feedback effect from the readjusted spin-orbit force; see the evolution from \(T22 \) to \(T26 \). The \(1g_{9/2} \) comes down, and closes the \(Z = 40 \) sub-shell gap. For parameterizations with pure proton-neutron tensor term \(s \), one has the opposite effect, this is because the contribution from the tensor term \(s \) overcompensates the background effect from the spin-orbit force. The effect of the tensor term \(s \) on the neutron spin-orbit splittings is less dramatic, but still might be sizable.

We have to point out that the calculations displayed in Fig. 23 were performed without taking pairing into account, as the HFB scheme breaks down in the weak pairing regime of doubly-magic nuclei. For some extreme (and unrealistic) parameterizations, however, the gaps disappear which, in turn, would lead to strong pairing correlations if the calculations were performed within the HFB scheme. This happens, for example, for neutrons in \(^{90}\text{Zr} \) when using \(T26 \) and \(T46 \). Interestingly, the pairing correlations for neutrons break the spin saturation, which leads to a substantial neutron spin-orbit current \(J_n \). As these parameterizations use values of the like-particle coupling constant significantly larger than the neutron-proton one, \(J_n \) feeds back onto the neutron spin-orbit potential only, Eq. (23). As the corresponding coupling constant is positive for \(T26 \) and \(T46 \), the contribution from the tensor term \(s \) reduces the spin-orbit splittings, in particular those of the \(1g_{9/2} \) and \(1f_{5/2} \). As a result, this counteracts the reduction of the \(N = 40 \) gap predicted by \(T26 \) and \(T46 \) in calculations without pairing.

5. Evolution along isotopic chains: np coupling

In the preceding sections, we have analyzed characteristics of the single-particle spectra for isolated doubly-magic nuclei. We found that larger tensor terms do not lead to an overall proven ent of the single-particle spectra. However, we also argued that it might be essentially due to deficiencies of the central (and possibly spin-orbit) interactions and that it should not be used to discard the tensor term \(s \) as such. In any case, the results gathered so far on single-particle spectra of doubly-magic nuclei do not permit to narrow down a region of meaningful coupling constants of the tensor term \(s \). The analysis must be complemented by looking at other observables. A better suited observable is provided by the evolution of spin-orbit splittings along an isotopic or isotonic chain, which ideally reflects the nuclear-number-dependent contribution from the \(J^2 \) term \(s \) to the spin-orbit potentials. Unfortunately, experimental data for the evolution of spin-orbit partners are scarce; hence, one has to content oneself to the evolution of the energy distance of levels with different \(J^2 \), assuming that the effect is primarily caused by the evolution of the spin-orbit splittings of each level with its respective partner. A popular playground for such studies is the chain of Sn isotopes, where two such pairs of levels have gained attention; the \(2d_{5/2} \) and \(1g_{9/2} \) on the one hand, and the \(1g_{9/2} \) and \(1h_{11/2} \) on the other hand. Figure 24 shows these two sets of results for a selection of our parameterizations.

Experimentally, the \(2d_{5/2} \) and \(1g_{9/2} \) levels cross be-
between $N = 70$ and 72, such that the $2d_{3/2}$ provides the ground state of light odd-A Sb isotopes, and $1g_{9/2}$ that of the heavy ones, see for example Ref. [101]. The crossing as such is predicted by many mean-field interactions and most of the parametrizations of the Skyrme interaction we use here. It has also been studied in detail with the standard Gogny force (without any tensor term) using elaborate blocking calculations of the odd-A nuclei [102]. The crossing, however, is never predicted at the right neutron number, see Fig. 24. As we have learned above, we should not assume that the absolute distance of the two levels will be correctly described by any of our parametrizations (as the centroids of the shells will not have the proper distance and the spin-orbit splittings have a wrong dependence within a given shell). Hence, the neutron number where the crossing takes place cannot and should not be used as a quality criterion. What does characterize the tensor term is the bend of the curves in Fig. 24, as ideally it reflects how the spin-orbit splittings of both levels change in the presence of the tensor term. Similar caution has to be exercised in the analysis of the unusual relative evolution of the proton $1g_{7/2}$ and $1h_{11/2}$ levels that was brought to attention by Schiefer et al. [43]. Their spacing has been investigated in terms of the tensor force before [44,46,48,49]. Again, we pay attention to the qualitative nature of the bend without focusing too much on the precise value by which the splitting changes when going from $N 58$ to $N = 82$. Indeed, the matching of the lowest proton fragment with quantum number $1h_{11/2}$ seen experimentally with the corresponding empirical single-particle energy is unsafe because of the fractionization of the strength as discussed in Ref. [49].

For both pairs of levels, the evolution of their distance can be attributed to the tensor coupling between the proton levels and neutrons filling the $1h_{11/2}$ level below the $N = 82$ gap. Unfortunately, this introduces an additional source of uncertainty: as can be seen in Fig. 19, the ordering of the neutron levels in 132Sn is not properly reproduced by any of our parametrizations, with the $1h_{11/2}$ level being predicted above the $2d_{3/2}$ level, while it is the other way round in experiment. This means that in the calculations, the contribution from the $1h_{11/2}$ level to the neutron spin-orbit current builds up at larger N than what can be expected in experiment. As a consequence, the prediction for the relative evolution of the levels might be shifted by up to four mass units to the right compared to experiment for both pairs of levels we examine here.

In the end, the trend of both splittings is best reproduced when using a positive value of the neutron-proton $J_1 \frac{1}{2}$ coupling constant such that the filling of the neutron $1h_{11/2}$ shell decreases the spin-orbit splittings of the proton shells. The parametrizations of the T4J and T6J series indeed do reproduce the bend of empirical data, with, however, a clear shift in the neutron number where it occurs, as expected from the previous discussion. A value of $\epsilon = 120$ MeV fm5, which corresponds to the series of T4J parametrizations, matches its magnitude best (see for example Ref. T44).
A similar analysis can be performed for the proton 1f_{5/2} and 2p_{1/2} levels in the chain of Ni isotopes, see Fig. 25. This case is interesting as no distinctive feature can be observed in the empirical spectra, yet the standard parametrizations without tensor terms like T22 do not reproduce them. In fact, to keep the 1f_{5/2} and 2p_{1/2} at a constant distance, two competing effects have to cancel. First, the increasing di-easiness of the neutron density with increasing neutron number diminishes the proton spin-orbit splittings through its reduced gradient in the expression for the proton spin-orbit potential when going from N = 32 to N = 40. Second, the filling of the neutron 1f_{5/2} state reduces the neutron spin-orbit current which in turn increases the proton spin-orbit splittings for interactions with sizable proton-neutron tensor contribution to the proton spin-orbit potential when going from N = 32 to N = 40. The former effect can be clearly seen for parametrizations T2J with vanishing proton-neutron tensor term, \(\alpha = 0 \). Again, parametrizations of the T4J series seem to be the most appropriate to describe the evolution of these levels.

