ABSTRACT

We study in detail the photometric redshift requirements needed for tomographic weak gravitational lensing in order to measure accurately the Dark Energy equation of state. In particular, we examine how ground-based photometry \((ugrizy)\) can be complemented by space-based near-infrared (IR) photometry \((JH)\), e.g., on board the planned DUNE satellite. Using realistic photometric redshift simulations and an artificial neural network photo-z method, we evaluate the Figure of Merit for the Dark Energy parameters \((w_0 \; w_a)\). We consider a DUNE-like broad optical filter supplemented with ground-based multi-band optical data from surveys like the Dark Energy Survey, Pan-STARRS and LSST. We show that the Dark Energy Figure of Merit would be improved by a factor of 1.3 to 1.7 if IR filters are added on board DUNE. Furthermore, we show that with IR data, catastrophic photometric redshift outliers can be removed effectively. There is an interplay between the choice of filters, the magnitude limit and the redshift of outliers. We draw attention to the dependence of the results on the galaxy formation scenarios encoded into the mock galaxies, e.g., the galaxy reddening. For example, deep near-IR bands could be as effective as the IR. We also find that about 106–107 spectroscopic redshifts are needed for calibration of the full survey.

Key words: Cosmology: Photometric redshift surveys \(\{\)Weak Lensing tomography \(\}\) Dark Energy

1 INTRODUCTION.

Measuring the nature of Dark Energy has become a central part of current studies in cosmology. A variety of methods have the potential to probe Dark Energy through its effects on both structure growth and geometry of the Universe [Turner & White 1993; Riess et al. 1998; Perlmutter et al. 1998; Hu 1999; Blake & Glazebrook 2003; Scolnic et al. 2019; Hu & Haman 2003; Blake et al. 2003]. Future cosmic shear measurements are now widely believed to have the greatest potential for constraining the Dark Energy equation of state parameter [Erickcek & Schneider 2009; Azechi et al. 2008]. However, to reach this potential future surveys will require tight control over systematic and statistical errors.

Weak-lensing surveys will have to overcome systematic checks such as a reliable point spread function (PSF) removal, well-calibrated shape estimation (e.g., Massey et al. 2004), removal of intrinsic galaxy alignments (e.g., King & Schneider 2002, 2003; Heymans & Heavens 2003), shear-shape alignment removal (e.g., Hatta & Seljak 2003; Heymans et al. 2004; Birle & Abdalla 2007) and photometric redshift bias corrections, all of which are vital for the statistical limit of the test to be achieved.

A reliable removal of PSF effects can be greatly improved by using satellites such as the Dark Universe Explorer (DUNE, Refregier et al. 2004) or the Supernova/Acceleration Probe (SNAP, Aher et al. 2004), which will take advantage of the image quality achievable in space to accurately measure the shapes of lensed galaxies. However, obtaining the multi-band photometry required to measure photometric redshifts from space would require a substantial mission and may not be necessary. At certain wavelengths, obtaining photometry from the ground is much faster. Even large ground-based facilities are available or being planned to obtain photometric redshifts from the ground and shape measurements (and some photometry) from space is compelling.

In this paper we analyse future weak lensing projects with space based imaging for shape measurements plus ground based multi-colour photometry. We assess the impact of the photometric redshift accuracy on the science goals of such a mission. We further assess whether the scien-
Figure 1. The distributions characterising our simulations. The number density of objects as a function of redshift for the full simulation, which has a magnitude limit of 27, as well as the cut simulations with a magnitude limit in the R I Z band of 25. We also plot the relative number of galaxy types in the simulation with ten plates numbered from 0 to 50 according to Sec. 2, as well as the amount of reddening (A_v, the extinction in magnitudes in V band) applied to ten plates in the simulation.

ence would be significant by having some photometry from space, especially very red optical and infrared bands which are difficult to obtain from the ground due to the sky brightness at these wavelengths.

We begin by describing the catalogue generation upon which we base our findings. We then make a full photometric redshift analysis with artificial neural networks to assess the accuracy of the photo-z obtained in each of the scenarios considered. We explain the different degeneracies found, their origin and how the different survey bands and depths help in breaking these degeneracies. Finally we translate our photometric redshift errors into a figure of merit for the science considered, in this case for the Dark Energy equation of state derived via weak gravitational lensing tomography. All magnitudes stated in this paper are AB magnitudes.

2 Catalogue Generation.

In order to simulate the catalogues used in this work, we used the GOODS-N spectroscopic sample from Cowie et al. (2004) and Kooth et al. (2004). This data set includes a R < 24.5 magnitude limited sample along with x-ray, radio, and colour selected objects. The majority of objects are at $z < 1$. However, a specific cut was made to include objects at $1 < z < 4$. Using these redshifts, we have generated a series of galaxy templates from the broad-band photometry ($U, B, V, R, I, Z, J, H, K, K'$) using a method similar to Budavari et al. (1999). The key difference is that we assume a prior set of templates (Coleman et al. 1980) (CWK) + Kennicutt et al. (1994) + intermediate types). We assign the following types to templates: type 0 is an elliptical, type 10 is Sbc, type 20 is Scd, type 30 is Im, type 40 is SB3 and type 50 is SB2. Interim templates are a linear interpolation of these types. For instance, type 5 is 0.5El + 0.5Sbc. We, therefore, can remove reddening from the photometry before constructing the templates. Once we have a set of ten templates, the best fit SED and reddening value for each object is found. We use the Calzetti reddening law (Calzetti 1997). In addition to reddening, we apply a correction for intergalactic absorption using the Madan law (Madan 1995).

We use the model described below for the luminosity function evolution in the simulation to estimate the R I Z magnitude and redshift distribution. The R I Z limit is as-
sum ed to be a broad filter covering roughly the range 5500 Å to 10000 Å. The local band luminosity function at z = 0 is taken as well as the Stewne {et al.}{1999} luminosity function at z = 3. We linearly interpolate between them in redshift space. At z > 3 we assume a flat and the faint end slope is constant, but the volume density which decreases to 10$^{-4}$ h$^{-3}$ Mpc$^{-3}$ at z = 10. We run a Monte Carlo simulation which draws the R I Z magnitude from this distribution and the reddening and spectral types from the GOODS-N (Cowie {et al.}{2004}) distribution, which should close for a DUNE-like survey since the Goods spectroscopic limit is R < 24.5. We note here that the mock is an extrapolation for R > 24.5 because GOODS is not complete for magnitudes fainter than this level. We argue that this is not a large effect because the DUNE magnitude that we consider are not much fainter than these magnitudes, hence there will only be an small extrapolation for galaxies between R > 24.5 and R I Z < 24.5.

We then calculated uxes for the galaxy based on the redshift, SED type, reddening and in proles, convolving to the R I Z magnitude sampled. Finally, we add Gaussian noise to the uxes, then estimate the magnitudes and errors from the uxes with noise in the same way as a photon in ey package would. We plot in Fig.1 the statistical properties of the catalogue, i.e. the galaxy distribution as a function of redshift, reddening and type.

