The time evolution of cosmological redshift as a test of dark energy

A. Balbi\(^{1,2}\) and C. Quercellini\(^{1,3}\)

\(^{1}\)Dipartimento di Fisica, Università di Roma "Tor Vergata", via della Ricerca Scientifica 1, 00133 Roma, Italy
\(^{2}\)INFN Sezione di Roma "Tor Vergata", via della Ricerca Scientifica 1, 00133 Roma, Italy

ABSTRACT

The variation of the expansion rate of the Universe with time produces an evolution in the cosmological redshift of distant sources (for example quasars). The measurement of the expansion rate of the Universe at different redshifts is crucial to investigate the cause of the accelerated expansion, and to discriminate between different cosmological models. Until now, a number of cosmological tools have been successfully used to probe the expansion and the geometry of the Universe. The position of acoustic peaks in the cosmic microwave background (CMB) angular power spectrum provides a powerful geometrical test, showing that the space curvature of the Friedmann-Robertson-Walker (FRW) metric is nearly flat (Spergel et al. 2006). A similar test is performed through the detection of baryon acoustic oscillations (BAO) in the power spectrum of matter extracted from galaxy catalogues. The luminosity distance of type Ia supernovae and other standard candles allows to constrain the value of the expansion rate at different redshifts, typically up to \(z \approx 2\) (Riess et al. 2006).

Currently, however, very little is known about the detailed dynamics of the expansion. Depending on the underlying cosmological model, one expects the redshift of any given object to exhibit a specific variation in time. An interesting issue, then, is to study whether the observation of this variation, performed over a given time interval, could provide useful information on the physical mechanism responsible for the acceleration, and be able to constrain specific models. This is the main goal of this paper. In addition to being a direct probe of the dynamics of the expansion, the method has the advantage of not relying on a detemination of the absolute luminosity of the observed source, but only on the Hubble constant, stable spectral lines, thus reducing the uncertainties from systematic evolutionary effects. The possible application of this kind of observation as a cosmological tool was first pointed out by Sandage (1962). However, the richness of the expected variation (typically, a shift of less than \(1\) km/s over a period of a year) was deemed impossible to observe at the time. The importance of this test was stressed again over the past decades by other authors (e.g. Lake 1981, Rudiger 1980); more recently, Loeb (1998) re-assessed its feasibility and concluded that, given the advancement in technology occurred over the last forty years, it is conceivable to expect that a measurement of the redshift...
2 A. Balbi and C. Quercellini

variation in the spectra of some suitable source (most notably the Lyman-β absorption lines of distant QSOs) could be detected in the not too distant future. Recently, Lake (2007) showed that measuring the time evolution of redshift would be a way to check the internal consistency of the underlying cosmological model, and to map the equation of state of dark energy.

With the foreseen developments of extremely large observatories, such as the European ELT, with diameters in the range 30-100 m, and the availability of ultra-stable, high-resolution spectrographs, the perspectives for the observation of redshift variations look very promising. For example, Pasqui et al. (2005, 2006) pointed out that the CODEX (CO sm: Dynamics Experiment) spectrograph should have the right accuracy to detect the expected signal by monitoring the shift of Lyman-β lines of distant (z ≤ 2) QSOs over a period of some decades.

A previous investigation of the expected cosmological constraints from this kind of observations was performed by Comastri et al. (2007). That work, however, only made predictions for a very restrictive set of models and assumptions: firstly, it only explored the case when the dark energy is a standard cosmological constant (i.e. a component with constant equation of state w = p = -1) plus a few non-standard models (the Chaplygin gas, and a model that, although having interacting dark energy, in fact only generalizes a constant dark matter equation of state, leaving the cosmological constant untouched); secondly, as it will be shown in more detail later, the observational strategy considered in that paper seems rather optimistic.

In this paper, we aim to give an overview of the theoretical predictions for the most popular and still viable models introduced in the recent past to explain the observed accelerated expansion. These models either fall within the broad category of "dark energy", introducing an unknown, non-compact and gravitationally repulsive component, or invoke a modification of the theory of gravity (for a review of possible explanations for the accelerated expansion see, e.g., Peebles & Ratra (2003)). Our first goal is to investigate whether the dynamical aspects of any of these standard and non-standard dark energy models show interesting features that could be constrained by future observations of the redshift variation. We do not restrict ourselves a priori to models with constant geometry, and we fully take into account correlations between parameter values when assessing the expected uncertainties.

