I review the problem of dark energy focusing on cosmological constant as the candidate and discuss what it tells us regarding the nature of gravity. Part 1 briefly overviews the currently popular ‘concordance cosmology’ and summarizes the evidence for dark energy. It also provides the observational and theoretical arguments in favour of the cosmological constant as a candidate and emphasizes why no other approach really solves the conceptual problems usually attributed to the cosmological constant.

Part 2 describes some of the approaches to understand the nature of the cosmological constant and attempts to extract certain key ingredients which must be present in any viable solution. In the conventional approach, the equations of motion for matter fields are invariant under the shift of the matter Lagrangian by a constant while gravity breaks this symmetry. I argue that until the gravity is made to respect this symmetry, one cannot obtain a satisfactory solution to the cosmological constant problem. Hence the cosmological constant problem essentially has to do with our understanding of the nature of gravity.

Part 3 discusses such an alternative perspective on gravity in which the gravitational interaction (described in terms of a metric on a smooth spacetime) is an emergent, long wavelength phenomenon, and can be described in terms of an effective theory using an action associated with normalized vectors in the spacetime. This action is explicitly invariant under the shift of the matter energy momentum tensor $T_{ab} + g_{ab}$ and any bulk cosmological constant can be gauge away. Extremizing this action leads to an equation determining the background geometry which gives Einstein’s theory at the lowest order with Lanczos-Lovelock type corrections. In this approach, the observed value of the cosmological constant has to arise from the energy fluctuations of degrees of freedom located in the boundary of a spacetime region.

Contents

I. Cosmological Constant as the dark energy
 A. The cosmological paradigm
 B. The ‘familial’ approach to the cosmological constant

II. Aspects of the Cosmological Constant
 A. Facing up to the challenge
 1. Cosmology with two length scales
 2. Area scaling for energy fluctuations
 B. Attempts on the life of
 1. Conservative explanations of dark energy
 2. Cosmic Lenz law
 3. Unimodular Gravity

III. Gravity as an emergent phenomenon and the cosmological constant
 A. The necessary ingredients of a new perspective
 B. Micro-structure of the spacetime
 C. Gravity from normed vector fields
 D. Gravity as detector of the vacuum fluctuations

IV. Conclusions

V. Acknowledgments
Appendix: A primer on Lanczos-Lovelock gravity

References

I. COSMOLOGICAL CONSTANT AS THE DARK ENERGY

A. The cosmological paradigm

A host of different observations, which became available in the last couple of decades, have thrust upon us a preposterous composite position for the energy density of different components in the universe which does not make any simple explanation. The energy densities of the different species which drive the expansion of the universe, can be measured in terms of a critical energy density \(\rho_c = 3H_0^2 = 8 \) where \(H_0 = (a = a) \) is the rate of expansion of the universe at present. The variables \(i \), \(i = a \) and \(i = b \) will then give the fractional contribution of different components of the universe (denoting baryons, dark matter, radiation, etc.) to the critical density required to close the universe. Observations suggest that the universe has \(0.08 \). \(\rho_{\text{tot}} \) with radiation (R), baryons (B), dark matter (DM), and dark energy (DE) contributing \(\delta \) to the observed value of \(\rho_c \). When the perturbation is small, one can use well-understood models to construct models of inflation such that these perturbations are described by a Gaussian random field and are characterized by a power spectrum of the form \(P(k) = A k^n \) with \(n = 1 \). In the inflationary model, we cannot predict the value of the amplitude \(A \) in an unambiguous manner. But it can be determined from CMBR observations and the inflationary model parameters can be fine-tuned to reproduce the observed value. The CMBR observations are consistent with the inflationary model for generating perturbations and gives \(A' (283 h^3 \ Mpc)^4 \) and \(n = 1 \). The first results from COBE \([8]\) and WMAP have re-confirmed them with far greater accuracy. When the perturbation is small, one can use well-developed linear perturbation theory to study its growth. But when \(n = 1 \) is compatible to unity, the perturbation theory breaks down. Since there is more power at small scales, smaller scales go non-linear and structure forms hierarchically. The non-linear evolution of the dark matter halos can be understood by simulations as well as theoretical models based on approximate ansatz \([6]\) and non-linear scaling relations \([10]\). The baryons in the halo will cool and undergo collapse in a fairly complex manner because of gas dynamical processes. It seems unlikely that the baryonic collapse and galaxy formation can be understood by approximate analytic solutions; one needs to do high-resolution computer simulations to make any progress \([11]\). The results obtained from all these attempts are broadly consistent with observations but the sum may not give a complete picture of the dark matter and structure of the universe; and the problem with observations is that a rather involved air.

So, at the zeroth order, the universe is characterized by just seven numbers: h, \(H_0 \), describing the current rate of expansion; \(\delta_\text{DE} \), \(\delta_\text{DM} \), \(\delta_\text{R} \), \(\delta_\text{B} \), and \(\delta_\text{DM} \) giving the com position of the universe; the amplitude \(A' (283 h^3 \ Mpc)^4 \) and the index \(n = 1 \) of the initial perturbations. The remaining challenge, of course, is to make sense out of these numbers themselves as a non-linear field point of view. Among these all these components, the dark energy, which exerts negative pressure, is probably the weakest and | since non-cosmologists often wonder how strong is the evidence for it | it is useful to keep the following points in mind:

The rapid acceptance of dark energy by the community is partially due to the fact that | even before the supernova data came up | there were strong indications for the existence of dark energy. Early analysis of several observations \([12]\) indicated that this component is unclustered and has negative pressure. This is, of course, consistent with all of the supernova observations \([13,14]\). For a critical look at the current data, see \([15]\); a summary of recent SN data analysis papers can be found in ref. \([16]\).)

