Bound state approach to the QCD coupling at low energy scales

M. Baldiacci, A. V. Nesterenko, G. M. Prosperi, D. V. Shirkov and C. Simón

Department of Physics, Universita di Milano and INFN, Sezione di Milano
Viale Celoria 16, 20133 Milano, Italy
Bogoliubov Laboratory of Theoretical Physics
Joint Institute for Nuclear Research, Dubna, 141980, Russia

We exploit theoretical results on the meson spectrum within the framework of a Bethe-Salpeter (BS) formalism adjusted for QCD, in order to extract an experimental coupling \(g(Q^2) \) below 1 GeV by comparison with the data. Our results for \(g(Q^2) \) exhibit a good agreement with the infrared safe Analytic Perturbation Theory (APT) coupling from 1 GeV down to 200 MeV.

As a main result, we claim that the combined BS-APT theoretical scheme provides us with a rather satisfactory correlated understanding of very high and low energy phenomena.

I. Introduction. The Renormalization Group (RG) in the framework of a second order Bethe-Salpeter (BS) formalism adjusted for QCD yields a consistent picture of high energy strong interaction processes from a few GeV up to a few hundred GeV scale [1]. At the same time, in the low energy domain the very existence of the unphysical (so-called "Landau") singularities in both the RG-invariant coupling \(g(Q^2) \) and physical observables contradicts the general principles of the local QFT and spoil the theoretical analysis of low energy hadron dynamics. In particular, the ghost-pole issue gives rise to severe complications as far as the bound states problem is concerned, since the scale \(Q \) (i.e., the momentum transfer in the q\bar{q} interaction) involved is typically below 1 GeV. Moreover, results of lattice simulations testify to the absence of spurious IR singularities in the QCD coupling [2,3]. A reliable algorithm to get rid of these singularities is provided by the APT approach [4], based on the causality condition which imposes \(g(Q^2) \) to satisfy a dispersion relation with only the physical cut \(1 < Q^2 < 0 \).

This prescription has been exploited in the framework of a second order Bethe-Salpeter (BS) formalism [5] for the calculation of the meson spectrum in the light and heavy quark sectors. The model is derived from the QCD Lagrangian taking advantage of a Feynman-like representation for the solution of the iterated Dirac equation in an external field. A confinement is encoded through an ansatz on the Wilson loop correlator: indeed the quantity \(\ln W \) is written as the sum of a one-gluon exchange (OGE) and an area term

\[
\ln W = (\ln W)_{\text{OGE}} + S:
\]

By means of a three dimensional reduction, the original BS equation takes the form of the eigenvalue equation for

\[
M^2 = M_0^2 + U_{\text{OGE}} + U_{\text{Conf}};
\]

where \(M^2 \) is the squared bound state mass, \(M_0 = w_1 + w_2 = \frac{p + m_1^2 + k^2}{m_1^2 + k^2}, \) \(k \) the c.m. momentum, \(m_1 \) and \(m_2 \) their constituent masses and \(U = U_{\text{OGE}} + U_{\text{Conf}} \) the resulting potential. The combined BS-APT theoretical scheme was clearly supported by the results of previous computations performed in [6,7] by using a 1-loop APT coupling \(g(Q^2) \) with an effective scale constant \(\Lambda_{\text{QCD}} \sim 200 \text{ MeV} \) (see Eq. (4) below). A substantial agreement of the spin averaged quark masses with the data is achieved throughout the whole spectrum and the splittings \(m_{1S1-1S0} \) well reproduced in all sectors involving light, strange and charm quarks. Among other attempts to study meson properties, by taking relativistic effects into account, we remind e.g. [8] and Refs. therein. They differ in the ansatz by which confinement is introduced and in the method used in the determination of bound states: quasipotential [8], Green function [9] and 1st order BS from formalism [10,11].

In this note we summarize the main results of an investigation performed by exploiting the results on the meson spectrum within the BS approach in order to extract experimental QCD coupling \(g(Q^2) \) below 1 GeV, by comparing with meson mass data. The results are twofold: On the one hand, the 3-loop APT coupling reasonably agrees \(g(Q^2) \) from 1 GeV down to 200 MeV, quantitatively confirming the relevance of the APT approach to IR phenomena. On the other hand, below this scale, the experimental points give a slight hint about the vanishing of \(g(Q^2) \), or the existence of a finite limit lower than 1 = 0, as \(Q \to 0 \). This could correlate with some results from lattice simulations [3] and can be theoretically discussed in the framework of a recent "massive"
II. The causal APT coupling. A number of non-perturbative tricks to handle the ghost-pole problem was reviewed in [15]. Here we exploit the APT approach to QCD (see [4,16]), in which the RG-improved power series in $a(Q^2)$ for a given Euclidean observable is replaced by a non power expansion over the set of functions

$$A_n(Q^2) = \frac{Z}{4m^2} \frac{n(\)}{Q^2 + 4m^2} d \ ; \quad n(\) = \frac{1}{2} \ln \left[s \left(\frac{i}{n^2} \right)^n \right] ;$$