The evolution of single-particle levels is the tool of choice to determine the sign and magnitude of the proton-neutron tensor coupling constant. The value we favor, as a result of our semi-empirical analysis is \(\alpha = 120 \text{ MeV fm}^5 \). This value is only slightly larger than the value of 94 to 96 \text{ MeV fm}^5 advocated by Brown et al. in Ref. [48], which was adjusted to theoretical level shifts in the chain of In isotopes obtained from a G-matrix interaction. We can consider this as a reasonable agreement.

Let us defer the discussion of this value to the end of this section and study in the next paragraph the like-particle tensor-term coupling constant.

6. Evolution along isotopic chains: \(\alpha \) coupling

In order to narrow down an empirical value for the neutron-neutron tensor coupling constant, the ideal observable would be the evolution of neutron single-particle levels along an isotopic chain. Unfortunately, these are only accessible at the respective shell closures. We shall therefore compare neutron single-particle spectra of pairs of doubly-magic nuclei belonging to the same isotopic chain. Again, the necessity to extract pure single-particle effects calls for precautions. We choose pairs of particle or hole levels which are close enough in energy that their absolute spacing is not much affected by particle-vibration coupling. Of course, one also has to be careful if both states appear at relatively high excitation energy in the neighboring odd-isotope because the fractionization of their strength could again interfere with the analysis. In the following, we choose pairs of orbitals which are as safe as possible.

To remove the uncertainties from the deficiencies of the central and spin-orbit parts of the effective interaction that we have indicated above, we will look at a double di-erence, where, asrst, we construct the energy di-erence between the neutron 1d_{3/2} and 2s_{1/2} levels when going from \(^{68}\text{Ca} \) to \(^{56}\text{Ni} \), Eq. (44) (top) and of the neutron 1f_{5/2} and 2p_{1/2} levels when going from \(^{56}\text{Ni} \) and \(^{68}\text{Ni} \), Eq. (45) (bottom).

\[
\begin{align*}
\text{Ca} = ^{40}\text{Ca} ^{40}\text{Ca} ^{40}\text{Ca} ^{40}\text{Ca} ^{40}\text{Ca} : \quad (44)
\end{align*}
\]

Assuming that the problem is from the central and spin-orbit forces discussed in Sects. IV B.1 and IV B.4 have the same effect in both nuclei, we will cancel out in \(^{68}\text{Ca} \).

The interesting feature of this pair of states is that they are separated by more than 2 \text{ MeV} \(^{40}\text{Ca} \), while they are nearly degenerate in \(^{48}\text{Ca} \), see Figs. 19 and 20. Such a shift can only be reproduced with a positive (140-180 \text{ MeV fm}^5) value of \(\alpha \), which decreases the splitting of the neutron 1d shell when the neutron 1f_{5/2} level is lifted.

A similar analysis can be performed for the 1f_{5/2} and 2p_{1/2} neutron states in the Ni isotopes \(^{56}\text{Ni} \) and \(^{68}\text{Ni} \),

\[
\begin{align*}
\text{Ni} = ^{56}\text{Ni} ^{58}\text{Ni} ^{60}\text{Ni} ^{62}\text{Ni} ^{64}\text{Ni} : \quad (45)
\end{align*}
\]

Going from \(^{56}\text{Ni} \) to \(^{68}\text{Ni} \), the neutron 1f_{5/2} level comes further down in energy than the 2p_{1/2} level for parametrizations without tensor terms (T22), see Figs. 23 and 22. The reason for this trend is the geometrical growth of the nucleus, which on the one hand lowers the centroid of the 1f levels in the w.f. potential well, and on the other hand pushes the spin-orbit shell to larger radii, which has opposite effects on the splittings of 2p and 1f states. The like-particle tensor terms can compensate this trend through a reduction of the spin-orbit

\[
\begin{align*}
\Delta E_{\text{Ni}} = ^{56}\text{Ni} ^{58}\text{Ni} ^{60}\text{Ni} ^{62}\text{Ni} ^{64}\text{Ni} : \quad (45)
\end{align*}
\]

\[
\begin{align*}
\text{Ca} = ^{40}\text{Ca} ^{40}\text{Ca} ^{40}\text{Ca} ^{40}\text{Ca} ^{40}\text{Ca} : \quad (44)
\end{align*}
\]

Assuming that the problem is from the central and spin-orbit forces discussed in Sects. IV B.1 and IV B.4 have the same effect in both nuclei, we will cancel out in \(^{68}\text{Ca} \).

The interesting feature of this pair of states is that they are separated by more than 2 \text{ MeV} \(^{40}\text{Ca} \), while they are nearly degenerate in \(^{48}\text{Ca} \), see Figs. 19 and 20. Such a shift can only be reproduced with a positive (140-180 \text{ MeV fm}^5) value of \(\alpha \), which decreases the splitting of the neutron 1d shell when the neutron 1f_{5/2} level is lifted.