The WMAP-CMBR data with a reasonable prior on Hubble constant in addition to the host of other astronomical observations that the clustered matter contributes only about \(\delta_\text{DM} \) to, together, they require a unclustered (negative pressure) component in the universe independent of SN data. It, therefore, seems very unlikely that dark energy will go away".

The key observational feature of dark energy is that | treated as a fluid with a stress tensor \(T_{ij} = \delta_\text{DE} \) | it has an equation state \(p = w \) with \(w = 0 \) at the present epoch. The spatial part of the geodesic acceleration
(which m measures the relative acceleration of two geodesics in the spacetime) satisfies an exact equation in general relativity given by:

$$r \ q = 4 \ G \ (+ \ 3p)$$ (1)

This shows that the source of geodesic acceleration is (+ 3p) and not . As long as (+ 3p) > 0, gravity remains attractive while (+ 3p) < 0 can lead to "repulsive" gravitational effects. In other words, dark energy with sufficiently negative pressure will accelerate the expansion of the universe, once it starts dominating over the normal matter. This is precisely what is established from the study of high-redshift supernovae, which can be used to determine the expansion rate of the universe in the past [13,14].

The simplest model for a fluid with negative pressure is the cosmological constant (for a sample of recent reviews, see ref. [13]) with \(w = -1; \ p = \text{constant} \). If dark energy is indeed the cosmological constant, then it introduces a fundamental length scale in the theory \(L \), related to the constant dark energy density \(\rho_c \) by \(L^2 \). In classical general relativity, based on \(G \) and \(L \), it is not possible to construct any dimensionless combination from these constants. But when one introduces the Planck constant, \(\hbar \), it is possible to form the dimensionless combination \(H^2 \) (corresponding to \(L^2 = L^2 \)). Observations then require \((L^2 = L^2) \). This will require enormous fine-tuning. If \(\hbar \) is in one of the past, the energy density of normal matter and radiation would have been higher while the energy density contributed by the cosmological constant does not change. Hence we need to adjust the energy densities of normal matter and cosmological constant in the early epoch very carefully so that \(\rho \) near around the current epoch. This raises the second of the two cosmological constant problems: Why is \(\rho \) near around the current epoch? These two conventional conceptual difficulties associated with the cosmological constant and have been discussed extensively in literature.

B. The ‘denial’ approach to the cosmological constant

Because of these conceptual problems associated with the cosmological constant, people have explored a large variety of alternative possibilities. The most popular among them uses a scalar \(\Phi \) with a suitably chosen potential \(V(\Phi) \) so as to make the vacuum energy vary with \(\Phi \). The hope is that, one can nd a model in which the current value can be explained naturally without any fine-tuning. A simple form of the source with variable \(\Phi \) are scalar fields with Lagrangians of different forms, of which we will discuss two possibilities:

$$L_{\text{quint}} = \frac{1}{2} \partial_\mu \Phi \partial^{\mu} \Phi \ V(\Phi); \ L_{\text{quint}} = V(\Phi) \(1 - \Phi^2 \)^{\frac{1}{2}} \ (2)$$

Both these Lagrangians involve one arbitrary function \(V(\Phi) \). The first one, \(L_{\text{quint}} \), which is a natural generalization of the Lagrangian for a non-relativistic particle, \(L = \frac{1}{2}m \frac{\partial^2 x}{\partial t^2} \ V(q) \), is usually called quintessence (for a small sample of models, see [13]). When it acts as a source in Friedmann universe, it is characterized by a time-dependent \(w(t) \) with

$$q(t) = \frac{1}{2} \frac{\partial \Phi}{\partial t} + \ V; \ p_\Phi(t) = \frac{1}{2} \frac{\partial \Phi}{\partial t} + \ V; \ \eta_q = \frac{(2V\omega_q)}{1 + (2V\omega_q)} \ (3)$$

The structure of the second Lagrangian in Eq. (2) (which arises in string theory) can be understood by a simple analogy from special relativity. A relativistic particle with (one-dimensional) position \(q(t) \) and mass \(m \) is described by the Lagrangian \(L = \frac{1}{2} \frac{\partial q}{\partial t} \). It has the energy \(E = m \frac{\partial q}{\partial t} \) and momentum \(k = m \frac{\partial q}{\partial t} \) which are related by \(E^2 = k^2 + m^2 \). As is well known, this allows the possibility of having massless particles with infinite energy for which \(E^2 = k^2 \). This is achieved by taking the limit of \(m \rightarrow 0 \) and \(q \rightarrow 1 \), while keeping the ratio in \(E = m = \frac{1}{2} \frac{\partial q}{\partial t} \) finite. The momentum acquires a role of its own, unconnected with the velocity \(q \), and the energy is expressed in terms of the momentum (rather than in terms of \(q \) in the Hamiltonian formulation). We can now construct a \(\Phi \) theory by upgrading \(q(t) \) to a \(\phi(q,t) \). Relativistic invariance now requires dependence on both space and time \(\left[= (t,\mathbf{x}) \right] \) and \(q \) to be replaced by \(\Phi \) and \(\partial \). It is also possible now to treat the mass parameter \(m \) as a function of \(\Phi \), say, \(V(\Phi) \) thereby obtaining a \(\Phi \) theoretic Lagrangian \(L = \frac{1}{2} \frac{\partial \Phi}{\partial t} \). The Hamiltonian structure of this theory is algebraically very similar to the special relativistic example we started with. In particular, the theory allows solutions in which \(V \neq 0 \), \(\partial \), and \(\partial \) simultaneously, keeping the energy (density) finite. Such solutions will have finite \(m \), or momentum density (analogous to a massless particle with finite momentum) and energy density. Since the solutions can now depend on both space and time (unlike the special relativistic example in which \(q \) depended only on time), the momentum density can be an arbitrary function of the spatial coordinate. The structure of this Lagrangian is similar to those analyzed in a wide class of models called K-essence [13] and provides a rich gamut of possibilities in the context of cosmology [23].
Since the quintessence eik (or the tachyonic eik) has an undetermined free function $V(\phi)$, it is possible to choose this function in order to produce a given expansion history of the universe characterized by the function $H(a) = a^{-1}$ expressed in terms of a. To see this explicitly, let us assume that the universe has two forms of energy density with