This paper is organized as follows. In Sect. 2 we review the basic equations that describe the redshift variation with time of a source, in an expanding universe. We comment on the possibility of detecting the effect in the near future in Sect. 3. In Sect. 4 we study the expected apparent velocity shift for a number of non-standard dark energy models. Finally, we discuss the main results and conclusions of our work in Sect. 5 and 6.

2 BASIC THEORY

We start by reviewing the basic theory necessary to derive the expected redshift variation in a given cosmological model. We assume that the metric of the Universe is described by the FRW metric. The observed redshift of a given source, which emitted its light at a time t_0 in the past (i.e. at time $t = t_0$),

$$z_s(t_0) = \frac{a(t_0)}{a(t_0)} - 1,$$

and it becomes, after a time interval $t \rightarrow t_0$ (at t_0 for the source),

$$z_s(t_0 + t_0) = \frac{a(t_0 + t_0)}{a(t_0 + t_0)} - 1.$$ (2)

The observed redshift variation of the source is then,

$$z_s = \frac{a(t_0 + t_0)}{a(t_0)} - \frac{a(t_0)}{a(t_0)};$$ (3)

which can be re-expressed, after an expansion at first order in t, as:

$$z_s'(t_0) = \frac{a(t_0)}{a(t_0)} - \frac{a(t_0)}{a(t_0)};$$ (4)

Clearly, the observable z_s is directly related to a change in the expansion rate during the evolution of the Universe, i.e., to its acceleration or deceleration, and it is then a direct probe of the dynamics of the expansion. It vanishes if the Universe is coasting during a given time interval (i.e., neither accelerating nor decelerating). We can rewrite the last expression in terms of the Hubble parameter $H(z) = a(z) = a(z) ;$

$$z_s = H_0 t_0 1 + z_0 \frac{H(z_0)}{R} ;$$ (5)

The function $H(z)$ contains all the details of the cosmological model under investigation. Finally, the redshift variation can also be expressed in terms of an apparent velocity shift of the source, $v = c z_s = (1 + z_0) z$.

3 CAN THE VELOCITY SHIFT BE OBSERVED?

The latest studies on the feasibility of detecting a time evolution of the redshift are those by Pasqui et al. (2005, 2006). The most promising approach is to look at the spectra of Lyman-β forest absorption lines, which are very stable and basically immune from peculiar motions. This is a scenario that might be achieved in the next decades, when extremely large telescopes (such as the ELT) will collect a large number of photons, and high-resolution spectrographs (such as CODEX) will be able to measure tiny shifts in spectral lines over a reasonable amount of time, typically of order of few decades.

According to Monte Carlo simulations discussed by Pasqui et al. (2005, 2006), the accuracy of the spectroscopic velocity shift measurements expected by CODEX can be modeled as:

$$v = 1.4 \frac{2350}{S/N} \frac{30}{N_{QSO}} \frac{1.2}{1 + z_{QSO}} \frac{5}{1 + z_{QSO}} \frac{1}{cm/s} ;$$ (6)

here, S/N is the signal to noise ratio for pixels of 0.0125 A, N_{QSO} is the number of QSO spectra observed and z_{QSO} is their redshift. Based on the currently known QSOs brighter than $m = 16.5$ in the redshift range 2.2 to 4, Pasqui et al. (2005, 2006) assume to observe either 40 QSOs with
S−N ratio of 2000 each, or 30 QSOs with S−N of 3000, respectively. In fact, again according to Pasquini et al. (2005), a CODEX-like experiment, coupled to a 60 m telescope with approximately 20% total efficiency, would give a cumulative S−N of 12000 for a single QSO, requiring roughly 125 hours of observation to get a S−N of 3000 on that spectrum. Then, starting with 10 hours of observation per night, and taking into account a 20% use of the telescope, and a 90% of actually usable data, one nds that 40 spectra can be measured with that S−N in roughly 7.5 years (this time would actually increase to about 15 years if the telescope aperture is smaller, e.g., 42 m instead of 60 m). Then, it seems that a reasonable time span to perform a second observation of the same spectra might be 30 years.