A similar analysis can be performed for the 1f_{5/2} and 2p_{1/2} neutron states in the Ni isotopes \(^{56}\text{Ni} \) and \(^{68}\text{Ni} \),

\[
\begin{align*}
\text{Ni} = ^{56}\text{Ni} ^{58}\text{Ni} ^{60}\text{Ni} ^{62}\text{Ni} ^{64}\text{Ni} : \quad (45)
\end{align*}
\]

Going from \(^{56}\text{Ni} \) to \(^{68}\text{Ni} \), the neutron 1f_{5/2} level comes further down in energy than the 2p_{1/2} level for parametrizations without tensor terms (T22), see Figs. 23 and 22. The reason for this trend is the geometrical growth of the nucleus, which on the one hand lowers the centroid of the 1f levels in the w.f. potential well, and on the other hand pushes the spin-orbit shell to larger radii, which has opposite effects on the splittings of 2p and 1f states. The like-particle tensor terms can compensate this trend through a reduction of the spin-orbit

\[
\begin{align*}
\Delta E_{\text{Ni}} = ^{56}\text{Ni} ^{58}\text{Ni} ^{60}\text{Ni} ^{62}\text{Ni} ^{64}\text{Ni} : \quad (45)
\end{align*}
\]
splitting of the 1f levels. The observed downward shift by 0.3 MeV can be recovered with a value of around 120 MeV fm3, see Fig. 26.

It is also gratifying to see that the analysis of Ca and Ni isotopes suggests nearly the same value for the like-particle tensor term coupling constant α.

C. Binding energies

Our ultimate goal, although far beyond the scope of the present paper, is the construction of a universal nuclear energy density functional that sim ultaneously describes bulk properties like masses and radii, giant resonances, and low-energy spectroscopy, such as quasiparticle con quurations and collective rotational and vibrationa states. To crosscheck how our findings on single-particle spectra and spin-orbit splittings translate into bulk properties, we will now analyze the evolution of mass residuals and charge radii along isotopic and isotonc chains. It has been repeatedly noted in the literature that the mass residuals from mean-field calculations show characteristic arches 29, 52, 54, 63, 72, 103, 104, 105, where heavy mid-shell nuclei are usually underbonded compared to the doubly magic ones that are located at the bottom of deep ravines. For light nuclei, the patterns are often less obvious. Part of this effect can be explained and accounted for by large-amplitude correlations from collective shape degrees of freedom into account. To account for these higher-order effects, we use the collective model with the same intrinsic properties.

Recently, Dobaczewski pointed out 47 that the strongly nonvanishing contributions raised by the J^2 tensor terms to the total binding energy could come from at least some of the ravines found in the mass residuals around magic numbers. The hypothesis was motivated by calculations that evaluate the tensor term at a realistic point, or self-consistently, using in this case an existing standard parametrization without tensor terms for the rest of the energy functional. Our set of reduced parametrizations with varied coupling constants of the tensor terms gives us a tool to check how much of the argument persists to a full t.

1. Semimagic series

Figure 26 displays binding energy residuals along various isotopic and isotonc chains of semimagic nuclei for a selection of our parametrizations: T22 is the reference with vanishing J^2 term at sphericity; T24 has a substantial like-particle coupling constant and vanishing proton-neutron coupling constant α, which is sim ilar to the most of the published parametrizations which take the J^2 term s from the central 5y sym e force into account; T42 and T62 are parametrizations with substantial proton-neutron coupling constant and vanishing like-particle coupling constant; T44 has a mixture of like-particle and proton-neutron tensor term s that is close to what we found preferable for the evolution of spin-orbit splittings above; and T46 is a parametrization that gives the best root-mean-square residual of binding energies for spherical nuclei, as we will see below. Finally, T66 is a parametrization with large and equal proton-neutron and like-particle tensor-term coupling constants.

The tensor terms have opposite effects in light and heavy nuclei: The curves obtained with T22, the parametrization without J^2 tensor term contribution at sphericity, are relatively flat for the light isotopic and isotonc chains, but show very pronounced arches with an amplitude of 5 or even more MeV for the heavy Sn and Pb isotopc chains. By contrast, the most striking effect of the J^2 term is that it induces large variations of the mass residuals in light nuclei, while they attenuate the curves in the heavy ones.

The strong variation between the parametrizations for light nuclei are of course the direct consequence of the strong variation of the spin-orbit current J that enters the spin-orbit and tensor terms when going back and forth between nuclei where the con guration of at least one nucleon species is spin-saturated. The variations seen are a result of the modifications of the tensor-term coupling constants and the associated readjustment of the spin-orbit strength W_0. For example, 48Ca is overlapped with respect to 48Ca and 56Ni for parametrizations with a proton-neutron coupling constant $\alpha < 0$, while the like-particle coupling constant has a more im pact e ect. Since only the neutron core is spin-unsaturated in this nucleus, this must be attributed to the increase in the readjusted spin-orbit strength W_0 (correlated with $C_0 = W_0$) which dominates when W_0 is increased and kept at zero, and counterbalances the effect of the tensor term.

The large overbinding of nuclei around 90Zr ($Z = 40$, $N = 50$) for parametrizations with large proton-neutron tensor coupling constant has the same origin. For a given parametrization and a given nucleus, the energy gain from the spin-orbit term seems to be almost always larger than the energy loss from the J^2 one, see Fig. 28 for Ca isotopes and Fig. 29 for Sn isotopes. Of course other terms in the energy functional conspire for a part of the gain from the spin-orbit term, but the overall trends of the mass residuals suggest that the spin-orbit energy has a much larger contribution to the differences between the parametrizations visible in Fig. 28 than the J^2 term itself.

We have to note that the spin-orbit current does not completely vanish for the nominally proton and neutron spin-saturated 10Ca for parametrizations with large cou-
FIG. 27: (Color online) Mass residuals $E_{th} - E_{exp}$ along selected isotopic and isotonic chains of semimagic nuclei for the parameterizations as indicated. Positive values of $E_{th} - E_{exp}$ denote underbound nuclei, negative values overbound nuclei.

The coupling constants of the J^2 terms. For those, the gap at 20 is strongly (and nonphysically) reduced, see Fig. 19. The small gap at 20 does not suppress pairing correlations anymore in our HFB approach. The resulting scattering of particles from the sd shell to the fp shell breaks the spin-saturation, such that there is a sizeable, in some cases quite sizable, contribution from the spin-orbit term to the total binding energy. Owing to the compensation between all contributions, the total energy gain compared to a HF calculation without pairing is usually small and rests on the order of 200 keV for the parameterizations shown in Fig. 27.