The natal catalogue contains galaxies which are complete in the simulation out to a magnitude limit of 27.0 in R I Z. However, given the surveys we are to simulate we cut the catalogue depending on the photometry available. One of the purposes of this study is to assess the impact that space based IR photometry will have on the estimate of Dark Energy parameters. For this purpose we study a ducial survey which can be achieved by a satellite with a 1.2m mirror. With a 1500s exposure this would reach depths in the IR of around 23.0 and would reach a depth in optical bands of around 25.0 in AB. These depths would be feasible with a mission such as DUNE (see Table 1). However, this does not restrict our study as it is applicable to any other wide field imager that would provide similar data although this is a difficult task from the ground. Hence, for an analysis of a DUNE-like survey we obtain a cut catalogue which has a 10 detection in the R I Z. Unless we state otherwise we use the catalogue at an R I Z magnitude of 25. Corresponding photometry is available for other surveys obtained from the ground which may be more or less noisy than the R I Z detection.

Table 1. The assumed surveys that we investigate in this work. (Top table) The values quoted are 10 σ magnitudes for extended sources in the AB system. We have taken assumed depths for proposed ground based future imaging surveys and a possible IR survey from space. We also simulate a current ongoing survey over a much smaller area to compare our results. (Bottom table) Signal-to-noise ratios for a 25.0 R I Z Sbc galaxy for each of the surveys/ filters.
Figure 2. Scatter plots of photometric redshifts as a function of the true redshifts for some of the surveys considered in Sec. 3.2. We have shown the galaxies which have photometric and spectroscopic redshifts below 3.5. We have considered optical surveys with increasing depth. The shallowest is a survey with depth similar to DES, followed by a hypothetical survey with depth similar to Pan-STARRS, and finally LSST. We also consider two hypothetical optical surveys with very deep exposures in optical bands, especially in the very red bands, one of which has a very deep u band exposure. We assess in this figure how the inclusion of deep IR data obtained from space would enhance the photometric redshift estimation.
Figure 3. Density maps in the z_{spec}-z_{phot} plane. An alternate representation of the data shown in Fig. 2. The figures are color coded according to the local density of points. The color scheme is exponential; this means that a color difference which is different by one unit according to the scale means that the density is a factor of e^{-1}, or 1/e, smaller. We have shown the galaxies which have photometric and spectroscopic redshifts below 3.5 but the neural network has been done over the entire range of galaxies available.
placed at different redshifts. Training methods attempt to map out a function which would translate magnitudes to a single photonetric redshift. A more detailed description of methods can be found in [3] and references within.

It is well studied and accepted that ten plate methods are more versatile and can be applicable when no spectroscopic data is available. However, methods that use training set methods are more reliable and produce better photonetric redshifts.

In this work we use articial neural networks (ANNz), a training set method which has been shown to produce com petite results com paired to other training set methods available [2]. ANNz is a supervised neural network training tool. It requires a training set which is the data used to optimize the cost function

$$E = \sum_{k} \left(z_{\text{phot}}(c,m,k) - z_{\text{train}}(m,k) \right)^2; \quad (1)$$

with respect to the free parameters (weights), c, where the sum is over the galaxies in the training set which detemines the goodness of fit t the training set and m are the magnitudes of each galaxy. If the data is noisy, a validation set is also required in order to prevent over-fitting. This is another portion of the data which also has spectroscopic information available but that is not included in the training process. It is solely used to provide the error function to be minimized.

The remaining freedom left in a neural network analysis is the architecture of the network. A simple architecture is easier to minimim ise but may not provide the best t to the data. On the other hand a com prised architecture may re main stuck in a local minimim of the cost function incorrectly easily and hence not provide the best solution to the problem either. We do not attempt to optimize the architectures for each scenario as we consider that this work does not have as an aim to judge the performance of different photonetric redshift techniques. A network with architecture N 2N 2N is one which falls within) and only one output (standing the redshift, and where only adjacent layers are interconnected) has been shown to work well on photonetric data [2]. N is the number of different photonetric bands available. Therefore we choose this architecture in all our scenarios. For details about the architecture see [2] and references therein.

3.2 Impact of the photonetric depth and bands

In this section we compare the photonetric redshift quality we get for different choices of survey depths and different choices of bands for the simulations we have presented in Section 3. The aim of this section is to assess the impact of the u band, r band, i band, and the redder optical bands (x and y) on the output of a photonetric redshift code.

We have chosen optical and baseline surveys. A new survey has a depth equivalent to that of the Dark Energy Survey (DES) will be available, roughly going down to a magnitude limit of 24 in the four bands (g r i z y); another is an equivalent to what the collection of four Pan-STARRS telescope will provide, potentially obtaining an order of magnitude increase in depth in the v bands (g r i z y); the third is an estimate of what an optical survey with a Large Synaptic

<table>
<thead>
<tr>
<th>Survey (z)</th>
<th>$z = 0.1$</th>
<th>$z = 0.5$</th>
<th>$z = 1.0$</th>
<th>$z = 1.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>R I Z</td>
<td>0.074</td>
<td>0.614</td>
<td>0.728</td>
<td>0.618</td>
</tr>
<tr>
<td>D es</td>
<td>0.036</td>
<td>0.514</td>
<td>0.636</td>
<td>0.572</td>
</tr>
<tr>
<td>D es + IR</td>
<td>0.463</td>
<td>0.330</td>
<td>0.238</td>
<td>0.307</td>
</tr>
<tr>
<td>Pan</td>
<td>0.796</td>
<td>0.515</td>
<td>0.635</td>
<td>0.552</td>
</tr>
<tr>
<td>Pan + IR</td>
<td>0.428</td>
<td>0.289</td>
<td>0.233</td>
<td>0.274</td>
</tr>
<tr>
<td>LSST</td>
<td>0.663</td>
<td>0.392</td>
<td>0.429</td>
<td>0.403</td>
</tr>
<tr>
<td>LSST + IR</td>
<td>0.342</td>
<td>0.211</td>
<td>0.155</td>
<td>0.197</td>
</tr>
<tr>
<td>Ideal</td>
<td>0.517</td>
<td>0.296</td>
<td>0.310</td>
<td>0.300</td>
</tr>
<tr>
<td>Ideal + IR</td>
<td>0.213</td>
<td>0.119</td>
<td>0.097</td>
<td>0.113</td>
</tr>
<tr>
<td>Ideal + u (25)</td>
<td>0.375</td>
<td>0.218</td>
<td>0.217</td>
<td>0.217</td>
</tr>
<tr>
<td>Ideal + u + IR</td>
<td>0.290</td>
<td>0.170</td>
<td>0.160</td>
<td>0.167</td>
</tr>
<tr>
<td>Ideal + u + IR</td>
<td>0.101</td>
<td>0.074</td>
<td>0.080</td>
<td>0.076</td>
</tr>
</tbody>
</table>

Survey Telescope (LSST) would achieve, obtaining another order of magnitude increase in depth in 6 bands (u r g i z y).

We have considered two ideal optical surveys, one without u band photometric but with a very deep exposure in the z and y bands; another which is very similar to the r i z but with very deep u band in aging. The depths of these surveys are given in Table 2 and are chosen to be roughly consistent with the limits of the Dark Energy Survey which will survey the sky with the 4m Blanco telescope, Pan-STARRS (which will be a collection of four 2m telescopes) and LSST (a project to survey the sky every night with a large 8m telescope) will be able to attain albeit the conclusions of this study are not dependent on the particulars of these projects.