Based on the previous considerations, our study will then be conducted assuming a future dataset containing a total of 40 QSO spectra (uniformly distributed over 5 equally spaced redshift bins in the redshift range 2−5), with a S−N = 3000, observed twice over a time interval of 30 years. We note that a previous study performed by Consani et al. (2007) seems to make optimistic claims, i.e., that 240 pairs of QSO spectra can be observed with S−N = 3000 over a time span of 10 years. It is easily shown (with the same arguments as above) that with these guesses the required observing time would actually be roughly 90 years for each of the two epochs. Moreover, even assuming an increase of the number of QSOs in the redshift range 2−4 with future large synoptic surveys, it seems quite difficult to predict an order of magnitude increase over the current known objects, which are 25 (Pasquini et al. 2005).

Using the expected error bars from Eq. 6, we can predict the level of accuracy that can be reached in the reconstruction of the parameter set for a commensurate set of dark energy models. Furthermore, we can predict whether any of these models can be distinguished from the standard CDM scenario. We will now look into these problems.

4 PREDICTIONS FOR DARK ENERGY MODELS

All of the models we will consider in this paper are currently viable candidates to explain the observed acceleration, i.e., they have not been falsified by available tests of the background cosmology. Clearly, some models may be preferred with respect to others based on some statistical assessment of their "economy", i.e., the fact that they fit the data well with a smaller number of parameters. Given the current status of cosmological observations, there is no strong reason to go beyond the simplest, standard cosmological model with zero curvature and a cosmological constant (except for the conceptual problem arising when one attempts to reconcile its observed value with some estimations derived from fundamental arguments, see, e.g., Weinberg 1989). For the scope of this present paper, however, it is interesting to explore as many models as possible, since future observations of the time variation of redshift could reach a level of accuracy which could allow to better discriminate competing candidates, and to understand the physical mechanism driving the expansion. We refer the interested reader to the paper by Davis et al. (2007), which discusses the constraints on most of the models that we will focus on in our study.

Redshift evolution as a test of dark energy

less stated otherwise, throughout our paper we assume for each class of models the best t values found in that work, and vary the parameter within their 2 uncertainties.

All the predictions on the time evolution of redshift presented in the following were derived assuming observations performed over a time interval t = 30 years. From Eq. 5 it is clear that the expected velocity shift signal increases linearly with t, so that it is straightforward to calculate the expected signal when a different period of observation is assumed. Fig. 1 shows our predictions for the cosmological models discussed in the following, along with simulated data points and error bars derived from Eq. 6.

4.1 The standard cosmological model (CDM)

We start our analysis by first setting out the predictions for the current standard cosmological model. In the simplest scenario, the dark energy is simply a cosmological constant, i.e., a component with constant equation of state w = p = 1. Flatness of the FRW metric is assumed, but in general one can parameterize the deviation from the zero-curvature case in terms of the parameters k and w where k is the total density of the Universe in units of the critical value c = 3H2/8G.

The Hubble parameter evolves according to the Friedmann equation, which, for this model, is:

$$\frac{H^2}{H_0} = \frac{k}{a^2} + \frac{\rho}{a^3}$$

where ρ and ρ_m parameterize the density of matter and cosmological constant, respectively. When the einstein cosmogony is assumed, $\rho_\text{m} + \rho = 1$, and the model has only one free parameter, ρ. The current best t value from cosmological observations is $H_0 = 73$ km s$^{-1}$ Mpc$^{-1}$, which is the total density of the Universe in units of the critical value $c = 3H_0^2/8G$.

The Hubble parameter evolves according to the Friedmann equation, which, for this model, is:

$$\frac{H^2}{H_0} = \frac{k}{a^2} + \frac{\rho}{a^3}$$

where ρ and ρ_m parameterize the density of matter and cosmological constant, respectively. When the einstein cosmogony is assumed, $\rho_\text{m} + \rho = 1$, and the model has only one free parameter, ρ. The current best t value from cosmological observations is $H_0 = 73$ km s$^{-1}$ Mpc$^{-1}$, which is the total density of the Universe in units of the critical value $c = 3H_0^2/8G$.

4.2 Dark energy with constant equation of state

The next step is to allow for deviations from the simple w = 1 case, introducing a component with an arbitrary, constant value for the equation of state. The accelerated expansion is obtained when w < −1. The Hubble parameter for this generic dark energy component with density ω then becomes:

$$\frac{H^2}{H_0} = \frac{k}{a^2} + \frac{\rho}{a^3} + \frac{\omega}{a^3}$$

The currently preferred values of w in this model still include the cosmological constant case: w = −1.01 ± 0.15 (Davis et al. 2007).