It is also important to note that some of the light chains in Fig. 27 are sufficiently close to or even cross the $N = Z$ line that they are subject to the Wigner energy, which still lacks a satisfying explanation, not to mention a description in the framework of mean-field methods. The Wigner energy is not taken into account.
in our fits, while it turned out to be a crucial ingredient of any HFB \cite{107,108,109} or other mass formula. In fact, as shown in Fig. 14 of Ref. \cite{54}, the missing Wigner energy clearly sticks out from the mass residuals for SLy4 (which is very similar to T22) when they are plotted for isobaric chains. This local trend around N = Z is, however, overlaid with a global trend with mass number, such that the missing Wigner energy cannot be spotted anymore when looking at the mass residuals for the isotopic chain of Ca isotopes, similar to what is seen for T22 in Fig. 27. Within our fit protocol, the correlation between the masses of 40Ca, 48Ca and 56Ni, that is brought by the spin-orbit force (see Sect. II B) does not tolerate a correction for the Wigner energy for standard central and spin-orbit Skyrme forces, as this will lead to an unacceptable underbinding of 48Ca. This, however, might change when the J2 terms are added. Indeed, Fig. 28 suggests that adding a phenomenological Wigner term around 40Ca and 56Ni to a parameter set like T44, which is consistent with the evolution of single-particle levels, would flatten the curves for the mass residuals in the Ca, Ni and N = 28 chains. The mass residuals for the chain of oxygen isotopes that are not shown here would be improved in a similar manner. However, extreme caution should be exercised before jumping to premature conclusions, as the spin-orbit splittings and level distances in light nuclei are far from realistic for all our parameterizations; as a consequence it is difficult to judge if the Wigner energy is fortuitous or indeed a feature of well-tuned J2 terms. Note that the HFB mass formulas that do include a correction for the Wigner energy side-by-side with the J2 terms from the central Skyrme force give satisfying mass residuals for light nuclei \cite{107,108,109}, but have nuclear matter properties that are quite different from ours; cf. BSk1 and BSk6 with SLy4 in Table I of Ref. \cite{110}. Our constraints on the empirical nuclear matter properties (same as those on SLy4) that are absent in these HFB mass formulas might be the deeper reason for this conflict.

Large tensor-term coupling constants straighten the arches in the mass residuals in the heavy Sn and Pb isotopic chains, but the improvements are not completely satisfactory. Large, combined proton-neutron and like-particle coupling constants tend to transform the arch for the tin isotopic chain into a U-shaped curve, which is not very realistic from the standpoint of expected corrections through collective effects. It can again be assumed that the deficiencies of the single-particle spectra pointed out in Fig. 17 are responsible, where the $^{1h_{1/2}^+}$ and $^{1g_{9/2}^-}$ are placed too high above the rest of the single-particle spectra in heavy Sn isotopes. For Pb isotopes, large values of the tensor terms tend to obscure the neutron-deuteron curves. It is noteworthy that the tensor terms seem to not much affect the mass residuals of the heavy Pb isotopes above N = 126, which are on the brink of a very deep ravine that becomes visible.
when going towards heavier elements, cf. the SLy4 results in Ref. [54].

It has been often noted that effective interactions that give a similar satisfying description of masses close to the valley of stability give diverging predictions when extrapolated to exotic nuclei. The standard example is the two-neutron separation energy $S_{2n}(N;Z) = E(N;Z) - E(N;Z-2)$ for the chain of Sn isotopes. Results obtained with a subset of our parametrizations are shown in Fig. 30. It is noteworthy that the differences for neutron-rich nuclei beyond $N = 82$ are not larger than those for the isotopes closer to stability. A round the valley of stability, increasing the coupling constants of tensor terms, in particular the like-particle ones, tilts the curve, pushing it up for light isotopes and pulling it down for heavy ones, which reflects of course the position of the $^{11}h_{11/2}$ level that is pushed into the $N = 82$ gap, see Fig. 17.

For the neutron-rich isotopes, all di-energies appear around $N = 90$, which reflects the change of level structure above the $2f_{5/2}$ level and at the drip line, but they are much smaller than the differences seen between parametrizations obtained with different protocols, see Fig. 5 of Ref. [29].

2. Systematics

In the preceding section we showed how the j^2 term α in the energy functional modify the trends of mass residuals along isotopic and isotonic chains, in particular the amplitude of the arches between doubly-magic nuclei. In this section, we want to examine how this translates into quality criteria for the overall performance of the parametrizations for mass residuals.

Figure 31 displays the root-mean-square deviation of the mass residuals for all our 36 parametrizations, evaluated for a set of 134 nuclei predicted to have spherical mean-field ground states when calculated with the parametrizations SLy4 [54]. One observes a clear minimum around $T46$, i.e. $(\alpha, \beta) = (240;120)$, with $(E_{\text{th}}, E_{\text{exp}})_{\text{rms}} = 1.96$ MeV, compared with 3.44 MeV for $T22$ $(\alpha, \beta) = (0;0)$. We found even slightly better values with even more repulsive isoscalar and isovector coupling constants, but the single-particle spectra of these interactions turn out to be quite unrealistic, cf. Sect. IV B 1.

This already demonstrates that in the presence of the J^2 term α of masses does not necessarily lead to satisfactory single-particle spectra.

Figure 32 demonstrates how the distribution of the mass residuals $E_{\text{th}}, E_{\text{exp}}$ a α the evolution of their rms α value for a subset of 9 parametrizations. For $T22$ $(\alpha, \beta) = (0;0)$, the distribution is centered at positive α values, with very few nuclei being over-bound. Increasing α to 120 MeV fm5 (T42) or even 240 MeV fm5 (T62) shifts the median of the distribution to smaller values, which yields more and more overbound nuclei. For large values of β, the distribution spreads out more, which diminishes the median of the distribution closer to zero. For given β, increasing α shifts the median of the distribution without spreading out its overall shape, which is preferable to optimize the α value.

These considerations, however, have to be taken with caution. As said above, we aim at a model where certain correlations between the mean-field are treated explicitly, which asks for a distribution of mean-field mass residuals with an asymmetric distribution towards positive mass residuals, and a width that is similar to the difference
between the maximum and minimum correlation energies to be found.