Figure 4. The rms sigma \((\sigma_{\text{phot}} - \sigma_{\text{spec}})^2\), bottom graphs and the bias \((\tilde{z}_{\text{phot}} - \tilde{z}_{\text{spec}})\), top graphs) as a function of redshift for all the cases considered in this section (left without IR, right including IR). We can see how the inclusion of IR data improves significantly the data with optical exposure times but helps less data with significant optical exposure times although there is still improvement. We can also see the relative importance of bands by comparing surveys with deeper y and z bands and surveys with u band data.

We measure photon etric redshifts with these baseline surveys both including and excluding the additional information that a space-based mission would add with infrared detectors. We plot our results in Fig. 4 and show the scatter in redshift intervals in Table 2 and Fig. 4. The signa is the r.m.s. photon etric redshift error around the mean, and the interval in which 68 per cent of the galaxies have the smallest value of \(z_{\text{spec}} - z_{\text{phot}}\). We can see from the blue samples of Fig. 4 how the increasing depth of the optical survey is significant in obtaining photon etric redshifts. We find that to obtain reliable photon etric redshifts for a sample with an RZ magnitude below 25 we are still proving significant the quality of the photon etric redshifts if the overall photon etry is as deep as 26 or larger. We note that in order to obtain reliable photo-z for galaxies with an RZ depth of 25 shallower surveys such as DES or Pan-STARRS are not well matched to DUNE, deeper surveys are necessary to reproduce good photo-z on a galaxy-by-galaxy basis, however IR data considerably improves even the shallower surveys.

We can also see, by analysing these scatter plots, the relative importance of different bands. We can assess, for instance, how much the deeper exposure times in the z and y bands would help in producing reliable photon etric redshifts compared to near infrared data; if we compare the LSST + IR case with the ideal case without u band we can see that out to redshift \(z = 1.7\) the deeper z and y bands help and the improvement due to IR data is not as large as when the depths in y and z are shallower, however, for photon etric redshifts of galaxies above a redshift of \(z = 2.5\) are only improved by the inclusion of IR data. We can understand this behaviour of the error in the photon etric redshift estimate with the following argument: most of the information in photon etric redshifts comes from the 4000 Å break in galaxy spectra, hence the best photon etric redshift estimates are expected at the redshifts where the 4000 Å break falls between bands with deep exposures. We can see that optical surveys have the best photon etric redshift estimates around a redshift of \(z = 0.7\) which corresponds to the 4000 Å break falling in the i band, hence having measurements of the spectrum on both sides of the break. Similarly, galaxies at a higher redshift are helped by the measurement of the break redshifted into the IR bands. This argument can also be applied to the Lyman break which occurs at 912 Å.
Figure 5. Cleaned catalogues for the 5 surveys considered before. All surveys contain IR information. As explained in Sec. 3, we have removed all photometric redshifts with an error estimate larger than 0.3. After a neural network is trained it can assess the error on the photometric redshifts. Looking at the error in the photometry, this value is used for the cut presented here. We can see from all the scatter plots that although the error estimate from the neural networks is not the best available, it is able to remove the correct galaxies and provide correct phot-\(z\)s for some of the sample. After the cut, only 72% of the galaxies were left on the DES+IR catalogue; 76% had good phot-\(z\)s on the Pan-STARRS+IR catalogue; 82% of the sample on the LSST+IR catalogue; 90% and 95% of the sample on the Ideal+IR and Ideal+u+IR catalogues respectively. As we can see from Fig. 5, a clipping of 0.3 is indeed conservative, we can clean the different catalogues at a higher error estimate but we make a cut between catalogues here. We stress that this is not a sigma clipping, we do not use information about the spectroscopic redshift of the sample to make this cleaning procedure, we only use the photometric. The colour bar indicates the error estimate given by the neural network code.
Figure 6. The relation between z_{phot} and z_{spec} as a function of the error predicted by the neural network z_{err} based on the errors from photometry. We can see that the scatter points are not distributed in a Gaussian way around the centre for the shallower surveys and this becomes more apparent in the deeper surveys; hence the error estimate becomes more reliable the deeper the survey is. Furthermore, the error estimate is more reliable when IR data or u band data is obtained. We also note that in the specific case of neural network error estimates, with IR data the error is somewhat overestimated. These scatter plots show that in the case of DES + IR a cut at 0.3 is appropriate to remove most outliers.
Figure 7. We present here scatter plots for some configurations before and after the cleaning. The top panels are in the case of DES photometry plus DUNE photometry, the middle panel is for LSST depth photometry without IR and the bottom panels are for the case of an ideal optical survey with very deep u band photometry. We can see that the cleaning is very efficient and removes outlier galaxies without removing good photo-z where as the same is not entirely true for the case of LSST photometry alone. For instance at some redshifts (around 3) some galaxies with good photo-z are removed where some outliers remain after the cleaning. The effect is much worse for poorer optical photometry than LSST for depths of 25 in the RIZ band. However we can see from the bottom panel that deep u band photometry can cure this. The conclusion is that cleaning can be an effective method to remove outliers but it is only as effective as the baseline of wavelengths available. Without deep IR or u band data this can lead to bad photo-z error determinations.
This break is redshifted to the blue part of the spectrum for galaxies around redshift $z \approx 2.25$, hence u band data also helps photometric redshifts for galaxies in this region of the spectrum.

The addition of u band data can signiﬁcantly help the photometric redshift determination of certain galaxies. This information is helpful in removing catastrophic outliers that have a small spectroscopic redshifts and which have relatively featureless SEDs. We can see, from comparing LSST with DES or Pan-STARRS, that there are indeed fewer outliers if we include u band in aging our mock survey. However, comparing the LSST simulated results with the idealized survey including much deeper u band imaging we see that the u band depth has to be larger than 24.0 if we want all the catastrophic outliers to be removed for a R, I, Z survey below 25.0; at a magnitude limit for the u band of 26.0 all catastrophic outliers have been removed, we also provide numbers for a similar survey with IR band as deep as 25 to illustrate the increment given by the u band in the range 24.0 to 26.0. We note that these integrations on the u band are extremely diﬃcult verifying on the impulse even with the next generation surveys. We also note that the inclusion of u band data has a similar impact to the inclusion of IR data in the case of an idealized survey; the scatter including IR data is still signiﬁcantly smaller (see Table 2 and Fig. 8), but there are not many outliers with optical data only.

We have also assessed in Table 3, the amount of outliers we get from a given survey configuration. We have calculated σ_8 for each simulation. We have the standard deviation gives us the spread for the entire sample, σ_8 does so only for 68% of the galaxies which have the best photometric redshifts. Hence σ_8 is insensitive to outliers whereas is very sensitive to them.

We note here, for example with LSST, that the u band requires 19 times as much integration time relative to other bands (speciﬁcally g) to reach the same depth. However, blue optimised systems such as LBT or CFHT can require as little as 4 times as much integration time in U to reach the same depth (depending on the exact band choices) (see Tab. 3 for similar factors for other bands based on CFHT and WIRCAM). For an optimised space-based system using UV sensitive CCDs this factor would drop to around 2. Speciﬁcally in the case of IR detectors; they are ten times more expensive (in terms of cost) than CCDs to cover the same area. However in terms of integration time they reach the same depth in about the same amount of time. From the ground IR detectors are much less sensitive due to the higher backgrounds.