4.3 Dark energy with variable equation of state

If the equation of state of dark energy is allowed to vary with time, then the Hubble parameter is:

$$\frac{H^2}{H_0} = \frac{k}{a^2} + \frac{\rho}{a^3} + \frac{\omega}{a^3} + \frac{\omega_a}{a^3}$$

where ω_a is the equation of state at time a.
4 A. Balbi and C. Quercellini

In this case, one has to choose a suitable functional form for w(a), which in general involves a parametrization. The most commonly used (Chevallier & Polarski 2001; Linder 2003) is:

\[w(a) = w_0 + w_a (1 - a); \]

although different approaches can be used. Clearly, the exact form of w(a) with time will lead to completely different evolution for the dark energy component.

4.4 Interacting dark energy

In interacting dark energy models the dark components interact through an energy exchange term. The conservation equations for matter and dark energy can be written in a very general way as

\[m + 3H n = H n; \]
\[d e + 3H d e (1 + w) = H n; \]

so that the total energy-momentum tensor is conserved. Whenever is a non-zero function of the scale factor, the interaction causes \(m \) and \(d e \) to deviate from the standard scaling, and the mass of the particles is not conserved. This non-standard behavior has been parametrized (Dala et al. 2001; Majerotto et al. 2004) by the relation \(d e = m = A a \), where \(A = d e = (1 - d e/k) \) and the density parameters are the present quantities. The Hubble parameter or this model then reads

\[\frac{H}{H_0} = \frac{k}{a^2} + \frac{3}{(1 - k)} \frac{1}{a} \frac{d e}{1 - a}; \]

which reduces to the uncoupled case for \(k = 3w \). This model also includes all late-time scaling solutions. We also note that this model is a genuinely interacting dark energy, unlike the one discussed in Carosati et al. (2007) which is actually a generalized dark matter (thus is one similar to the model we discuss in 4.8).

4.5 DGP models

The Dvali-Gabadadze-Porrati (DGP) model (Dvali et al. 2000) provides a mechanism for accelerated expansion which is alternative to the common repulsion-gravity unified approach: within the context of braneworld scenarios, the leaking of gravity in the bulk, above a certain cosmologically relevant physical scale, is responsible for the increase in the expansion rate with time. The only parameter of this class of models is \(r \), the length at which the leaking occurs, which defines an additional parameter \(r, 1 = (4\pi^2 H_0^2) \). The Hubble parameter then reads:

\[\frac{H}{H_0} = \frac{k}{a^2} + \frac{n}{a^3} + \frac{r}{a} + \frac{P}{a^2}, \]

where \(n = 1, k = 1, 2 \frac{r}{a^2}, \frac{P}{a^3}, 1, \frac{r}{k} \).

4.6 Cardassian models

Another possibility originating from the braneworld scenario is that of a so-called Cardassian expansion (Freese & Lewis 2002) resulting from a modication of the Friedmann equation, with the introduction of a term that depends non-linearly on the average density of the Universe, assumed to be composed only of dark matter. This additional term, phenomenologically, is equivalent to the introduction of a dark energy component, with a scaling law \(a \sim t^\nu \), where \(\nu \) is the same equivalent to the quantity \(w + 1 \) of the dark energy models with constant equation of state. Models in which have an extra parameter and a Friedmann equation:

\[\frac{H}{H_0} = \frac{n}{a^3} + \frac{1}{a^2 (1 - n)} \]

4.7 Chaplygin gas

There are a few models which attempt to explain both structure formation and the current acceleration of the Universe with a single “dark stuff”, whereas the standard scenario relies on two separate dark contributions to the stress-energy tensor (a dark matter and a dark energy component). A well-studied case is the so-called Chaplygin gas (Kamenshchik et al. 2001), where the unified dark component has an equation of state \(p = \frac{k}{a^3} \) with \(k > 0 \).

The expansion rate in this model is governed by the equation:

\[\frac{H^2}{H_0} = \frac{k}{a^3} + (1 - k) A + \frac{1}{a^2 (1 - k)} \frac{1}{a^3} \]

with the definition \(A = \frac{k}{a^3} \), where \(\rho \) is the total density of the Universe at the present. The so-called “standard case” for the Chaplygin gas is obtained for the choice \(k = 1 \) (which, however, is not a good fit to current data), while for \(k = 0 \) the model recovers the standard cosmological constant case with \(A = (1 - k) (1 - A) \).