$$(a) = \text{known} + (a)$$

where known arises from any known form of source (matter, radiation, ...) and (a) is due to a scalar eik. Let us first consider quintessence. Here, the potential is given implicitly by the form \[24,25]\n
$$V(a) = \frac{1}{16}G(1 + Q) 6H + 2aH 0 \frac{aH Q 0}{1} \tag{4}$$

with $Q(a) = \frac{8G \text{known}}{3H^2(a)}$ and prime denotes differentiation with respect to a. Given any $H(a); Q(a)$, these equations determine $V(a)$ and (a) and thus the potential $V(\phi)$. Every quintessence model studied in the literature can be obtained from these equations.

Similar results exist for the tachyonic scalar eik as well \[20\]. For example, given any $H(a)$, one can construct a tachyonic potential $V(\phi)$ so that the scalar eik is the source for the cosmology. The equations determining $V(\phi)$ are now given by:

$$(a) = \frac{1}{8G} \left(1 - \frac{2Z}{H} \right) d \frac{aQ 0}{a} \frac{1}{3(1 + Q)} \frac{2aH 0}{3} \tag{5}$$

$$V(a) = \frac{3H^2}{8G} \left(1 + \frac{2aH 0}{3} \right) \frac{aQ 0}{(1 + Q)} \tag{6}$$

Equations (5) and (6) completely solve the problem. Given any $H(a)$, these equations determine $V(a)$ and (a) and thus the potential $V(\phi)$. A wide variety of phenomenological models with time dependent cosmological constant have been considered in the literature; all of these can be mapped to a scalar eik model with a suitable $V(\phi)$.

While the scalar eik models enjoy considerable popularity (one reason being they are easy to construct!) it is very doubtful whether they have helped us to understand the nature of the dark energy at any deeper level. These models, viewed objectively, suffer from several shortcomings:

- They have no predictive power. As explicitly demonstrated above, virtually every form of $a(t)$ can be modeled by a suitable "designer" $V(\phi)$.

These models are degenerate in another sense. The previous discussion illustrates that even when $w(a)$ is known/speciﬁed, it is not possible to proceed further and determine the nature of the scalar eik Lagrangian. The explicit examples given above show that there are at least two different forms of scalar eik Lagrangians corresponding to the quintessence or the tachyonic eik which could lead to the same $w(a)$. (See the first paper in ref. [13] for an explicit explicit example of such a construction.)

By and large, the potentials used in the literature have no natural eik theoretical justiﬁcation. All of them are non-renormalizable in the conventional sense and have to be interpreted as a low energy effective potential in an ad hoc manner.

One key diﬀerence between cosmological constant and scalar eik models is that the latter lead to a $w(a)$ which varies with time. If observations have demurred this, or even if observations have ruled out $w = 1$ at the present epoch, then one would have been forced to take alternative models seriously. However, all available observations are consistent with cosmological constant ($w = 1$) and in fact the possible variation of w is strongly constrained \[23\] as shown in Figure 1.

While on the topic of observational constraints on $w(t)$, the following point needs to be stressed: One should be careful about the hidden assumptions in the statistical analysis of these data. Claims regarding the value of w depends crucially on the data sets used, priors which are assumed and possible parameterizations which are adopted. (For more details related to these issues, see the last reference in \[23\].) It is fair to say that all currently available data is consistent with $w = 1$. Further, there is some amount of tension between WMAP and SN-Gold data with the recent SNLS data \[14\] being more concordant with WMAP than the SN-Gold data.
The most serious problem with the scalar field models is the following: All the scalar field potentials require no tuning of the parameters in order to be viable. This is obvious in the quintessence models in which an additional constant to the potential is the same as invoking a cosmological constant. So to make the quintessence models work, we must need to assume the cosmological constant is zero. These models, therefore, merely push the cosmological constant problem to another level, making it someone else’s problem!.

The last point makes clear that if we shift $L = L_{\text{mat}} - 2m$ in an otherwise successful scalar field model for dark energy, we end up ‘switching on’ the cosmological constant and raising the problem again. It is therefore important to address this issue, which we will discuss in Part 3.

Given this situation, we shall first take a more serious look at the cosmological constant as the source of dark energy in the universe.

II. ASPECTS OF THE COSMOLOGICAL CONSTANT

A. Facing up to the Challenge

The observational and theoretical features described above suggests that one should consider a cosmological constant as the most natural candidate for dark energy. Though it leads to well-known problems, it is also the most economical (just one number) and simplest explanation for all the observations.

Once we invoke the cosmological constant, classical gravity will be described by the three constants $G; c$ and L^2. Since $G = c^{-3}$, $(L = L)^2 = 10^{123}$, it is obvious that the cosmological constant is telling us something regarding quantum gravity, indicated by the combination G^\sim. An acid test for any quantum gravity model will be its ability to explain this value; needless to say, all the currently available models (strings, loops etc.) all fail this test. Even assuming that this is more of an issue in semi-classical gravity rather than quantum gravity, one cannot help noticing that several different approaches to semi-classical gravity [24] are silent about cosmological constant.