Table 3. Time cost for obtaining data in different bands based on MEGAPRIME and WIRCAM on the Canada-France-Hawaii telescope (CFHT) relative to g band on MEGAPRIME.

<table>
<thead>
<tr>
<th>Band</th>
<th>Time</th>
<th>Overhead</th>
<th>Mapping</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>u</td>
<td>1.80</td>
<td>1.00</td>
<td>1</td>
<td>3.80</td>
</tr>
<tr>
<td>g</td>
<td>1.00</td>
<td>1.00</td>
<td>1</td>
<td>1.00</td>
</tr>
<tr>
<td>r</td>
<td>1.58</td>
<td>1.01</td>
<td>1</td>
<td>1.60</td>
</tr>
<tr>
<td>i</td>
<td>3.02</td>
<td>1.03</td>
<td>1</td>
<td>4.12</td>
</tr>
<tr>
<td>z</td>
<td>7.59</td>
<td>1.10</td>
<td>1</td>
<td>8.62</td>
</tr>
<tr>
<td>Y</td>
<td>20.0</td>
<td>1.02</td>
<td>5.09</td>
<td>106.9</td>
</tr>
<tr>
<td>J</td>
<td>19.1</td>
<td>1.02</td>
<td>5.09</td>
<td>95.7</td>
</tr>
<tr>
<td>H</td>
<td>25.1</td>
<td>1.45</td>
<td>5.09</td>
<td>182.7</td>
</tr>
<tr>
<td>K</td>
<td>21.5</td>
<td>1.45</td>
<td>5.09</td>
<td>200.3</td>
</tr>
</tbody>
</table>

3.3 Cleaned catalogues

When a neural network is trained, we obtain an estimate for the error on each of the photometric redshifts predicted. This error is obtained in the following way. For every scenario, the inputs of a neural network have an associated noise to them. We can assess the variance that this noise would introduce into the output of the network by changing the inputs according to the error. This will lead to the following error estimate:

$$\sigma_z = \sigma_m \left(\frac{\Delta X}{\Delta m}\right)$$

where σ_z is the predicted error on the redshift, σ_m is the standard deviation of the input data m, and Δm is the change in the input data. The factor $\frac{\Delta X}{\Delta m}$ represents the slope of the response function at the mean value of m. This formula takes into account both the intrinsic scatter and the systematic errors in the training data. The error estimate is computed from the output of the network after training, by varying the inputs according to the estimated error and measuring the change in the output.

The redshift error distribution is not necessarily Gaussian, and the variance of the distribution is not independent of the redshift itself. This can be seen in the figure where the redshift error distribution is shown to vary with redshift. This effect is important for accurate cosmological analysis, as the shape of the redshift error distribution can affect the estimation of cosmological parameters.
We can see that around 30% of the sample has been removed from the data; however, the quality of the photometric redshifts is almost free of catastrophic outliers. By retaining this conservative cut, the fraction of galaxies that are not removed increases according to the depth of the optical plus IR survey. For the ideal + u + IR case only 5% of galaxies are cut and there are no outliers.

We also plot in Fig. 5 a scatter diagram for 20000 galaxies representing the errors estimated by the neural network as a function of the difference between the photometric and spectroscopic redshifts. This shows us the reliability of the error estimate. We can see that the error estimate is relatively good if there is IR data included whereas it is not optimal with optical data only; the points with low photometric redshift errors are concentrated around \(z_{\text{spec}} - z_{\text{phot}} = 0 \) for optical plus IR data but not if we have optical data only. In fact, when IR data is included the error estimate overestimates the real error in the sample. We find that for optical data only, the deeper surveys can be cleaned by removing the higher error galaxies, however this becomes harder to do with the shallower surveys. This is mainly because the magnitude cuts for the sample have been done here at R of 25.0 and the shallower surveys have large scatter; the large scatter is dominated by fainter sources and this biases the error estimation.

In order to assess whether bands are necessary to obtain good photometric redshift error estimates with neural networks and be able to clean the catalogues efficiently, we have plotted in Fig. 6 the normalized histograms of the quantity \(z_{\text{spec}} - z_{\text{phot}} - z_{\text{err}} \). Each galaxy in the mock catalogues is characterized by having a photometric redshift error estimate of 0.3, \(z_{\text{phot}} \) is a random value uniformly distributed in the range [24.5, 26.5] with steps of 0.5. We have assumed complete training sets with the same number density of training galaxies per color volume for every case shown here. We can see that the bright galaxies with high signal to noise have well constrained photometric redshifts whereas the noisy galaxies have almost unconstrained photometric redshifts. The plots are color coded and the scale is exponentially; a color difference corresponding to one is equivalent to the density being decreased by a factor of e.

Figure 9. Density plots in the \(z_{\text{phot}} - z_{\text{spec}} \) plane for increasing depth of a catalogue. We have taken mock catalogues derived from the CosmOS survey and we made cuts in the F814W at several magnitude from 24.5 to 26.5 in steps of 0.5. We have assumed complete training sets with the same number density of training galaxies per color volume for every case shown here. We can see that the bright galaxies with high signal to noise have well constrained photometric redshifts whereas the noisy galaxies have almost unconstrained photometric redshifts. The plots are color coded and the scale is exponentially; a color difference corresponding to one is equivalent to the density being decreased by a factor of e.

Figure 10. The m s scatter of \((z_{\text{phot}} - z_{\text{spec}}) \) as a function of redshift for samples with different magnitude cuts. Same data as in Fig. 9. As we can see brighter samples have less galaxies but also have much better photometric redshifts with many less outliers and a smaller scatter.

where the sum over i is a sum over all the network inputs.

In order to obtain the quantity \(z=0 \), we can use an algorithm using the activation function for the weights of the network described in Bishoff (1992). This algorithm is fully incorporated in the ANNz package (Collister & Lahav 2004) which we use here.

We have plotted in Fig. 6 the IR catalogues cleaned conservatively with a photometric error estimate of 0.3. We have chosen this threshold as it removes a vast majority of the outliers in the shallower catalogue (DES + IR). In this case we can see that around 30% of the sample has been removed.
Photo-z from the ground and weak lensing from space

3.4 Impact of the source catalogue depth

In catalogue generation we should always define a certain cut where we defined what an object is. In this paper we have taken a magnitude cut in a given band to define our catalogues. Here we will show how this cut influences the quality of the photometric redshifts and the photometric redshift errors that are associated to each catalogue. The larger the photometric signal to noise ratio, the better any code will be able to recover a photometric redshift for that galaxy. Therefore we can obtain very deep photometry and produce a catalogue of brighter objects which will have better photometric redshifts and associated photometric redshift errors or have a catalogue of fainter sources where the photometric redshifts and their associated errors are less reliable.

We plot in Fig. 9 the results where we have used a simulated survey similar to the COSMOS survey as described in Tab. 1. We have used in each subplot only a subset of the entire set of galaxies we have simulated. The cut was done on the F814W band, with depths of 24.5, 25, 25.5, 26, and 26.5. As we can see the bright galaxies have accurate photometric redshifts, much more accurate than the faint ones. Particularly, many catastrophic outliers disappear with the shallow integrations. This is because some bands are able to distinguish the real redshift of the galaxy and the catastrophic error, for instance as we have already mentioned the u band can help remove low redshift galaxies which are assigned a high photometric redshift. However, a high signal to noise is needed which is available for the bright galaxies and not for the faint ones.