D. Radii

The evolution of nuclear charge radii along isotopic chains reflects how the mean excitation energy of the protons changes when neutrons are added in the system. In the simplistic liquid-drop model, it just follows the geometrical growth of the nucleus $A^{1/3}$, but data show that there are many local deviations from this global trend. On the one hand, radii are of course subject to correlations beyond the mean-field $^{[22,111,112,113,114]}$. On the other hand, they are also sensitive to the detailed shell structure, which, in turn, might be influenced by tensor terms. We will concentrate here on two anomalies of the evolution of charge radii, both of which are not much influenced by collectives correlations beyond the mean-field (at least in calculations with the Skyrme interaction SLy4) $^{[22]}$: that the root-mean-square (rms) charge radius of ^{48}Ca is almost the same as the one of the lighter ^{40}Ca or possibly slightly smaller, and the kink in the isotopic shifts of mean-square (m.s.) charge radii in the Pb isotopes, where Pb isotopes above ^{208}Pb are larger than what could be expected from liquid-drop systematics. In both cases it is plausible that shell effects are the determining factor, although alternative explanations that involve pairing effects have been put forward for the latter case as well $^{[115,116]}$.

Charge radii have been calculated with the approximations...
interaction through the occupation factors v_i^2 when non-magnetic moments are considered. The same expressions had been used during the course of our param et erizations.

We begin with the Ca isotopes. Most param et erizations of Skyrme's interaction are not able to reproduce the charge radius of 48Ca. We have used the same relation as that of 40Ca, see Fig. 11 in Ref. [23]. The middle panel of Fig. 23 shows the difference of the magnetic moment of 48Ca and 40Ca in dependence of the tensor coupling constants and. First, this difference is almost independent of, the strength of the like-particle tensor term. Second, it is strongly correlated with the strength of the proton-neutron tensor term, in particular at values of the magnetic moment of the proton 1d$_{3/2}$ state which is not reproduced for any of our param et erizations. The latter study demonstrates the correlation between the magnetic moments of 40Ca and 48Ca and the absolute single-particle energy of the proton 1d$_{3/2}$ state. This level can be moved around with in the single-particle spectrum with the J^2 term. However, the agreement of the calculated single-particle energy of the proton 1d$_{3/2}$ state in both nuclei with experimental values is not necessarily improved for the param et erizations that reproduce the isotopic shift of the magnetic moments. Furthermore, a good reproduction of the isotopic shift does not guarantee that the absolute values of the magnetic moments are reproduced. The bottom panel in Fig. 33 shows the sensitivity to the coupling constants of the J^2 term. In fact, they are predicted very large for all of our param et erizations, which is against the predictions of the central eik model. Moreover, this sensitivity to the coupling constants of the J^2 term is the origin of the large discrepancy between 40Ca and 48Ca that is not reproduced by any pure mean eik model, see Ref. [23], nor by the beyond mean eik calculations with SLY4 of Ref. [54], while the shell model allows for a satisfactory description [113].

A few further words of caution are in order. The charge radii of all light nuclei are significantly increased by dynamical quadrupole correlations, see Fig. 23 of Ref. [54]. Correlations beyond the static self-consistent mean eik model are also at the origin of the differences between 40Ca and 48Ca that is not reproduced by any pure mean eik model, see Ref. [23], nor by the beyond mean eik calculations with SLY4 of Ref. [54], while the shell model allows for a satisfactory description [113].

Many explanations have been put forward to explain the kink in the isotopic shifts of Pb radii. As it qualitatively appears in relativistic mean eik models, but not in non-relativistic ones using the standard spin-orbit interaction [10], it has been used as a motivation to generalize the isospin mixing of the standard spin-orbit energy.

\[r_{ch}^2 = \hbar^2 l_i p + r_p^2 + \frac{N}{Z} r_m^2 + \frac{1}{Z} m c^2 X \sqrt{v_i^2 q_i h^2} \]

(46)

where the mean-square (m.s.) radius of the proton-orbit distribution r_{ch}^2 is corrected by three terms: the first two estimate the effects of the intrinsic charge distribution of the free proton and neutron (with m.s. radii r_p^2 and r_m^2) and the third adds a correction from the magnetic moment of the nucleons. Since we will consider the shift of charge radius for different isotopes of the same element, the actual value of r_p^2 cancels out. For the second correction term, which is independent from the interaction, we take $r_0 = 0.17 \text{ fm}^2$ [23]. Finally, the magnetic correction can only depend weakly on the details of the interaction through the occupation factors v_i^2 when non-magnetic moments are considered. The same expressions had been used during the course of our param et erizations.

\[\beta = \begin{cases} 0 & \text{if } \beta \leq 0.2 \text{ MeV fm}^6 \\ 120 \text{ MeV fm}^6 & \text{if } \beta > 0.2 \text{ MeV fm}^6 \end{cases} \]

FIG. 34: Change of slope in the m.s. charge radii r_{ch}^2 around 208Pb, Eq. (47), in fm2 as a function of α for three values of β. The experimental value is about one and a half times as large as the largest theoretical value shown here, see text.
density functional, Eq. [13], to simulate the isospin dependence of the relativistic Hartree model [73,72]. The resulting param et erizations are not completely satisfactory, as the price for the in proven ent of the radii is a further deterioration of spin-orbit splittings [14], while the relativistic mean field gives a satisfactory description of both. Some standard Skym e interactions that take the tensor term s from the central Skym e force into account also give a kink, but it is by far too small to reproduce the experimental values [53].