In terms of the energy scales, the cosmological constant problem is an infrared problem par excellence. At the same time, the occurrence of G^\sim shows that it is a relic of a quantum gravitational effect (or principle) of unknown nature. One is left with an unusual possibility of a high energy phenomenon leading to a low energy relic and an analogy will be helpful to illustrate this idea [24]. Suppose we solve the Schrodinger equation for the Helium atom for the quantum states of the two electrons (x_1, x_2). When the result is compared with observations, we will find that only half the states in which (x_1, x_2) is antisymmetric under $x_1 \leftrightarrow x_2$ interchange are realized.
in nature. But the low energy Hamiltonian for electrons in the Helium atom has no information about this effect! Here is a low energy (IR) effect which is a relic of relativistic quantum field theory (spin-statistics theorem) that is totally non-perturbative, in the sense that writing corrections to the Hamiltonian of the Helium atom in some (1=c) expansion will not reproduce this result. I suspect the current value of cosmological constant is related to quantum gravity in a similar spirit. There must exist a deep principle in quantum gravity which leaves its non-perturbative trace even in the low energy limit that appears as the cosmological constant.

1. Cosmology with two length scales

Given the two length scales L_p and L, one can construct two energy scales $\omega_{UV} = 1 = L_p^4$ and $\omega_{IR} = 1 = L^4$ in natural units ($c = -1$). There is sufficient amount of justiﬁcation from different theoretical perspectives to treat L_p as the zero point length of spacetime [23], giving a natural interpretation to ω_{UV}. The second one, ω_{IR} also has a natural interpretation. Since the universe dominated by a cosmological constant at late times will be asymptotically D Sitter with a $a(t) / \exp(t/L)$ at late times, it will have a horizon and associated themodynamics [27] with a temperature $T = H = 2$. The corresponding total energy density is $\rho_{\text{tot}} / T^4 / 1 = L^4 = M_p$. Thus L_p detemines the highest possible energy density in the universe while L demines the lowest possible energy density in this universe. As the energy density of normal matter drops below this value, L, the thermodynamic of the D Sitter phase will remain constant and provide the irreducible ‘vacuum noise’. The observed dark energy density is the geometric mean

$$\omega_{DE} = \rho_{IR} / \omega_{UV} = \frac{1}{L_p^2 L^2}$$

of these two energy densities. If we define a dark energy length scale L_{DE} such that $\omega_{DE} = 1 = L_{DE}^4$ then $L_{DE} = \rho_{DE}$. L is the geometric mean of the two length scales in the universe [28].

Figure 2 describes some peculiar features in such a universe [29, 30]. Using the characteristic length scale of expansion, the Hubble radius d_H ($=a^{-1}$), we can distinguish between three different phases of such a universe. The first phase is when the universe went through a inflationary expansion with $d_t = constant$; the second phase is the radiation/matter domination phase in which most of the standard cosmology operates and d_t increases monotonically; the third phase is that of re-inflation (or accelerated expansion) governed by the cosmological constant in which d_t is again a constant. The first and last phases are time translation invariant; that is, t = constant is an (approximate) invariance for the universe in these two phases. The universe satisfies the perfect cosmological principle and is in steady state during these phases.

In the most natural scenario, the two D Sitter phases (rst and last) can be of arbitrarily long duration [23]. If $0 < \alpha_{DM} < 0.3$ the null D Sitter phase does last forever; as regards the in ationary phase, nothing prevents it from lasting for arbitrarily long duration. Viewed from this perspective, the in between phase ρ_{DM} of the ‘interesting’ cosmological phenomena occur is of negligible measure in the span of time t. It merely connects two steady state phases of the universe. Figure 2 also shows the variation of L_{DE} by broken horizontal lines.

While the two D Sitter phases can last forever in principle, there is a natural cut off length scale in both of them which makes the region of physical relevance to be finite [23]. Let us rst discuss the case of re-in ation in the late universe. As the universe grows exponentially in the phase 3, the wavelength of CM BR photons are being red shifted rapidly. When the temperature of the CM BR radiation drops below the D Sitter temperature (which happens when the wavelength of the typical CM BR photon is stretched to the L), the universe will be essentially dominated by the vacuum thermal noise of the D Sitter phase. This happens at the epoch $a = a_0$ detemined by the equation $T_0(a_0) = (1-2L)$. Let $a = a$ be the epoch at which cosmological constant started dominating over matter, so that $a = a_0$ ($\alpha_{DM} = 1$). Then we nd that the dynamical range of DF is

$$\frac{a_F}{a} = 2 T_0 L \frac{a^{3-1}}{a^{DM}} 10^3$$

One can also impose a similar bound on the physically relevant duration of inflation. We know that the quantum fluctuations generated during this inflationary phase could act as seeds of structure formation in the universe [1]. Consider a perturbation at some given wavelength scale which is stretched with the expansion of the universe as $a(t)$. (See the line marked A B in Figure 2.) During the inflationary phase, the Hubble radius remains constant while the wavelength increases, so that the perturbation will ‘exit’ the Hubble radius at some time (the point A in Figure 2). In the radiation dominated phase, the Hubble radius $d_t / t / a^2$ grows faster than the wavelength $a(t)$. Hence, normally, the perturbation will ‘re-enter’ the Hubble radius at some time (the point B in Figure 2). If there was no re-in ation, this will make all wavelengths re-enter the Hubble radius sooner or later. But if the universe
FIG. 2: The geometrical structure of a universe with two length scales L_P and L corresponding to the Planck length and the cosmological constant [29,30]. Such a universe spends most of its time in two D_sitter phases which are (approximately) time translation invariant. The first D_sitter phase corresponds to the inflation and the second corresponds to the accelerated expansion arising from the cosmological constant. Most of the perturbations generated during the inflation will leave the Hubble radius (at some A, say) and re-enter (at B). However, perturbations which exit the Hubble radius earlier than C will never re-enter the Hubble radius, thereby introducing a specific dynamical range CE during the inflationary phase. The epoch F is characterized by the redshifted CMB temperature becoming equal to the D_sitter temperature ($H = 2$) which introduces another dynamical range DF in the accelerated expansion after which the universe is dominated by vacuum noise of the D_sitter spacetime.