We have taken the data used in Fig. 9 and plotted the scatter as a function of redshift in Fig. 10. As we can see there is a definite trend of having a lower scatter if the sample taken has a high signal to noise ratio for the magnitude estimates. We can follow from the lower curve to the curve situated on the top how increasing the depth of a catalogue with the same data may produce more galaxies with photometric redshifts of worse quality.

3.5 Impact of the training set

We have assumed so far that the training set used to train the neural networks is totally representative of the testing set we use to produce the 2D probability densities and scatter plots to assess the photometric redshift accuracies. For most cases this requires a training set which is complete down to a magnitude limit of 25.0. Observationally this is a hard task as spectrographs have limited spectral ranges and the features required for redshift estimation change with observed wavelength. It should be easier to produce such a training set down to 24 or 24.5 and in the redshift range 0 to 1.3 (Le Fevre et al. 2005).

However the faint end and high redshift range might pose some problems. One elegant way to get redshift estimates in the range 1.4 to 3 is in the blue optical and UV (Steidel et al. 1993; Lilly et al. 2006). There are many metal absorption features in this range and Lyman-Alpha comes into the optical window at z = 1.8. This is what currently high-z surveys are doing successfully. Another option is to have a large spectroscopic redshift survey in the IR which currently does not exist but will be done with FMOS (Dahlen et al. 2008) in the near future. It should be noted that this is an optimistic scenario as the training set may not be as complete as we have estimated here.

We have also neglected here the contamination of other unusual objects that might be introduced in the sample. For instance, low-luminosity Seyfert-1 galaxies will have strong lines and a different continuum shape than the usual galaxies considered. These could, in reality, account for roughly a 20 percent of the objects in the training and testing sets. We note however that a neural network is a Bayesian object, therefore, if the colours of these unusual objects are totally di erent from the colours of the other galaxies then the network is flexible enough not to interfere on the training of the usual galaxies and the same result will be found. If the unusual objects have similar colours to the usual galaxies then the fact that the network is Bayesian will be to our advantage. Given that the contamination is only small, the weight of these unusual objects will be diluted as they are less representative. We therefore argue that a small contamination of unusual objects whatever their colour will not affect the photo-z of usual galaxies considerably.

We stress here that the errors which will be associated to training sets arise from two terms, one is the square root of the mean of spectra N σ available in our analysis. The second is the mean of the training sets as a function of redshift for that group of galaxies. Weak gravitational lensing is sensitive to the error on the mean of the redshift for galaxies, which is dependent on the quantity 2(z−N σ). This error is complex to analyse as (z−N σ) depends on the photometric bands as well as the method used for photometric redshift estimation. An analysis of this is made in Sec. 4.

To assess the impact of an incomplete training on the accuracy of the photometric redshifts produced we have used training sets with a brighter magnitude cut and estimated photometric redshifts in a fainter sample. We have maintained the density of training galaxies per unit of colour volume the same in all the runs. We have chosen a cut of 25.5 in the F814W band and trained the neural networks with sets cut at 25.5, 25 and 24.5 in the same band. The probability density plots are shown in Fig. 11 and the scatter as a function of redshift in Fig. 12. As we can see an incomplete training produces slightly worse photometric redshifts. If we assume that we can extrapolate from the colours of the brighter objects, having only a training set complete to 0.5 magnitude brighter degrades the photometric redshifts by about 20%. There are however, as shown in Fig. 11, a much larger number of catastrophic outliers which are mainly the galaxies with no representatives in the training set.
Figure 11. Effect of the training set depths in the photometric redshift quality. We have taken mocks from the survey denoted by cosmo and we have made cuts in the IR F814W at several magnitude cuts from 24.5 to 26.5 in steps of 0.5 in magnitude. We have assumed complete training sets with the same number density of training galaxies per colour volume for every case shown here. We can see the bright galaxies with high signal to noise have well constrained photometric redshifts whereas the noisy galaxies have almost unconstrained photometric redshifts. The plots are colour coded and the scale is exponential; each unit corresponds to one e-fold.

Figure 12. The scatter of z_{phot} vs z_{spec} as a function of redshift for samples with different training sets. Same data as in Fig. 11. As we can see the sample which has been trained with an incomplete training set has worse photometric redshifts with many more outliers and a larger scatter, however the decrement in accuracy is not extremely large.

4 COLOUR & TYPE ANALYSIS

In this section we attempt to analyse and establish which types of galaxies are producing large catastrophic outliers in the photometric redshift analysis. This is important to assess which galaxy properties are introducing the larger errors in our analysis, this would allow us to have a greater understanding of how to reduce systematic effects due to photometric redshifts and have a comprehensive understanding of how different bands can help the photometric redshift analysis.

For this purpose we choose two different catalogues to perform our colour and type analysis. We choose the catalogue obtained from DES like exposure times that has been cut in magnitude at $r < 24.2$, which is the depth of the photometry in the optical. We also choose another optical catalogue with an R II depth of 25.0 and with the same magnitude of the ideal optical survey we have chosen in Section 3.

We show in the centre of Fig. 13 the scatter plot for the photometric redshifts as a function of the spectroscopic redshifts for the fourth case considered. From this figure we have selected four spectroscopic redshift bins (0.0, 0.35, 0.6, 0.9) and 1.6(2.3) which contain large numbers of outliers. From these regions we selected all points with $|z_{\text{phot}} - z_{\text{spec}}| > 0.3$ on one of the sides of the $z_{\text{phot}} = z_{\text{spec}}$ curve.

We plot on the four panels above and below the scatter diagram the relative histogram s of the populations within the regions selected relative to the average population of galaxies considered in the magnitude cut. This means that if the histogram s are above one this galaxy type or A_v (the extinction in magnitudes in V band) is dominant in the region selected, whereas if the histogram is below one then the population in the region is sub-dominant.

We can see that in the first region, most galaxies that are scattered towards higher photometric redshifts have a high A_v in our photometric catalogue. This means that galaxies which are not reddened have relatively good photometric redshifts whereas galaxies which are heavily reddened are scattered up towards high redshift. We can see from the second region chosen that the same occurs there, however this happens for different types of galaxies. The same occurs for the fourth region chosen, above a redshift of 1.6, but here the galaxies which are seriously reddened are scattered towards lower redshifts. The third region we have selected is heavily populated by galaxies with types close to 50 which corresponds in our notation to very blue and young starburst galaxies which are naturally hard to get photometric redshifts for because of their relatively featureless continuum. We conclude from these graphs that the main source...
Figure 13. Mock data with the survey we have labelled by ideal optical survey without u band photometry. We find that despite the difference in the magnitude limit of the survey, the regions with a high concentration of outliers contain similar types of galaxies which are mainly reddened galaxies and/or starburst galaxies. The main difference is that in the region 1.6 to 2.3 in redshift, the outliers have a low fraction of elliptical galaxies. This is due to the high exposure times in the y and z bands chosen in this mock ideal survey.
for catastrophic photometric redshifts for an optical survey arises from heavily reddened galaxies as well as very blue starburst galaxies.