Plotting the radial slope of Pb isotopes as a function of N, the slopes are nearly linear when looking separately at the isotopes below and above 208Pb. We will concentrate on the change in the slope at 208Pb that is brought by the tensor term s, which can be quantified through the second naive difference of the m.s. radius at 208Pb

$$r_{ch}^{2}(^{208}\text{Pb}) = \frac{1}{2} r_{ch}^{2}(^{206}\text{Pb}) + 2 r_{ch}^{2}(^{208}\text{Pb}) + r_{ch}^{2}(^{210}\text{Pb}) ; \quad (47)$$

There are two conflicting values to be found in the literature, either 46.4 ± 1.3 fm2 [113] and the signi cantly larger 59.3 ± 2.0 fm2 [120]. Figure 34 shows the change of slope around 208Pb as deduced through Eq. (47) as a function of the like-particle tensor coupling constant s, so the change is mainly induced by the tensor interaction between particles of the same kind. It has been noted before that the kink in the isotopic shift of the charge radii in Pb isotopes is correlated to the single-particle spectrum of neutrons above $N = 126$, in particular the position of the $1l_{1}^{1/2}$ level. (This has to be contrasted with the Ca isotopic chain discussed above, where the difference of charge radii between 40Ca and 48Ca appears to be particularly sensitive to the single-particle spectrum of the protons.) The closer the $1l_{1}^{1/2}$ level is to the $2g_{9/2}$ level that is fixed above $N = 126$, the more the $1l_{1}^{1/2}$ becomes occupied through pairing correlations. Through the shape of its radial wave function, the partial wave of the nodeless $1l_{1}^{1/2}$ increases the neutron radius faster than the ground only the $2g_{9/2}$, and in particular faster than for the isotopes below $N = 126$. As the protons follow the density distribution of the neutrons, the charge radius grows rapidly beyond $N = 126$. This occurs an explanation why the kink increases with the like-particle tensor term coupling constant s for large values of the weight of the neutron spin-orbit current in the neutron spin-orbit potential, Eq. [55], the spin-orbit splitting of the $1l$ levels is reduced such that the $1l_{1}^{1/2}$ approaches the $2g_{9/2}$ level in 208Pb, see Fig. 12.

While the kink is clearly sensitive to the tensor term s, they cannot be responsible for the entire effect, as even for extreme param et erizations that give unrealistic single-particle spectra the calculated kink hardly reaches about three quarters of its experimen tal value.

V. SUMMARY AND CONCLUSIONS

We have reported a systematic study of the e ects of the J^2 (tensor) term in the Skym e energy functional for spherical nuclei. The aim of the present study was not to obtain a unique best of the Skym e energy functional with tensor term s, but to analyze the impact of the tensor term s on a large variety of observables in calculations at a pure mean field level and to identify, if possible, observables that are particularly, even uniquely, sensitive to the J^2 term s. To reach our goal, we have built a set of 36 param et erizations that cover the two-dimensional parameter space of the coupling constants of the J^2 term s that does not give obviously unphysical predictions for a wide variety of observables we have looked at. The ts were performed using a protocol very similar to that of the Skym e param et erizations [53,52]. The 36 actual sets of param eters can be found in the Physical Review archive [55].

We use a formalism that explicitly relates the tensor term s in the energy functional to underlying e ectsive density-dependent central, spin-orbit and tensor forces (or vertices) in the particle-hole channel. As has been known for long, a zero-range tensor force gives no qualitatively new term s for spherical mean field states when combined with a central Skym e force, but solely modifies the coupling constants of the J^2 term s that are already present. The contribution from the central Skym e force to the coupling constants of the J^2 term s depends on the same param eters r, x_1, x_2 and x_3 that determine the effect of the mass and contribute to the surface term s. As the latter term s are much more important for the description of bulk properties than the J^2 term s, the coupling constants of the J^2 term s are considered to a very small degree of the param eter space. From this point of view, adding a tensor force is necessary to explore it fully.

There is, however, the alternative interpretation of the Skym e energy functional from the density matrix expansion, which in the absence of ab-initio realizations so far is used as a motivation to set up energy functionals with independent, and phenomenologically tuned, coupling constants of all terms not constrained by sym me tries. In particular, this can be used to set unconstrained or unconstrained param eters to zero, as it is done for many existing param et erizations of the (central) Skym e interaction. For the ground states of spherical nuclei, as discussed here, the framework cannot be distinguished. For deformed nuclei, in particular, polarized nuclear matter, this choice will make a difference.

As a result of our study, we have obtained a long list of potentialities for the Skym e energy functional, most of which can be expected to be related to the properties of the central and spin-orbit interactions used. In fact, these features become obvious only at the param eters of the central and spin-orbit interactions used. In fact, these features become obvious only at the param eters of the central and spin-orbit interactions used.
right.

Our conclusions, however, have to be taken with a grain of salt. On the one hand, some might depend on the protocol and on the other hand, we have to stress that (within the framework of our study and all others available so far using mean-field methods) the comparison between calculated and experimental single-particle energies is not straightforward and without the risk of being misled. However, without even looking at single-particle spectra, we nd that

1. The presence of the tensor term s leads to a strong rearrangement of the other coupling constants, most notably that of the spin-orbit force. In fact, we nd that the variation of the spin-orbit strength W_0 provoked by the presence of tensor term s has a larger impact on the global systematics of single-particle spectra than the tensor term s themselves. The rearrangement of the parameters of the central and spin-orbit parts of the effective interaction suggests that perturbative studies of the tensor term s, in which they are added to an existing parameterization without readjustment, allow only very limited conclusions.

2. In the Skyrme energy functional, the combined coupling constants of the spin-orbit and tensor term s are nearly exclusively fixed by the masses and differences between 40Ca, 48Ca and 56Ni. This correlation appears to be (at least partly) spurious, the rapidly varying spin-orbit and tensor term s being m mused to simulate missing physics in the standard Skyrme functional.

3. The cost function used in our protocol prefers parametrizations of the form $J^2 = 0$, i.e., pure like-particle tensor term s $(J^2_1 + J^2_2)$, without giving a clear preference for a value of the corresponding coupling constant. By contrast, the mass residuals of 134 spherical even-even nuclei are minimized for interactions with large and . However, and as we will discuss in [33], the deformation properties of many nuclei obtained with the latter parametrizations are unrealistic, which disfavors this region of the parameter space.

4. The difference of the charge radii of 40Ca and 48Ca turns out to be particularly sensitive to the absolute single-particle energy of the proton 1d$_{3-2}$ level, which can be m mved around by the J^2 term s. As the parametrizations that give the best agreement for the absolute placement of this level do not necessarily give the best overall single-particle spectra for these two nuclei, this quantity should not be used to constrain the J^2 term s.