4.8 A new equation of state

An interesting possibility to consider is that the dark energy is modelled by a generic, barotropic equation of state \(p = \rho(\omega) \), as discussed in Chiba et al. (1997); Vissser (2004); Amando & Bruni (2006). In particular, the case where the Taylor expansion of an arbitrary equation of state of that sort is truncated to first order, \(p = p_0 + \rho \), has recently been investigated by Balbi et al. (2007), who also derived cosmological constraints on the parameter of the model. It is interesting to note that such an a equation of state can be used to describe a simple unified dark matter model, with a time evolution of the background density given by

\[\frac{a(t)}{a(t_0)} = (\omega) a(1 + \omega), \]

where \(p_0(1 + \omega) \) and \(\omega \) is the dark energy viable energy density at present. The Hubble parameter is given by:

\[\frac{H}{H_0} = \frac{k}{a^3} + \frac{n}{a^2 (1 - n)} \]

where \(\omega_n \) for \(n = 0 \) this model recovers the standard CDM case.
5 RESULTS AND DISCUSSION

We used the expected error bars from Eq. 6 to perform a Fisher matrix analysis (Tegmark et al. 1997), leading to an estimate of the best possible constraints on the parameters of dark energy models. All our predictions are based on 30 years of observation, assuming that the ground values for the parameters of each dark energy model are those which best fit current observations (as from Davis et al. 2007, Baab et al. 2007, Majerotto et al. 2004).

The Fisher matrix analysis allows one to estimate the best possible accuracy attainable on the determination of the parameter sets of a certain model. Specifically, given a set of cosmological parameter sets \(p_i \), \(i = 1, \ldots, m \), and the corresponding Fisher matrix \(F_{ij} \) (that is easily calculated based on a theoretical dark energy model and the assumed data errors from Eq. 6), the best possible error on \(p_i \) is given by:

\[
p_i \approx C_{ii}^{-1},
\]

where the covariance matrix \(C_{ij} \) is simply the inverse Fisher matrix \(F_{ij}^{-1} \). It is a well-known fact (see, e.g. Bond et al. 1997) that, when estimating the expected errors \(p_i \) on each parameter, one has to be careful about existing correlations with the other parameters. During the inversion process, non-null diagonal Fisher matrix elements propagate in the diagonal elements of the covariance matrix, giving their contribution to the estimated uncertainties. Neglecting this contribution, for example by simply taking the inverse of the elements of the Fisher matrix (a process which is equivalent to assume perfect knowledge of all the other parameters) usually results in severely underestimated errors. The existence of correlations among estimated parameters is a manifestation of degeneracies: when more and more parameters are allowed to vary, and they have similar effects on the observable quantities, it becomes increasingly difficult to constrain each parameter.

From the above considerations, two crucial consequences arise: first, dark energy models with intrinsically less free parameters will have an advantage with respect to models with more free parameters; second, not taking properly into account the degeneracies among parameter sets (for example, by assuming perfect knowledge on some of them) will lead to wrong estimates of the errors. For this reason, we allowed all the parameters which are specified of a given dark energy model to vary simultaneously in our analysis (i.e. we inverted the full Fisher matrix when estimating errors). However, since it would be pointless not to assume any prior knowledge, we fixed the parameters not directly related to dark energy (such as, for example, the baryon density) to their current best value.

As an example of what we just discussed, let us consider the standard CDM case. Assuming that the dark energy model has \(\Omega_0 = 0.7 \) and \(\Omega_0 = 0 \) and that both these values can vary, we nd \(\Omega_0 = 0.2 \) and \(\Omega_0 = 0.25 \) at 1. When we fixed \(\Omega_0 = 0 \), the bound on \(\Omega_0 \) becomes 0.0117 at 1.

If dark energy is modelled by a constant equation of state (with a duality value \(w = -1 \)) and the constraint is imposed we nd a box on the dark energy density, \(\Delta \Omega_0 = 0.016 \), and quite a large error on the equation of state, \(\omega = 0.58 \). This clearly shows that if one enforces the constraints on the knowledge of any parameter one has to use in one on all the others. Having noted this, however, we also note that the parameter \(\omega \) can be much better constrained using external datasets, such as the CMB anisotropy. For the sake of simplicity, then, we will assume a flatness in the following.