Here the $\mathrm{rst \ function} \ z(Q^2)^{\ n} \ A_n(Q^2)$ plays the role of the APT Euclidean coupling, and at 1-loop it reads

$$k_n(Q^2) = \frac{1}{2} \ln (Q^2 + 2) + \frac{2}{Q^2} ;$$

At the higher loops Eq. (3) with $n = 1$ can be integrated only numerically (for details see [17]). Nevertheless, for practical applications below 1 GeV one can resort to the same Eq. (4) with modified scale constant (see Refs. [12,18]).

It is relevant to the problem in hand to mention a recently devised \emph{massive} model calculation for the QCD analytic charge [13]. The point is that the representation (3) does not hold for every QCD quantity, and the effect of a non-vanishing mass threshold m in the dispersion relations could play a substantial role. Then the set of the APT functions (3) should be replaced by the set of the \emph{massive} ones with an adjustable parameter m

$$A_n(Q^2;m^2) = \frac{Z}{4m^2} \frac{n(\)}{Q^2 + 4m^2} d \ ;$$

The \emph{rst function} still plays the role of the \emph{massive} coupling ($Q^2;m^2$), with universal limit $(0;m^2) = 0$.

III. The quark-antiquark spectrum. Similarly to Refs. [6,7], we neglect the spin-orbit and tensorial-like terms in both the perturbative and the non-perturbative part of the potential, U_{QGE} and U_{conf}. Among the spin dependent terms only the hyperfine splitting one proportional to $\frac{1}{2}$ is retained. Then one has

$$\frac{1}{2} \ln (Q^2 + 2) = \frac{1}{2} \ln (Q^2 + 2) + \frac{2}{Q^2} ;$$

$$J_{\text{conf}}^{0,1} = \frac{Z}{(2)^i} (k;j) \ d^3 r e^{i q \cdot r} ;$$

$$J_{\text{conf}}^{0,1} = \frac{Z}{(2)^i} (k;j) \ d^3 r e^{i q \cdot r} ;$$

$$J_{\text{conf}}^{0,1} = \frac{Z}{(2)^i} (k;j) \ d^3 r e^{i q \cdot r} ;$$

Here, $q = \frac{k \cdot k^2}{2}; Q = k^2; q_{0,0} = \frac{W_1 + W_2}{2}, W_1 = \frac{m_2^2 + k^2}{2},$ and $(k;j) = \frac{Q (m_1 + m_2) q_{0,0}}{W_1 + W_2}$, while m_1 and m_2 denote the constituent quark and antiquark masses. For the complete expression of the potential and technical details we refer to [5,7] and [12]. The meson masses have been computed by the equation

$$m_{a}^2 = m_{a}^2 \frac{J_{a}^{0,1} \ j_{a}^{1,1}}{\ j_{a}^{0,1} \ j_{a}^{1,1}} + m_{a}^2 \ J_{a}^{0,1} \ j_{a}^{1,1} + m_{a}^2 \ J_{a}^{0,1} \ j_{a}^{1,1} ;$$

where a is a zero-order wave function for the state a (a being the whole set of quantum numbers), obtained by solving the eigenvalue equation for the static limit Hamiltonian $H_{CM} = \frac{\delta}{2} r + r$ by the Rayleigh-Ritz
method. To this a second order correction in the hyper ne term was added in some cases. The hurdle of spurious singularities has been avoided by replacing \(a(\lambda^2) \) in (6) with \((^{(1)E}_E)(\lambda^2)\) as given by (4) with an eective QCD scale \(\mu_{nr^1} = 193\text{ MeV} \). This value has been chosen by imposing that \((^{(1)E}_E)(\lambda^2)\) crosses the 3-loop APT coupling \((^{(3)E}_E)(\lambda^2)\) at \(\lambda = 0.65\text{ GeV} \), where \((^{(3)E}_E)(\lambda^2)\) is normalized along with the world average \([19] \lambda(\lambda^2) = 0.1176(20)\), corresponding to \(\mu_{nr^1} = 236\text{ MeV} \) and \(\mu_{nr^3} = 417\text{ MeV} \) by continuous threshold matching. The relative di erence between the 1-loop eective and 3-loop exact APT curves is no more than 2% in the region \(0 < \lambda < 10\text{ GeV} \), to which the bulk of eective \(q_a \) belongs, and it is enhanced up to 7% only at \(\lambda = 0.2\text{ GeV} \). The string tension has been used a priori the value \(= 0.18\text{ GeV}^2 \) consistently with lattice simulations. The light and heavy quark masses are then determined by eeting the , , J= and m masses \([19] \). It turns out \(m_u = m_d = 196\text{ MeV} \), \(m_s = 352\text{ MeV} \), \(m_c = 1516\text{ MeV} \) and \(m_b = 4854\text{ GeV} \). Within this frame work an overall agreement with experimantal data is achieved throughout the spectrum \([20] \) for the complete set of results, preliminary results were given in \([20] \).