undergoes re-inflation, then the Hubble radius ‘attns out’ at late times and some of the perturbations will never re-enter the Hubble radius. The limiting perturbation which just ‘grazes’ the Hubble radius as the universe enters the re-inflationary phase is shown by the line marked CD in Figure 2. If we use the criterion that we need the perturbation to re-enter the Hubble radius, we get a natural bound on the duration of inflation which is of direct astrophysical relevance. This portion of the inflationary regime is marked by CE and its dynamical range can be calculated to be:

$$\frac{a_{end}}{a_i} = \frac{T_0 L}{T_{\text{reheat}} H_{\text{in}}^{1.3}} = \frac{a_F}{a} \left(2 \frac{T_{\text{reheat}} H_{\text{in}}^{1.3}}{10^{25}} \right)$$

(10)

for a GUTs scale inflation with $E_{GUT} = 10^{14}$ GeV; $T_{\text{reheat}} = E_{GUT}$; $H_{\text{in}} = E_{GUT}^{1/4}$ we have $2 H_{\text{in}}^{1/3} T_{\text{reheat}} = 10^6$. If we consider a quantum gravitational, Planck scale, inflation with $2 H_{\text{in}}^{1/3} T_{\text{reheat}} = 0(1)$, the phases CE and DF are approximately equal. The region in the quadrilateral $CEDF$ is the most relevant part of standard cosmology, though the evolution of the universe can extend to arbitrarily large stretches in both directions in time. This figure is telling us something regarding the duality between Planck scale and Hubble scale or between the infrared and ultraviolet limits of the theory and is closely related to the fact that $2^{1/2} = UV IR$.
2. Area scaling for energy fluctuations

The geometric mean relation described above can also be presented in a different manner which allows us to learn something significant. Consider a 3-dimensional region of size \(L \) with a bounding area which scales as \(L^2 \). Let us assume that we associate with this region \(N \) microscopic cells of size \(L_p \) each having a Poissonian fluctuation in energy of amount \(\sigma_p = \sqrt{L_p} \). Then the mean square fluctuation of energy in this region will be \(\langle E^2 \rangle = N \sigma_p^2 \) corresponding to the energy density \(E = \langle E^2 \rangle \). If we make the usual assumption that \(N = N_{\text{vol}} \) (\(L=L_p \)), this will give

\[
\frac{P}{L_p L^3} = \frac{1}{L_p^3} \quad \text{(bulk fluctuations)}
\]

On the other hand, if we assume that (for reasons which are unknown), the relevant degrees of freedom scale as the surface area of the region, then \(N = N_{\text{sur}} \) (\(L=L_p \)) and the relevant energy density is

\[
\frac{P}{L_p L^2} = \frac{1}{L_p} \quad \text{(surface fluctuations)}
\]

If we take \(L=L_p \), the surface fluctuations in Eq. (11) give precisely the geometric mean in Eq. (9) which is observed. On the other hand, the bulk fluctuations lead to an energy density which is larger by a factor \(L_p^2 \). Of course, if we do not take fluctuations in energy but coherently add them, we will get \(N = L_p L^3 \) which is \(L=L_p \) for the bulk and \((L=L_p)^3 \) for the surface. In summary, we have the hierarchy:

\[
\frac{1}{L_p^4} \quad \frac{1}{L_p^2} \quad \frac{1}{L_p} \quad \frac{L_p L^3}{L^2} \quad \frac{L_p^2 L^2}{L^3} \quad \frac{L_p^3 L^3}{L^4} \quad \ldots
\]

in which the first one arises by coherently adding energies (1 cell) per cell with \(N_{\text{vol}} = (L=L_p)^3 \); the second arises from coherently adding energies (1 cell) per cell with \(N_{\text{surf}} = (L=L_p)^2 \) cells; the third one is obtained by taking fluctuations in energy and using \(N_{\text{vol}} \) cells; the fourth from energy fluctuations with \(N_{\text{surf}} \) cells; and finally the last one is the thermodynamic energy of the De Sitter space if we take \(L=L_p \) and clearly the further terms are irrelevant due to this vacuum noise. Of all these, the only viable possibility is the one that is obtained if we assume that

The number of effective degrees of freedom in a region of size \(L \) scales as \(N_{\text{surf}} = (L=L_p)^2 \).

It is the fluctuations in the energy that contribute to the cosmological constant \[31, 32\] and the bulk energy does not evaporate.

Recently, it has been shown \[13\] that it is possible to obtain classical relativity from purely thermodynamic considerations in which the surface term of the gravitational actions play a crucial role. The area scaling is familiar from the usual result that entropy of horizons scale as area. In fact, one can argue from general considerations that the entropy associated with any null surface should be (1=4) per unit area and will be observer dependent. Further, in cases like Schwarzchild black hole, one cannot even properly define the volume inside a horizon. A null surface, obtained as a limit of a sequence of timelike surfaces (like the \(r = 2M \) obtained from \(r = 2M + k \) surfaces with \(k \to 0 \)), 'loses' one dimension in the process (\(r > 2M + k \to 2M + k \) is 3-dimensional and timelike for \(k > 0 \) but is 2-dimensional and null for \(k = 0 \)) suggesting that the scaling of degrees of freedom has to change appropriately. It is difficult to imagine that these features are unconnected and accidental and we will discuss these ideas further in Part 3.

B. Attempt to make sence of dark energy

Let us now turn our attention to a few of them in a series of papers, see ref. \[33\] that it is possible to understand the cosmological constant with the choice dictated by personal bias. A host of other approaches exist in literature, some of which can be found in \[34\].