We have performed the same analysis with similar regions for $r < 24$. The results are very similar to the results obtained for a cut one magnitude fainter. The main differences are that in region four with redshifts larger than 1.5 the late type galaxies with type close to zero are well constrained by the optical data given the very deep exposure times in the z and y bands. Furthemore the scatter in that region is significantly lower. However, the less well constrained objects have still same properties of being either blue starburst or heavily reddened objects.

There is a big degeneracy between redshift and reddening for some redshift ranges. We plot for different galaxy types the colour in the $r-z$ and $g-z$ plane for galaxies at different redshifts. We also plot the vector which corresponds to the average shift in colour for a redening of $A_V = 1.0$. Clearly galaxies at low redshift which are reddened have very similar colours to galaxies at high redshifts which are not reddened. We can see with this explanation why galaxies are scattered upwards in the $z_{\text{spec}} - z_{\text{phot}}$ plane. We have used a neural network to obtain photometric redshifts; given that the training set we have chosen is representative there will be more galaxies at redshift $z = 1$ than at low redshift. We argue that the inclusion of IR data helps the distinction between reddened galaxies and galaxies with a low A_V given the different extinction as a function of wavelength which is low at IR bands. The case which we have chosen with an ideal u survey can also distinguish between galaxies with a high and low A_V; this is because at very high exposures for the u band, a detection in u would allow us to know whether the galaxy is reddened. This is because of the high extinction in the u band.

5 Weak Lensing Tomography: The Dependence of the Dark Energy Parameter Estimation on the Photo-z Accuracy

5.1 A qualitative treatment of the W L-photoz cross talk

One important application of photometric redshift is for the analysis of weak lensing tomography (Hui 1993), as e.g. in the DUNE experiment. The idea is to slice a lensing survey into photometric redshift bins and to analyze the cosmic shear for high signal-to-noise galaxy in ages in each photo-z bin, e.g. as discussed by Amara et al. (2006), hereafter MHH and by Amara & Refregier (2006), hereafter AR.

Specifically, we can divide the galaxy sample into photometric redshift bins and examine the segregation of the cosmic parameters due to uncertainties in the photo-z’s. Consider a distribution of sources selected from a photometric redshift bin which results in a more complicated (not necessarily Gaussian) distribution with respect to true (spectroscopic) redshift, with mean redshift z and variance:

$z = \langle z_{\text{spec}} - z \rangle$.

A summing Poisson statistics we can predict the variance in the mean redshift z given N_{spec} spectroscopic redshifts associated with that photo-z bin:

$\langle z \rangle^2 + \sigma(z)^2 = z^2 N_z$.

We can now model crudely the the uncertainty in deriving the constant Dark Energy parameter $w = P$ from W L if the only uncertainty is due to photo-z errors:

$\langle z \rangle^2 = \sigma(z)^2 = \langle a = z \rangle t$.

The ‘fudge factor’ a can be estimated from detailed model of the W L power spectrum. For example, if we set all other parameters to be known in the scaling relation given in Huterer et al. (2003), Eq.(24) we nd that $\langle z \rangle^2 / \sigma(z)^2$ and hence $a = 52$. This value of 52 can also be justified qualitatively by examining the sensitivity of cosmological distance and the linear growth to variations in w (Peacock & Schneider 2004).

We can now combine the last two equations to give:

$\langle z \rangle^2 = \sigma(z)^2 = \langle a = z \rangle t = \frac{N_z}{2}$.

For example, for a desired fractional error of 1% on w, $a = 5$, $z = 1$ and $2 = 0.06$ (derived from our mock and ANNz averaged over a range of proposed optical and IR surveys) we nd that $N_z = 15,000$ spectroscopic redshifts.
are required for that bin, or for say 10 bins a total of 150,000 spectroscopic redshifts.

Our back-of-the-envelope calculation helps us to understand the link between the Dark Energy paramaters, the photon etric redshift peramance and the number of spectroscopic redshifts. However, being derived only for a constant w and with other cosmolical parameters fixed, it omits what under-predicts our detailed calculation below which is done for a 2-parameter equation of state after marginalization over other parameters.

More generally [Amar & Refregier, 2003] have considered the way the Figure of Merit (FOM) for the Dark Energy parameters (w_0, w_a) is affected by photo-z errors alongside the effect of the sky coverage and depth, the shear measurements systematics and uncertainties in the non-linear power spectrum predictions. Their scaling relations roughly agree with our detailed FOM calculations described below.

5.2 Dark Energy Figure of Merit (FOM) calculation

We summarise below the ingredients for the FOM calculation for Dark Energy parameters from weak lensing. The predicted angular power spectrum $C_{ij}(l)$ between redshift bins i and j depends on the 3D matter power spectrum $P(k=r)$ and on the radial window functions $W_i(r)$ and $W_j(r)$ of bins (i,j):

$$C_{ij}(l) = \frac{1}{\pi} \int_{0}^{\rho_{c}} \frac{d\rho}{\rho} W_i(\rho) W_j(\rho) P(r=\rho) r^2 \delta^2 n_i n_j \delta n_i \delta n_j ;$$ (7)

where r is the comoving distance and ρ_{c} is the Universe horizon. The last term is the 'shot noise' due to the intrinsic ellipticity noise for the galaxy sample, and n_i the total number of galaxies in the radial slice. The case $i=j$ gives the auto-correlation of bin i. The window function $W_i(r)$ depends on cosmological parameters and on the redshift distribution $n(z)$ of the source galaxies redshift slice, normalised such that $n = dN/dz(z)$ is the total number of galaxies in the slice and the integral is over the slice’s radial boundaries. For a comprehensive list of detailed equations in weak-lensing correlations we refer the reader to [Bridle & King, 2002].

Typically $p_i(z_{spec})$ would have a wide spread, not in the form of a Gaussian, as a-symmetric tails are present due to the photo-z catastrophic errors.

We have now two options. One is to parametrise $p_i(z_{spec})$ directly based on the projection of the photo-z scatter diagram $p_i(z_{spec} | z_{phot})$, derived from a spectroscopic training set or mock catalogues. The second option is to model it using eq. (8):

$$p_i(z_{spec}) = \int_{z_{phot}} \frac{dz}{dz_{phot}} \frac{dz_{spec}}{dz_{phot}} p_i(z_{spec} | z_{phot}) p_{z_{phot}}(z_{phot});$$ (10)

where $p_{z_{phot}}$ is the overall galaxy redshift distribution and $p_i(z_{spec} | z_{phot})$ can be modelled, as an whet ad-hoc, as a Gaussian (eq. [MHH, AR]).

Here we prefer the first option, i.e. we use the actual distributions of spectroscopic redshifts coming out of the simulations for the analysis.

The uncertainties in the shapes of the probability distribution function also have to be taken into account, due to the finite number, N_{z}, of the spectroscopic redshifts per bin in the training set. We have assumed an uncertainty on the mean and on the variance of the distributions we have from the photo-z simulations for each redshift shell in our analysis. As explained in the previous sub-section, from Poisson statistics we can predict the variance in the mean redshift of the bin:

$$\text{rm} s^2(z) = 2 \langle z_{spec}\rangle N_{z}$$

where $\langle z_{spec}\rangle = \frac{1}{N_{z}} \sum z_{spec}$ for a given photon etric redshift bin. Similarly for the variance in the variance:

$$\text{rm} s^2(z) = \frac{N_{z}}{N_{z}^2} \langle N_{z} \rangle (N_{z} - 1)$$

where $N_{z} = \langle z_{spec}\rangle N_{z}$ for a given photon etric redshift bin. Similarly for the variance in the variance:

$$\text{rm} s^2(z) = \frac{N_{z}}{N_{z}^2} \langle N_{z} \rangle (N_{z} - 1)$$

One can marginalise over both these uncertainties. The dependence on the number of spectroscopic redshifts is easily an indirect expression of the scatter in z and σ_z.