IV. Extracting \(\exp(a(\lambda^2)) \) from the data. As stated, we focus our attention here on the reversed problem, i.e., the determination of \(a(\lambda^2) \) at the characteristic scales of a selected number of ground and excited states. As a rst step, we associate with each state a an eective m om entum transfer \(q_a \) de ned by the relation

\[
h_a \exp(j_a(j_a^*j_a)_{n^1}) h_a \exp(j_a(j_a^*j_a)_{n^1}) = \exp(j_a(j_a^*j_a)_{n^1}) h_a \exp(j_a(j_a^*j_a)_{n^1}) h_a \exp(j_a(j_a^*j_a)_{n^1}) ;
\]

i.e. as the value of \(Q \) for which the xed coupling value \((^{(1)E}_E)(\lambda^2)\) inserted in (9) reproduces the same mass \(m_a \) as when using the running coupling \((^{(1)E}_E)(\lambda^2)\). The quantity \(\exp(j_a(j_a^*j_a)_{n^1}) \) in Eq. (10) can be drawn by the second line of Eq. (6). Then, the expermental coupling \(\exp(a(\lambda^2)) \) can be de ned by

\[
h_a \exp(j_a(j_a^*j_a)_{n^1}) h_a \exp(j_a(j_a^*j_a)_{n^1}) = \exp(j_a(j_a^*j_a)_{n^1}) h_a \exp(j_a(j_a^*j_a)_{n^1}) h_a \exp(j_a(j_a^*j_a)_{n^1}) = m_a^2 \exp(j_a(j_a^*j_a)_{n^1})
\]

or, by combining Eqs. (9), (10) and (11),

\[
\begin{align*}
\exp(a(\lambda^2)) &= \exp(j_a(j_a^*j_a)_{n^1}) + m_a^2 \exp(j_a(j_a^*j_a)_{n^1}) m_a^2 \\
&= \frac{m_a^2 \exp(j_a(j_a^*j_a)_{n^1}) m_a^2}{h_a \exp(j_a(j_a^*j_a)_{n^1}) h_a \exp(j_a(j_a^*j_a)_{n^1})}.
\end{align*}
\]

The sensivity of the eective \(q_a \)'s, derived as above, has been checked by analyzing their deviations for a 25% shift of \((^{(1)E}_E)_{nr^1} \) in (4) and the average change in the m om entum scale is about 3%. This shows that \(\exp(a(\lambda^2)) \) is rather insensible to the speci c form of \((^{(1)E}_E)(\lambda^2)\), and justi es the use of \(\exp(a(\lambda^2)) \) in (11). Obviously the theoretical on mass m asses are sensitive to a variation of the quark m masses (particularly in the case of the), while \(\exp(a(\lambda^2)) \) and the relative \(q_a \) turn out to be much more stable. For instance, an increase in the light quark mass of 5% anOUNTS to a change of about 2% in the value of \(\exp(a(\lambda^2)) \) and 0.2% in the relative \(q_a \).

Note that the APT coupling, involved in the calculation of the spectrum, is remarkably stable with respect to both the choice of renormalization scheme and the higher loop corrections \([21] \) (\((^{(2)E}_E)(\lambda^2) \) differs from \((^{(3)E}_E)(\lambda^2)\) by non more than 0.3% below 600 MeV). This makes the method essentially RS independent. Our results are unavoidable model dependent due to ansatz (1), which consists of the sum of two contributions that one knows to be asymptotically correct for small and large quark-antiquark distances. More sophisticated ansatz also exist (see e.g. \([22], [23] \) or \([24] \), albeit di cult to implement within BS form all. In the context of our model the sources of error are the instantanous approximation in plaed by the three-dimensional reduction of the BS equation, the approximation introduced into the resolution of the eigenvalue equation, the inclusion of only the leading perturbative contribution in the BS kernel, and finally having neglected coupling between di erent quark-antiquark channels. The NLO contribution originates essentially from three diagrams with two-gluon exchange; two triangular graphs with a four-line vertex \(g^2 A A \) and two three-line vertices \(g@ A \), and a crossing box with four three-line vertices (Fig. 1). A somewhat crude estimate of these contributions nally yields a global error on the potential \(O = I + I \), which spans from 20% for the light-light quark system to about 1% for the b b system. A to the last type, within this approximation the BS m asses are expected to match the expermental ones with in the half width of the state, i.e., \(m_a = 2. \) Keeping in mind Eq. (12), the estimated theoretical errors read

\[
NLO = \exp(j_a(j_a^*j_a)_{n^1}) \quad ; \quad a = \exp(j_a(j_a^*j_a)_{n^1}) \quad ;
\]