The prospect of detecting departures from the standard CDM case could in principle be one of the real assets of observing the time evolution of redshift, and is thus worth closer investigation. Since the simulated data used in our analysis assume that QSOs are used as a tracer of the redshift evolution, we expect that the one constraint in m odels will be those that have the largest variability in the redshift range. Since, of course, additional information could be obtained using other observational windows. We will comment on this issue later on.

The DGP model is the one for which we obtained the tightest constraints in our analysis: \(\Omega_0 = 0.027 \) at 1, assuming \(\Omega_0 = 0.13 \) as a duality value. This is not only due to the strong dependence of the velocity shift on \(\Omega_0 \), but also to the simple change of the model, which depends on only one parameter (in this respect, this is the simplest model, together with the standard CDM). In general, as we already discussed, it is to be expected that models with less parameters perform better.

The issue of degeneracies is crucial when looking into the behaviour of models having one or more free parameters. We start by discussing the Chaplygin model. When both \(\Lambda \) and \(\varphi \) are freely varying, no interesting constraint can be obtained observing the velocity shift with the assumed QSO data: we nd \(\Lambda = 0.92 \) and \(\varphi = 1.4 \) (for the duality value \(\varphi = 0.7 \) and \(\varphi = 0.2 \)). Fixing \(\varphi \), on the contrary, results in a very tight bound on \(\Lambda = 0.008 \).

We then address the interacting dark energy and the a new equation of state. As it is clear from Fig. 1, these models show a large variability in the redshift range we are exploring: this is to be expected, since in both models the matter-like components depart from the usual scaling, giving a distinctive signature when one looks at higher and higher redshifts. We could then naively expect tight bounds on the parameters of these models from the observation of velocity shifts. Unfortunately, again, this is not the case due to strong degeneracies among the parameters. For example, when \(\Lambda = 0 \) is allowed to vary, for the new equation of state we nd \(\varphi = 0.05 \) (for a duality value \(\varphi = 0.2 \)). However, if we suppose that one of the parameters is known from other observations, the constraints on the others narrow considerably. If is known, the new equation of state can be reconstructed with an error \(\Lambda = 0.005 \). If, in addition, we also know that \(\varphi = 1 \), we nd \(\varphi = 0.06 \) for the interacting dark energy model (for a duality value \(\varphi = 3 \)).

The other models do not seem to have very interesting signatures to be exploited, at least in the redshift range considered in our analysis. The worst bounds are expected for the Cardassian models, which has not a large parameter dependence in the redshift range 2 - 5 (see Fig. 1). In the case of a varying equation of state, the simple parameterization adopted in our study shows significant deviations from the dark energy on which a rather extreme values of \(\omega \) (already excluded by current observations) are assumed. However, alternative parameterizations might lead to different scaling, and dark energy might dominate in the redshift window probed by Lynam horizons. Models with this behaviour can in principle exist (see, for example, De Dolnson et al. 2000, Frieman et al. 1995, Caldwell & Linde...
6 A. Balbi and C. Quercellini

A di erent aspect that we dealt with in our study was the potential of this cosm ological tool to increase the ability to di erentiate di erent m odels, when com bined with other observations. F i g. 2 shows the com parison among the predicted velocity shifts for all the m odels described earlier, assuming parameters that are a good t to current cosm ological observations (including the peak position of the CM B anisotropy spectrum , the SN Ia luminosity distance, and the baryon acoustic oscillations in the m atter power spectrum). In other words, the m odels shown in F i g. 2 cannot be easily di erentiated using current cosm ological tests of the background expansion. If we assume that the CDM m odel is the correct one, and simulate the corresponding data points for the velocity shift, using a 2 test we can quantify how well we can exclude the competing m odels based on their expected signal. As it is clear from F i g. 2, some m odels can be excluded with a high con dence level. In particular, we nd that the Chaplygin gas m odel and the interacting dark energy m odels would be excluded at m ore than 99% con dence level, and that the a n m odel would be out of the 1 region.

A remarkable, we note that our results were obtained assuming an equal number (8) of QSOs for each of 5 redshift bins in the range z = 2.5. (Such a uniform distribution was also assumed in the simulations performed by Pasquini et al. 2006.) This explains the fact that our error bars sig ni cantly decrease with redshift (see F i g. 1). A sum ing a decreasing number of QSOs at higher redshifts (undoubtedly, a sum e values), it would result in a slight increase in the error bars for those bins. For example, assuming 3 QSOs instead of 8 in the highest redshift bin would increase the error bar for that bin by a factor 1.6. However, since the largest variability in theoretical predictions is precisely at high redshifts, we would not expect our main conclusions to change dram atically.