The Dark Energy equation of state is commonly written as $w(a) = w_0 + (1-a)w_a$. One can also de ne a, the pivot value at which the uncertainty in $w(a)$ is the minimum. Accordingly we de ne $w_0 = w_0 + (1-a)w_a$. Am ed with

<table>
<thead>
<tr>
<th>Survey</th>
<th>DES-like</th>
<th>PAN-4-like</th>
<th>LSST-like</th>
<th>Ideal-like</th>
<th>Ideal + u-like</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(w)\pm E_{\delta}$</td>
<td>72/83.6</td>
<td>80/87.3</td>
<td>116/112.0</td>
<td>136/130.5</td>
<td>164/151.0</td>
</tr>
<tr>
<td>$P(\delta w)\pm E_{\delta}$</td>
<td>120/124.0</td>
<td>132/138.0</td>
<td>156/148.0</td>
<td>168/160.4</td>
<td>168/162.3</td>
</tr>
</tbody>
</table>
FOM = \frac{1}{(\det F_{ij})^{1/2}} = \frac{1}{w_p w_a} \quad (13)

where i and j denote the elements of the covariance matrix (F^{-1}) that contain the equation of state parameters \(w_p, w_a\) and \(w_p\) and \(w_a\) are the 68% errors on \(w_p\) and \(w_a\).

In our Fisher matrix analysis we vary the following cosmological parameters: the dark matter content \(\sigma\), the dark energy parameters \(w_p, w_a\), the Hubble constant divided by 100 h, the amplitude of density fluctuations at \(z = 0\), the baryon density \(\Omega_b\), and the scalar index of the primordial spectrum \(n\) where the central values are 0.3, -0.05 to 0.05, 0.7, 0.8, 0.045 and 1.0 respectively. We assume spatial flatness. As we have already stated we have also assumed that there is an uncertainty over the mean and variance for each of the redshift bins independently. Hence we have two extra nuisance parameters that we will marginalize over for each photon shift redshift bin.

When performing lensing measurements, cuts are made on the detected galaxies. The two most significant cuts are in \(u_x, w\), where galaxies below a certain magnitude threshold are not used and a size cut where small galaxies are rejected because their shape is harder to measure. In this work we have not included a size cut since this would require detailed imaging simulations which is beyond the scope of this paper. However, the effect of this cut is important since this will remove higher redshift galaxies from our sample. To mimic the effect of these cuts we randomly sample the galaxies in our mock and apply the selection so that our galaxy population has a more realistic PDF. Specifically, we impose a distribution \(P(z) \propto z^2 \exp(-(z-z_0)^2/\sigma^2)\), where \(z_0\) is set by the median redshift of the galaxies \(z_0 = z_{12} = 1.812\), which we assume to be \(z_0 = 0.9\).

We have performed all the analysis with both photometric redshift bins and also checked that having more photometric redshift bins did not improve considerably on the FOM. We have chosen the photometric redshift bins so that the number of galaxies in each bin was the same. The total number of galaxies considered was 35 galaxies in 2° and we have considered a survey covering 20000 deg^2.

5.3 FOM results

We now investigate the role of the IR emitters in the FOM prediction. We can clearly see that the role of the IR emitters depends on the quality of the optical data available. We found before that the scatter plots for the photo-z scheme tend to be smaller than the scatter plots for 25 in the R_z, the IR bands can improve the FOM by a factor of 1.7. Moreover if the optical data available is deeper than the target depth of 25 in the R_z, the IR bands especially in the z and y bands then this FOM improvement is reduced to 1.3.

In Figure 15, the FOM as a function of the number of spectroscopic redshifts (per bin) used to calibrate the photometric results, we can see that the FOM began to level off at 10 and having more than 10^5 spectroscopic redshifts does not increase the FOM thus meaning that the photometric redshifts are well enough calibrated. We conclude that for a DUNE-like survey we will need around 10^5 objects in each redshift bin (here we assume 5 bins) to calibrate the photometric redshift. A round 10^4 objects might be sufficient, however the use of Eqn. 14 does not take account of outliers or the non-Gaussianity of the distribution and a number closer to 10^6 will be necessary. Furthermore these redshifts must be representative of the sample and therefore a test of them should be of galaxies in the faint end of the catalogue, i.e., fainter than R_B of 24.

Figure 15. The FOM as a function of the number of spectroscopic redshifts (per bin) used to calibrate the photometric results, we can see that the FOM began to level off at 10 and having more than 10^5 spectroscopic redshifts does not increase the FOM thus meaning that the photometric redshifts are well enough calibrated. We conclude that for a DUNE-like survey we will need around 10^5 objects in each redshift bin (here we assume 5 bins) to calibrate the photometric redshift. A round 10^4 objects might be sufficient, however the use of Eqn. 14 does not take account of outliers or the non-Gaussianity of the distribution and a number closer to 10^6 will be necessary. Furthermore these redshifts must be representative of the sample and therefore a test of them should be of galaxies in the faint end of the catalogue, i.e., fainter than R_B of 24.

5.3 FOM results

We now investigate the role of the IR emitters in the FOM prediction. We can clearly see that the role of the IR emitters depends on the quality of the optical data available. We found before that the scatter plots for the photo-z scheme tend to be smaller than the scatter plots for 25 in the R_z, the IR bands can improve the FOM by a factor of 1.7. Moreover if the optical data available is deeper than the target depth of 25 in the R_z, the IR bands especially in the z and y bands then this FOM improvement is reduced to 1.3 and if very deep u band data are available then the improvement is minimal. For the purposes of Dark Energy determination.

All the numbers above assume an in site number of spectroscopic redshifts are available to calibrate the photometric data. In practice only a finite number is necessary in order to calibrate the data well enough so that there is no degradation of the FOM. In order to assess this we have performed Fisher matrix calculations where we have prior knowledge given by N_s, the number of spectroscopic galaxies. We show the results in Fig. 14. As we can see if we have around 10^5 galaxies in each of the photometric redshift bins that we have assumed we have very little degradation of the FOM. We therefore conclude that we will require that any spectroscopic redshifts to calibrate the photometric sample well enough. Obtaining this many spectra is not a daunting process. However, we emphasize that most of these spectroscopic redshifts should be galaxies in the faint end of the sample which will be the most numberous. A sample of 10^5 galaxies at high brightness would not be sufficient. As we discussed in Sec. 5.2 this spectroscopic sample is currently not proven.
available, however, with IR surveys probing galaxies at a redshift of 2 combined with surveys such as zCO SM O S the prospects of having such a sample in the next decade is not feasible. However, there is need for more detailed study to assess whether this sample will be adequate in terms of completeness to be able to calibrate photometric redshifts.