1. Conservative explanations of dark energy

One of the least esoteric ideas regarding the dark energy is that the cosmological constant term in the FRW equations arises because we have not calculated the energy density driving the expansion of the universe correctly.
The motivation for such a suggestion arises from the following fact: The energy momentum tensor of the real universe, \(T_{ab}(t;x) \) is inhomogeneous and anisotropic and will lead to a complicated metric \(g_{ab} \), if only we could solve the exact Einstein's equations \(G_{ab}[g] = T_{ab} \). The metric describing the large scale structure of the universe should be obtained by averaging this exact solution over a large enough scale, to get \(h_{ab} \). But what we actually do is to average the stress tensor \(\tau_{ab} \) to get \(T_{ab} \) and then solve Einstein's equations. But since \(G_{ab}[g] \) is a nonlinear function of the metric, \(h_{ab}[g] \neq G_{ab}[h_{ab}g_{ij}] \) and there is a discrepancy. This is most easily seen by writing

\[
G_{ab}[g] = \left[T_{ab} + \frac{1}{t} (G_{ab}[h_{ab}g_{ij}] h_{ab}[g_{ij}]) \right] \left[h_{ab} + T_{ab}^{\text{corr}} \right] \quad (14)
\]

If based on observations | we take the \(h_{ab} \) to be the standard Friedmann metric, this equation shows that it has, as its source, two terms: The first is the stress average stress tensor and the second is a purely geometric correction term \(T_{ab}^{\text{corr}} = (G_{ab}[h_{ab}g_{ij}] h_{ab}[g_{ij}]) \) which arises because of nonlinearities in the Einstein's theory that leads to \(h_{ab}[g] \neq G_{ab}[h_{ab}g_{ij}] \). If this term can mimic the cosmological constant at large scales there will be no need for dark energy and | as a bonus | one will solve the coincidence problem!

The approach requires us to identify an effective expansion factor \(a_{\text{eff}}(t) \) of an inhomogeneous universe after suitable averaging, to be sourced by terms which will lead to \(a_{\text{eff}}(t) > 0 \) while the standard matter \((+ 3p > 0) \) leads to deceleration of standard expansion factor \(a(t) \). Since correct averaging of positive quantities in \((+ 3p) \) will not lead to a negative quantity, the hope is in defining \(a_{\text{eff}}(t) \) and obtaining its dynamical equation such that \(a_{\text{eff}}(t) > 0 \). In spite of some recent attention this idea has received \([34]\), it is doubtful whether it will lead to the correct result when in plenum properly. The reasons for my skepticism are the following:

A n calculation in linear theory or any calculation in which special symmetries are invoked are inconclusive in settling the issue. The key question, of identifying a suitable analogue of expansion factor from an averaged geometry, is nontrivial and it is not clear that the answer will be unique. To stress the point by an extreme (and a bit silly) example please, suppose we decide to call \(a(t)^n \) with, say \(n > 2 \) as the effective expansion factor \(a_{\text{eff}}(t) = a(t)^n \); obviously an \(a_{\text{eff}} \) can be positive ('accelerating universe') even with \(n > 2 \). So, unless one has a unique procedure to identify the expansion factor of the average universe, it is difficult to settle the issue.

It is obvious that \(T_{ab}^{\text{corr}} \) is non-zero (for an explicit example, in a completely diagonal context of electromagnetic plane wave, see \([33]\)); the question that needs to be settled is how big is it compared to \(T_{ab} \). It seems unlikely that when properly done, we will get a large effective for the simple reason that the amount of mass which is contained in the non-linear regimes in the universe today is subdominant.

This approach is too strongly linked to identifying the acceleration as observed by SN. Even if we decide to completely ignore all SN data, we will have reasonable evidence for dark energy and it is not clear how this approach can tackle such evidence.

Another equally conservative explanation of the cosmic acceleration will be that we are located in a large underdense region in the universe; so that, locally, the underdensity acts like negative mass and produces a repulsive force. While there has been some discussion in the literature \([33]\) as to whether observations indicate such a local bubble, this does not seem to be a tenable explanation that one can take seriously at this stage. Again, the bubble observations indicating dark energy do not directly affected by this feature though one does need to take into account the effect of the local voids.

Finally, one should not forget that a vanishing cosmological constant is still a problem that needs an explanation. So even if all the evidence for dark energy disappears within a decade, we still need to understand why the cosmological constant is zero and much of what I have to say in the sequel will remain relevant. I stress this because there is a recent tendency to forget the fact that the problem of the cosmological constant existed (and was recognized as a problem) long before the observational evidence for dark energy, accelerating universe etc. cropped up. In this sense, the cosmological constant problem has an important theoretical dimension which is distinct from what has been introduced by the observational evidence for dark energy.

2. Cosmic Lenz law

The second simplest possibility which has been attempted in the literature several times in different guises is to try and "cancel out" the cosmological constant by some process, usually quantum mechanical in origin. One can, for example, ask whether switching on a cosmological constant will lead to a vacuum polarization with an effective energy momentum tensor that will tend to cancel out the cosmological constant. A less subtle way of doing this is to invoke another scalar field (here we go again!) such that it can couple to the cosmological constant and reduce its effective value.
Unfortunately, none of this could be made to work properly. By and large, these approaches lead to an energy density which is either \(\frac{u}{L^4} \) or to \(\frac{m}{L^4} \). The first one is too large while the second one is too small.