6 CONCLUSIONS

In summar y, we found that the measurement of the velocity shift with future extremely large telescopes and high-resolution spectrographs could provide interesting information on the source of cosmic acceleration, which would complement other, more traditional cosm ological tools. From our analysis, it is also clear that the observation of velocity shift alone can be aected by strong param eter degeneracies, limiting its ability to constrain cosm ological m odels. Contrary to other analyses, then, our conclusion is that the uncertainties on param eter reconstruction (particularly for non-standard dark energy m odels with m any param eters) can be rather large unless strong priors are assumed. When combined with external inputs, however, the time evolution of redshift could discriminate among otherwise indistinguishable m odels.

We also found that a reasonable time span to perform the com parison on the redshift evolution seems to be roughly three decades. Shorter time spans seem unrealistic, given the time needed to observe QSO spectra with the necessary S/N. A shorter interval would also make the redshift difference too small to produce any interesting constraint on cosm ological param eters.

Despite its inherent di culties, the m ethod has many interesting advantages. One is that it is a direct probe of the dynamics of the expansion, while other tools (e.g., those based on the luminosity distance) are essentially geometric in nature. This could shed more light on the physical mechanism driving the acceleration. For example, even if the accuracy of future m easurement will turn out to be insu cient to discriminate among speci c m odels, this test would be still valuable as a tool to support the accelerated expansion in an independent way, or to check the dynamical behavior of the expansion expected in general relativity compared to alternative scenarios. Furthermore, despite being observationally challenging, the m ethod is conceptually extremely simple. For example, it does not rely on the calibration of standard candles (as it is the case of type Ia SNs) or on a standard rule which originates from the growth of perturbations (such as the acoustic scale for the CM B) or on e ects that depend on the clustering of m atter (except on scales where peculiar accelerations start to play a signi cant role). Moreover, the errors on the m easured data points decrease linearly with time and can become signi cantly shallower over only a few decades of observations. Finally, it is at least conceivable that suitable sources at lower redshifts than those considered in this work could be used to monitor the velocity shift in the future. This would be extremely valuable, since some non-standard m odels have a stronger param eter dependence at low and intermediate redshifts (see F i g. 1), that could be exploited as a discriminating tool. In Loeb (1998) speculative possibilities of using other sources have been indicated, like m asers in galactic nuclei, extragalactic pulsars or gravitationally lensed galaxy surveys; this would further extend the lower limit in redshift space and increase the ability of constraining m odels. Exploring the feasibility of such proposals is beyond the scope of this paper, but it may certainly be an interesting topic for further studies from observers.

ACKNOWLEDGEMENTS

We thank Luca Pasquini for pointing out the right references to the simulated CODEX observations. We are also grateful to an anonymous referee for com m ents and suggestions that greatly improved the n al m anuscript.

REFERENCES

Balbi A. , BrunI M. , Quercellini C. , 2007, preprint (astro-
ph/0702423)
Bond J. R. , Efstathiou G. , Tegm ark M. , 1997, M NRAS,
291, L33
Caldwell R. R. , Linder E. V. , 2005, Physical Review Letters,
95, 141301
Chevalier M. , Polanski D. , 2001, International Journal of
Modern Physics D , 10, 213
Chi ba T. , Sugiyama N. , Nakamura T. , 1997, M NRAS, 289,
L5
Figure 1. The apparent spectroscopic velocity shift over a period \(t_0 = 30 \) years, for a source at redshift \(z_s \), for the models described in the text. From top to bottom and from left to right: the CDM (Sect. 4.1), dark energy with a constant equation of state (Sect. 4.2), dark energy with varying equation of state (Sect. 4.3), interacting dark energy (Sect. 4.4), DGP (Sect. 4.5), Cardassian (Sect. 4.6), generalized Chaplygin gas (Sect. 4.7), dark fluid with an affine equation of state (Sect. 4.8). All the other parameters are fixed at their best fit value. The decreasing error bars are due to the assumption of a uniform distribution of QSOs over the entire redshift range (see Sect. 5 for a discussion).
Figure 2. The predicted velocity shift for the models explored in this work, compared to simulated data as expected from the CODEx experiment. The simulated data points and error bars are estimated from Eq. 6, assuming as a default model the standard CDM model. The other curves are obtained assuming, for each non-standard dark energy model, the parameters which best fit current cosmological observations.