Concerning the global properties of the spin-orbit current J and its contribution to the spin-orbit potential, we have shown that

1. The spin-orbit current J in non-spin-saturated doubly-magic nuclei as 56Ni, 100Sn, 132Sn or 208Pb is dominated by the nodeless intruder orbitals. Through the contribution of the tensor term s to the spin-orbit eld, the feedback effect on their own spin-orbit splitting is maximized.

2. In light nuclei, J and consequently the contribution of the J^2 term s to the binding energy and the spin-orbit potential, vary rapidly between near-zero and very large values when adding just a few nucleons to a given nucleus. In heavy spherical nuclei, the variation becomes much slower and smoother as on the one hand one does not encounter spin-saturated configurations anymore, and on the other hand there are more and more high-l states with large degeneracy that require more nucleons to be fed.

3. The contribution from the zero-range spin-orbit force to the spin-orbit potential is peaked at the nuclear surface, as it is proportional to the gradient of the density. By contrast, the contribution from the zero-range tensor term s is peaked further inside of the nucleus, modifying the width of the spin-orbit potential with varying nucleon numbers. As shown in Ref. [48], experimental data tend to dislike such a modification.

4. Large negative coupling constants of the tensor term s will lead to instabilities, where a nucleus gains energy separating the levels from any spin-orbit partners on both sides of the Fermi energy. This process leads to unphysical single-particle spectra and rules out a large part of the parameter space. In particular cases, one might even obtain a (probably spurious) coexistence of two spherical configurations with different shell structure in the same nucleus, which are separated by a barrier.

The main motivation to add J^2 term s is of course to improve the single-particle spectra. All observations and conclusions concerning those have to be taken with care, as in this study we can only compare the eigenvalues of a spherically single-particle Hamiltonian with the separation energy to low-lying states in the odd-A neighbors of doubly and semi-magic nuclei (as was done in all earlier studies). When looking at the single-particle spectra in doubly-magic nuclei (or semi-magic nuclei) in a strong subshell closure of the other species) we nd that

1. The relative error of the spin-orbit splittings depends strongly on the principal quantum number of the orbitals with a given shell, such that for parametrizations without the tensor term s the splittings of the intruder state (without nodes in the radial wave function) is tentatively too small, while it becomes too large with increasing number of nodes. Adding the tensor term s further increases the discrepancy. This problem can only be resolved by...
an improved control over the shape of the spin-orbit potential. Indeed, the size of the spin-orbit splittings is related to the overlap of the radial wave function of a given single-particle state with the spin-orbit potential. The tensor term must modify the width of the spin-orbit potential, but to cure this deficiency calls for a large negative like-particle tensor coupling constant, which is not consistent with the evolution of spin-orbit splittings along chains of semimagic nuclei, and will lead to instabilities.

2. We also note that, in a given nucleus, the predicted spin-orbit splittings of neutron levels are larger than those of the protons when both are compared to experiment, which hints at an unresolved isospin trend in the spin-orbit interaction.

3. For spin-saturated doubly-magic nuclei as 16O and 40Ca, the spin-orbit splittings of the spin-saturated species of nuclei depend strongly on the coupling constants of the J^2 term s, although they do not contribute to the spin-orbit e_i. This is a consequence of the strong correlation between the spin-orbit and tensor term coupling constants, which try to compensate each other in spin-un saturated nuclei. For parametrizations with strong tensor-term coupling constants, the resulting spin-orbit force leads to unrealistic single-particle spectra of spin-saturated configurations.

4. The centroid of the spin-orbit partners that give the intruder state is tentatively too high compared to the major shell below.

The main effect of the tensor term s that most of the recent studies concentrate on, is the evolution of spin-orbit splittings with N and Z. Unfortunately, there are no data for the splittings themselves, such that one relies on data for the evolution of the distance of two levels with different s. The comparison is performed by the global agreement of the single-particle spectra listed above. Still, a careful comparison of calculations and experiments suggests that:

1. The evolution of the proton $1h_{11/2}$, $1g_{7/2}$ and $2d_{5/2}$ levels in the chain of Sn isotopes and that of the proton $1f_{5/2}$ and $2p_{3/2}$ levels in Ni isotopes call for a positive proton-neutron tensor coupling constant with a value around 120 M eV fm$^{-5}$, consistent with the findings of Refs. [46, 49, 50].

2. The evolution of the neutron $1d_{5/2}$ and $2s_{1/2}$ levels between 40Ca and 48Ca calls for a like-particle tensor coupling constant with a similar value around 120 M eV fm$^{-5}$. This is in variance to the findings of Refs. [45, 49, 52], but in qualitative agreement with the parametrization of Brown et al. [48], for which the tensor term was derived from a realistic interaction but disregarded thereafter because of its poor description of spin-orbit splittings.

3. Combined this leads to a dominant isoscalar tensor term with a coupling constant C_0 around 120 M eV fm$^{-5}$, while the isovector coupling constant will have a small, near-zero, value.

Our study is obviously only a stepping stone towards improved parametrizations of the Skyrme energy density functional. There are a number of necessary further studies and future theoretical developments:

1. The deformation properties of selected parametrizations will be discussed in a forthcoming paper [41].

2. The influence of the terms depending on time-odd densities and currents in the complete energy functional [22] on nucleon energy functional (rotational bands, etc.) is under investigation. The existing stability criteria of polarized matter are to be generalized as the tensor force introduces new unique terms, for example in the Landau parametrizations [23].

3. It is well known that the strength of the spin-orbit force has to scale with the effective mass of an interaction, which in turn determines the average density of single-particle levels. All parametrizations discussed here have a similar effective mass close to $m_e = 0.7$ that was already used for the SLy parametrizations. This value is somewhat smaller than the one obtained from ab-initio calculations. We have checked that increasing the effective isoscalar mass to the more realistic $m_e = 0.8$ (which within our protocol requires to use two density dependent terms [44]) does not significantly affect any of our conclusions.

4. It is evident that in provenents of the central and spin-orbit parts of the energy density functional are necessary, which will require a generalization of its functional form. Other motivations were found recently to perform such a generalization [84].