3. Unimodular Gravity

One possible way of addressing the issue of cosmological constant is to simply eliminate from the gravitational theory those modes which couple to cosmological constant. If, for example, we have a theory in which the source in Eq. (1) is \((p + 3p)\) rather than \((p + 3p)\), then cosmological constant will not couple to gravity at all. Unfortunately it is not possible to develop a covariant theory of gravity using \((p + 3p)\) as the source. But we can probably gain some insight from the following considerations. Any metric \(g_{ab} \) can be expressed in the form \(g_{ab} = f^4(x) q_{ab} \) such that

\[
det f = 1 \quad \text{so that} \quad \det q = f^4.
\]

From the action functional for gravity

\[
A = \frac{1}{16} \int Z \left(\frac{1}{G} \int d^4 x \right) \frac{Z}{8} G \int d^4 x \int d^4 x \int d^4 x (f^4(x))^{1/4} (15)
\]

it is obvious that the cosmological constant couples only to the conformal factor \(f \). So if we consider a theory of gravity in which \(f^4 = \frac{1}{f^4} \) is kept constant and only \(q_{ab} \) is varied, then such a model will be oblivious of direct coupling to cosmological constant. If the action (without the term \(f^4 \)) is varied, keeping \(\det f = 1 \), say, then one is lead to a unimodular theory of gravity that has the equations of motion

\[
R_{ab} (1=4) q_{ab} = (T_{ab} (1=4) q_{ab} T)
\]

with zero trace on both sides. Using the Bianchi identity, it is now easy to show that this is equivalent to the usual theory with an arbitrary cosmological constant. That is, cosmological constant arises as an undetermined integration constant in this model [38].

While this is all very interesting, we still need an extra physical principle to x the value (even the sign) of cosmological constant. One possible way of doing this, suggested by Eq. (15), is to interpret the term in the action as a Lagrange multiplier for the proper volume of the spacetime. Then it is reasonable to choose the cosmological constant such that the total proper volume of the universe is equal to a specified number. While this will lead to a cosmological constant which has the correct order of magnitude, it has an obvious problem because the proper volume of the universe is in principle unless we make the spatial sections compact and restrict the range of time integration.

Among all approaches, this one has some valuable ingredients for a solution to the cosmological constant problem because it directly eliminates the coupling between gravity and bulk cosmological constant. But it needs to be refined considerably to be made viable. We will discuss in the next section how this can be done in a completely different approach to gravity which holds promise.

III. Gravity as an Emergent Phenomenon and the Cosmological Constant

A. The necessary ingredients of a new perspective

In conventional approach to gravity, one derives the equations of motion from a Lagrangian \(L_{\text{tot}} = L_{\text{grav}} (g) + L_m (g; \) where \(L_{\text{grav}} \) is the gravitational Lagrangian dependent on the metric and its derivative and \(L_m \) is the matter Lagrangian which depends on both the metric and the matter fields, symbolically denoted as \(\phi \). This total Lagrangian is integrated over spacetime volume \(V \) with the constraint to ensure \(\frac{\delta}{\delta g_{ab}} \) to obtain the action. In such an approach, the cosmological constant can be introduced via two different routes which are conceptually different but operationally the same.

First, one may decide to take the gravitational Lagrangian to be \(L_{\text{grav}} = (2)^{1/4} (R - 2 \kappa) \) where \(\kappa \) is a parameter in the (low energy effective) action just like the Newtonian gravitational constant. This is equivalent to assuming that, even in the absence of matter, the spacetime is not a solution to the field equations. The second route through which the cosmological constant can be introduced is by shifting the matter Lagrangian by \(L_m = \frac{1}{2} m \). The equations of motion for matter are invariant under such a transformation which implies that, in the absence of gravity \(\kappa \), we cannot determine the value of \(\kappa \). But such a shift is clearly equivalent to adding a cosmological constant \(\frac{1}{2} m \) to the \(L_{\text{grav}} \). In general, what can be observed through gravitational interaction is the combination \(\kappa = m + \frac{1}{2} m \).

It is clear that there are two distinct aspects to the so-called cosmological constant problem. The first question is why \(\kappa \) is very small when expressed in natural units. Second, since \(\kappa \) could have had two separate contributions
from the gravitational and matter sectors, why does the sum remain so fine tuned? This question is particularly relevant because it is believed that our universe went through several phase transitions in the course of its evolution, each of which shifts the energy m on entum tensor of matter by $T_b^a + T_b^a + L^4$ where L is the scale characterizing the transition. For example, the GUT and Weak Interaction scales are about $L_{GUT} \sim 10^{29}$ cm, $L_{SW} \sim 10^{16}$ cm respectively which are tiny compared to L. Even if we take a more pragmatic approach, the absence of Casimir effect in the lab sets a bound that $L < O(1)$ nanometer, leading to a which is about 10^{12} times the observed value Φ. Given all these, it seems reasonable to assume that gravity is quite successful in ignoring most of the energy density in the vacuum.

The transformation $L^2 \rightarrow 2m$ is a symmetry of the matter sector (at least at scales below the scale of supersymmetry breaking; we shall ignore supersymmetry in what follows). The matter equations of motion do not care about constant m. In the conventional approach, gravity breaks this symmetry. This is the root cause of the so-called cosmological constant problem. As long as gravitational eld equations are of the form $E_{ab} = T_{ab}$ where E_{ab} is some geometric quantity (which is G_{ab} in Einstein's theory) the theory cannot be invariant under the shifts of the form $T_a^b + g_{ab}$. Since such shifts are allowed by the matter sector, it is very difficult to imagine a definitive solution to cosmological constant problem within the conventional approach to gravity.

If metric represents the gravitational degree of freedom that is varied in the action and we demand full general covariance (unlike in the unimodular theory of gravity), we cannot avoid $L_{matter} \not{\rightarrow} g$ coupling and cannot obtain the equations of motion which are invariant under the shift $T_{ab} \rightarrow T_{ab} + g_{ab}$. Clearly a new, drastically different, approach to gravity is required.