The expermental error \(m \exp \) is generally much smaller than \(a = 2. \) When, however, this is not the case one must also consider the expermental error \(\exp \), obtained from the second of (13) by replacing \(m_a \) with \(2m \exp \).

\[
NLO = \frac{(^{(1)E}_E)(\lambda^2)_{n^1}}{m_a} \quad ; \quad a = \frac{(^{(1)E}_E)(\lambda^2)_{n^1}}{m_a} \quad .
\]
Quark self-energy effects have been taken into account by a recursive resolution of the Dyson-Schwinger equation. This sim ply amounts to replacing the current quark masses with the constituent masses [7]. All other sources of errors above mentioned (including model dependence), though difficult to estimate, can be globally taken into account by an additional overall error m on the masses, independent of a, and chosen such that

\[m^2 = \frac{1}{N_{aa}} \sum_{a=1}^{N_{aa}} (m_a - m_{\exp})^2 + (\bar{m})^2. \]

Here \(m_{\exp} \) is the total error resulting from all sources explicitly evaluated, \(m^2 = \sum_{a} (m_a - m_{\exp})^2 + (\bar{m})^2 \) and the sum restricted to the safer S and P states. We nd m 200 MeV.

\[\text{V.C. Conclusions.} \]

All results are displayed pictorially in Fig. 2. Values of \(m_{\exp} \) at the same Q from triplet and singlet states have been combined by means of a weighted average according to their errors. The points \(m_{\exp}(Q^2) \) show a noticeable evolution from 500 down to 200 MeV, where only the safer S and P states are involved, in an arbirary agreement with the 3-loop APT coupling \(m_{\exp}(Q^2) \) properly normalized. Precisely we nd \(m^2 = \frac{1}{N_{aa}} \sum_{a=1}^{N_{aa}} (m_a - m_{\exp})^2 + (\bar{m})^2 \) the total error explicitly evaluated and \(\bar{m} \) the uncertainty obtained from the second of (13) by replacing \(a \) by \(2 \).\(m \). The agreement quantitatively supports the APT approach to IR phenon ema down to a few hundred MeV. Below 200 MeV, the experim ental points exhibit a tendency to deviate from the APT curve and to approach zero or at least a nite limit for the universal APT freezing value. Note that these points have been obtained from high orbital excitations (D and F states), both experim entally and theoretically.\(m \) more uncertain, as clearly shown by their large error bars. However, the extracted points \(m_{\exp}(Q^2) \) could correlate with some e lattice results [3], and discussed in the fram e of the \(m \) assive\(m \) odi cation [13] of the APT algorithm (see Sec. 1) which takes into account effects of a nite threshold. Finally we stress that a synthesis of results for \(m_{\exp}(Q^2) \) as derived from bound states in the BS fram e with high energy data shows a very good agreement with the 3-loop APT coupling. The perturbative 3-loop coupling with IR singular behavior is ruled out by the data, whereas the BS-APT theoretical scheme allows for a rather satisfactory correlation of understanding of very high and low e energy phenon ema.

Acknowledgments. The partial support of grants RFBR 05-01-00992, NS-5362.2006.2, and BelRFBR F06D-002 is acknowledged. One of the authors (D. Sh.) would like to thank Drs. R. Faustov and O. Galkin for useful discussions, and Dr. R. Pasechnik for some e num erical estimates.

FIG. 1. NLO contributions to the second order BS kernel I.
FIG. 2. Extracted values of $\alpha_s(Q^2)$ against the 3-loop APT coupling (3) with $(n_f=3) = (417 \pm 42)$ MeV (solid), and its perturbative counterpart (dot-dashed). The "massive" 1-loop APT coupling ($n = 1$ in (5)) refers to $(n_f=3) = 204$ MeV and $m_q = (38 \pm 10)$ MeV (dashed). Circles, stars and squares refer respectively to $q\bar{q}$, $s\bar{s}$ and $q\bar{s}$ with $q = u,p,d$, diamonds and crosses to $c\bar{c}$ and $b\bar{b}$; asterisks stay for $q\bar{c}$ and $q\bar{b}$, whereas plus signs for $s\bar{c}$ and $s\bar{b}$.