5. The only quantity that we found sensitive to the tensor term is the evolution of the distance between single-particle levels in isotopic or isotonic chains of semimagic nuclei. The distance between the levels that can be used for such studies is so large, that it might be compromised by their coupling to collective excitations. Reliable calculations including pairing, polarization as well as particle-vibration coupling effects [59, 58] along isotopic and isotonic chains are needed to test the quality, reliability and limits of the semiplicit identification of the eigenvalues of the spherical Hamiltonian in an even-even nucleus with the separation energy to or from low-lying states in the adjacent odd-A nucleus.
A p p e n d i x A : C o u p l i n g C o n s t a n t s o f
T h e S k y r m e E n e r g y F u n c t i o n a l

The coupling constants of the central Skyrme energy density functional in terms of the parameters of the central Skyrme force are given by

\[
\begin{align*}
A_0 &= \frac{3}{8} t_0 + \frac{3}{48} t_0^3 \quad (r) \\
A_1 &= \frac{1}{8} t_0^3 + x_0 \quad (r) \\
A_0^s &= \frac{1}{8} t_0^3 + x_0 \quad (r) \\
A_1^s &= \frac{1}{8} t_0^3 + x_0 \quad (r) \\
A_0 &= \frac{3}{32} t_0 + \frac{1}{16} t_0^3 \quad (x_1) \\
A_1 &= \frac{3}{32} t_0^3 + \frac{1}{16} t_0^3 \quad (x_1) \\
A_0^s &= \frac{3}{32} t_0^3 + \frac{1}{16} t_0^3 \quad (x_1) \\
A_1^s &= \frac{3}{32} t_0^3 + \frac{1}{16} t_0^3 \quad (x_1)
\end{align*}
\]

(A1)

The coupling constants of the spin-orbit energy density functional in terms of the parameters of the spin-orbit force are given by

\[
\begin{align*}
A_0^{s, J} &= -\frac{3}{4} W_0 \\
A_1^{s, J} &= -\frac{3}{4} W_0
\end{align*}
\]

(A2)

The coupling constants of the tensor energy density functional in terms of the parameters of the Skyrme e's tensor force are given by (Table I in [55])

\[
\begin{align*}
B_0^T &= \frac{1}{3} (t_0 + 3 t_0^2) \\
B_1^T &= \frac{1}{3} (t_0 + 3 t_0^2) \\
B_0^s &= \frac{1}{32} (t_0 + 3 t_0^2) \\
B_1^s &= \frac{1}{32} (3 t_0 + t_0^2) \\
B_0^{s, s} &= \frac{1}{32} (t_0 + 3 t_0^2) \\
B_1^{s, s} &= \frac{1}{32} (3 t_0 + t_0^2)
\end{align*}
\]

(A3)

APPENDIX B: PHASE TRANSITIONS

The densities and entering the energy functional vary smoothly with nucleon numbers as they follow the geometric growth of the nucleus. As a result, a functional depending only on and usually shows a unique minimum for given N, Z and shape. The situation is quite different when the tensor terms are taken into account. Indeed, the amplitude of the spin-orbit current density J depends on the number of spin-unsaturated single-particle states in the nucleus; it varies from (almost) zero in spin-saturated nuclei to large values as a consequence of shell and single-particle effects, see Fig. 35.

This behavior poses the risk of an instability, which was already reported in [41] multiplying J with a large coupling constant in the spin-orbit potential might, for certain combinations of the signs of the coupling constant and the spin-orbit currents of protons and neutrons, increase the spin-orbit splittings. As a result, it will cause two levels originating from different shells to approach the Fermi energy, one from above and the other from below, or even to cross. In that situation, their occupation numbers will change such that J increases further, which feeds back onto the spin-orbit potential and ultimately leads to a dramatic rearrangement of the single-particle spectrum.

We faced this problem when attempting to parameterize sets with large negative C_0. During the t, some nuclei seem to fall into the instability, depending on the values of the other coupling constants. As this is a highly nonlinear effect, it results in a very large energy gain from tiny m odifications of the coupling constants, the corresponding t's did not, and could not, converge.

In special cases, one might even run into a situation with two coexisting minima, where as a function of a suitable coordinate the con guration with regular shell structure is separated from a con guration with unphysical large spin-orbit splittings by a barrier. In such a
case, a calculation of the ground state might converge into one or the other minimum depending on the initial conditions chosen for the iterative solution of the HFB equations. In a calculation along an isotopic or isotonic chain, the coexistence will reveal itself through a large scattering of the mass residuals, which will fall on two distinct curves. We illustrate this phenomenon in Fig. 33 for 120Sn using a parameter set denoted $\Gamma (XX)$ with $C_0^{\gamma} = 157.57$ MeV fm5 and $C_0^\delta = 114.38$ MeV fm5, which is placed outside the parameter space shown in Fig. 1, to its lower left. Among the various possible recipes for a constraint on the spin-orbit current density, we chose to minimize the following quantity:

$$E[\cdots] = \sum_{\gamma} C_0^{\gamma} \int d^3 r_n \; r_n \; C_0^{\gamma}$$

where C is a Lagrange parameter and C_0^{γ} is a constant used to tune the constraint. The energy curve exhibits two minima denoted (a) and (b). The corresponding single-particle spectra are shown in Fig. 36 along with those obtained for SLy5. The minimum (a) corresponds to an almost spin-saturated neutron configuration where both spin partners are either occupied or empty, which is very similar to what is found using SLy5. In the minimum (b), which is deeper by more than 7 MeV, the single-particle spectrum is completely reorganized in order to maximize the spin-orbit current density and take advantage of its contribution in the functional. In this situation the neutron spin doublets $2d$, $1g$ and $1h$ split on both sides of the Fermi surface and generate a large spin-orbit current density.

This clearly shows that the parameter sets with large and negative coupling constants of the J^z term must be discarded since for many nuclei they lead to ground states with unrealistic single-particle structure.

Note that this kind of instability does not appear for the spin-orbit term, although its contribution to the energy functional also varies between small, sometimes near-zero, and very large values, see Figs. 29 and 30. It is only linear in J. As a consequence, its contribution to the total energy is usually much larger than that of the J^z term, so it plays a decisive role for the absolute energy gained when varying J.

talk at the Workshop on New developments in Nuclear Self-Consistent Mean-Field Theories, Yukawa Institute for Theoretical Physics, Kyoto, Japan, May 30–June 1, 2005, nucl-th/0508054.