We have listed in Tab. 4 the results for each survey and compared them with results given by the fitting formula from AR. We have used the values of sigma 68 as the values for the scatter for this distribution and we denoted the fraction of outliers as the galaxies which were situated 3 times or more away from the mean photometric redshift of that bin. We can see from the results of the table that the full PDF give very similar results to the fitting formula from AR.

5.4 Other considerations: systematic effects.

We have assessed the impact on the statistical errors that differ from the photometric redshift distributions would have on constraining the Dark Energy paramaters. In a weak lensing survey, however, there will be further systematic barriers which would not allow this statistical limit to be reached.

One of the important effects that will have to be removed or modelled is the effect of intrinsic alignment for close-by galaxies. The intrinsic-intrinsic (II) power spectrum introduced by galaxy intrinsic alignment can be written as

$$C_{ij}^{II}(l) = \int_0^l dr dr' p_i(r)p_j(r')P_{v2}(l-r')$$ \hspace{1cm} (14)$$

where p_i is the redshift distribution for the galaxies in bin i and P_{v2} is the intrinsic alignment power spectrum. We can see that if p_i and p_j are independent the contaminiation of the II term is minimal. Therefore weak lensing surveys would require a low overlap of galaxies between different bins. Several ideas have been proposed recently to improve the performance of the W L analysis (Jain et al. 2008) suggested a ‘color tomography’ to bin the galaxy data in colour space where galaxies have small overlap in the p_i, rather than to generate a photo-z catalogue and then bin it.

It is beyond the scope of this paper to do a complete analysis of how these systematics effects will hinder the FOM for the Dark Energy parameters. We refer the reader to Bridge & King (2007) for a more detailed analysis of this. We have assessed to what extent a detailed analysis of photometric redshift errors would help decrease the contaminiation of the II term in weak lensing. We have run Fisher matrix for catalogues which were cut in increasing redshift error. That is to say that galaxies that are found to have high error estimates are removed from the sample, this can be seen in Fig. 18. We plot the fraction of galaxies left in this sample. Consequently, there are less systematic errors as there are fewer outliers in the sample. We can see from Fig. 18 how this effects the number of outliers in the photo-z analysis for a given cut in the estimated error.

We plot in Fig. 17 how the FOM is decreased by a photo-z error cut for some of the surveys considered. We can see clearly that some surveys can have a large cut in the photometric redshift error and their FOM remains almost unchanged. This clearly means that we will be removing systematic errors due to the overlap of the photometric redshift bins but not hitting the FOM by removing galaxies which introduce relevant information in the detection of Dark Energy. Furthermore, if there is a need to model a galaxy-intrinsic (GI) alignment contribution to the cosmic shear signal, this will be more reliable if we obtain a sample with only the reliable photometric redshifts and which does not decrease the FOM significantly compared to the full sample.
In this work we have looked at the role of optical and near-IR photometry in the context of weak lensing tomography. In particular we have quantified how the Figure of Merit for Dark Energy parameters is affected by the choice of bands and observing conditions. We have generated catalogues from a range of proposed surveys. For xed mock simulations and a xed photo-z method (ANNz) we explored the photo-z accuracy and systematics by varying the set of bands and the magnitude limits of the surveys. The aim of this was to examine the role of bands and to reduce biases given that di erent mocks and photo-z methods may give di erent answers.

From the photometry, we nd that there is an interplay between the choice of bands (in particular the J, H and the u), the depth (i.e. magnitude limit), and the xed xed outliers based on the photo-z errors. We nd that if we are to get IR data from space the in provenents are greatly dependent on the quality of the ground data available. For surveys that go down to the same magnitude limit as the lensing survey in the R IZ band the in provenents that the J and H bands bring are great. However, if we have ground based photometry, particularly in the z and y bands, the in provenents due to IR data become smaller. There is a trade-o between the u and the R, in eaming that the u band, provided it is deep enough, can play a similar role as the IR data.

In summary, our main conclusions are:

The addition of J+ H to griz R IZ dramatically reduces the scatter in individual photo-zs, in particular for the shallow griz surveys.

The u band is e ective in removing outliers and can play a similar role as the IR bands, but only if the R IZ depth is signi cantly larger than the depth of the lensing survey chosen.

The results presented here depend on galaxy formation scenarios which are encoded in the mock catalogues. The main source for catastrophic photometric redshifts for an optical survey arises from heavily reddened galaxies as well as very blue starburst galaxies. It is hard to distinguish between a higher redshift galaxy and a lower redshift reddened galaxy with optical colours only below z = 1.2. The opposite is true above z = 1.7. The inclusion of u band data or IR data breaks this degeneracy.

Our derived Figure of Merit $FOM = \frac{1}{\sigma_w} \sqrt{\frac{\text{Reg}}{\text{N}}} \geq 10$ can be obtained with a realistic mock catalogue solely with weak lensing data. This would be a signi cant increase over current estimates and also the next generation of surveys. For comparison a current estimate of the error on w_0 is $\sigma_w\leq 10$.

Given an ambitious ground based survey such as the LSST + IR bands from space, only a marginal gain in provenent accuracy in photometric redshifts for the visible bands (i.e. the inclusion of deep u band photometry and deeper z and y bands only increases the FOM fractionally from 1.56 to 1.68 (see Table II)). Since increasing the accuracy of the visible bands will likely require deeper space lensed data, the extra cost of this is di cult to justify. This means that LSST is the ideal counterpart to a DUNE like survey. However deeper spaced based missions might have other ideal ground based photometric matches.

The FOM in provenent obtained from the addition of IR data depends on the quality of the ground based optical data. The FOM is increased by a factor ranging from 1.7 down to 1.3 for realistic mock surveys.

The required number of spectroscopic redshifts needed depends on the number of galaxies to train a neural network and also the quantity of galaxies needed to calibrate the photometric redshifts. We argue that a value around 10^3 in each redshift bin will be necessary for weak lensing studies from future space based missions.

The cleaning of outliers is e ective. There is a trade-o between reducing the photo-z error by removing galaxies, but increasing the shot noise. It is possible to clean a photo-z catalogue without decreasing the FOM signi cantly. We conclude that this is an e ective way to decrease systematic e ects from a weak lensing survey and is an alternative to colour tomography.

The general conclusion from our study is that combining weak lensing mass e arents from space and photometric redshifts from optical ground-based data is indeed a very attractive way to constrain Dark Energy properties. Furthermore, the use of IR from space can signi cantly improve the accuracy of Dark Energy mass e arents by 30-70 percent.

ACKNOWLEDGEMENTS.

We thank Mandi Banerji, Sarah Bridle, Samual Farrer, Huan Lin, Alex Refregier, the DES and DUNE weak-lensing and photometric redshift working groups and the Cosmo Survey team for useful discussions. OL acknowledges a PPARC Senior Research Fellowship. This research was carried out in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration and funded through the Internal Research and Technology Development Program.

REFERENCES

A Brecht et al. 2006, astro-ph/0609591
A Breing et al. 2004, Supernova / A cosmology Probe: A Satellite Experiment to Study the Nature of the Dark Energy
Bishop C. M. 1995, Neural Networks for Pattern Recognition (New York: Oxford Univ. Press)

Lilly et al. 2006, astro-ph/0612291

Masey et al. 2006, astro-ph/0608643
Peacock J., Schneider P., 2006, The Messenger, 125, 48