Even if we manage to obtain a theory in which gravitational action is invariant under the shift $T_{ab} \rightarrow T_{ab} + g_{ab}$, we would have only succeeded in making gravity decouple from the bulk vacuum energy. While this is considerable progress, these still remain the second issue of explaining the observed value of the cosmological constant. Once the bulk value of the cosmological constant (or vacuum energy) decouples from gravity, classical gravity becomes unable to cosmological constant; that is, the bulk classical cosmological constant can be gauged away. Any observed value of the cosmological constant has to be necessarily a quantum phenomenon arising as a relic of microscopic spacetime fluctuations. This is a nontrivial issue to address at least for two reasons: First, even the structure of matter vacuum in the presence of nontrivial metric is far from simple; for example, it is well known that the vacuum state depends on the class of observers we are considering and it is not clear whether this aspect has any fundamental significance. Second, and more importantly, we have no clue as to what is the substructure from which the spacetime arises as an excitation. The concept of gravitons is fairly useless in providing an answer to this inherently non-perturbative question.

Nevertheless, in an approach in which the surface degrees of freedom play the dominant role, rather than bulk degrees of freedom, we have a hope for obtaining the correct value for the cosmological constant. We have already seen that, in this case one obtains the correct result if the relevant degrees of freedom are scales as the surface area of a region rather than volume. Hence, to be considered plausible, any model should single out surface degrees of freedom in some suitable manner. To sum up, from the above discussion, we are looking for an approach which has the following ingredients:

- The eld equations must remain invariant under the shift $L_{matter} \rightarrow L_{matter} + m$ of the matter Lagrangian L_{matter} by a constant m. That is, we need to have some kind of gauge freedom to absorb any m. Once we have succeeded in decoupling gravity from bulk vacuum energy, we have won more than half the battle.

General covariance requires using the integration measure $\int \sqrt{\gamma} dx$ in actions. Since we do not want to restrict general covariance but at the same time do not want this coupling to metric tensor via $\int \sqrt{\gamma}$, it follows that metric cannot be the dynamical variable in our theory.

The discussion in section III A 2, especially Eq. (2), shows that the relevant degrees of freedom should be linked to surfaces in spacetime rather than bulk regions. This is important because after we eliminate the coupling between the bulk cosmological constant and gravity, we still need to address the observed value of cosmological constant. This is a relic of quantum gravitational physics and should arise from degrees of freedom that scale as the surface area.

In such a approach, one should naturally obtain a theory of gravity which is more general than Einstein's theory with the latter emerging as a low energy approximation.

We will now describe how this can be achieved in a model in which gravity arises as an emergent phenomenon like elasticity.
B. Micro-structure of the spacetime

For reasons described above, we abandon the usual picture of treating the metric as the fundamental dynamical degrees of freedom of the theory and treat it as providing a coarse-grained description of the spacetime at macroscopic scales, somewhat like the density of a solid, which has no meaning at atomic scales [44]. The unknown, microscopic degrees of freedom of spacetime (which should be analogous to the atoms in the case of solids), will play only a role when spacetime is probed at Planck scales (which would be analogous to the lattice spacing of a solid [23]).

Moreover, in the study of ordinary solids, one can distinguish between three levels of description. At the macroscopic level, we have the theory of elasticity which has a life of its own and can be developed purely phenomenologically. At the other extreme, we have a microscopic description of a solid in terms of the statistical mechanics of a lattice of atoms and their interaction. Both of these are well known; but interpolating between these two limits is the problem of dynamical description of a solid at intermediate scale which provides a crucial window into the existence of the coprincipal subgroup of solid. As Boltzmann taught us, heat is a form of motion and we will not have the thermodynamical description of matter in a continuum all the way to the atomic scale. The mere existence of a thermodynamic layer in the description is proof enough that there are microscopic degrees of freedom.

Move on from a solid to the spacetime. Again we should have three levels of description. The macroscopic level is the smooth spacetime continuum with a metric tensor $g_{ab}(x^i)$ and the equations governing the metric have the same status as the phenomological equations of elasticity. At the microscopic level, we expect a quantum description in terms of the 'atoms' of spacetime e^i and some associated degrees of freedom q_θ which are still elusive. But what is crucial is the existence of an interpolating layer of them. A phonon is unassociated with null surfaces in the spacetime. Just as a solid cannot exhibit quantum phenomena if it does not have a microscopic structure, the same is true of the horizon, for example, cannot arise without the spacetime having a microscopic structure.

In such a picture, we may expect the microscopic structure of spacetime to manifest itself only at Planck scales or near singularities of the classical theory. However, in a manner which is not fully understood, the horizons, which block information from certain classes of observers, link [45] certain aspects of microscopic physics with the bulk dynamics, just as thermodynamics can provide a link between statistical mechanics and dynamical phase transitions. The reason is probably related to the fact that horizons lead to the virtual high energy processes; it is, however, diicult to establish this claim in a mathematically rigorous way.

The above paradigm, where the gravity is an emergent phenomemon, is anchored on a fundamental relationship between the dynamics of gravity and thermodynamics of horizons [46] and the following three results are strongly supportive of the above point of view:

There is a deep connection between the dynamical equations governing the metric and the thermodynamics of horizons. An explicit explicit example was provided in ref. [45], in the case of spherically symmetric horizons in four dimensions in which it was shown that Einstein's equations can be interpreted as a thermodynamical relation

$$\frac{dS}{dM} = \frac{dE}{dV}$$

arising from virtual radial displacements of the horizon. Further work showed that this result is valid in all the cases for which explicit computation can be carried out like in the Friedmann model [46] as well as for rotating and time dependent horizons in Einstein's theory [49].

The Hilbert Lagrangian has the structure $L_{R} = R - \Lambda / \theta^2 \epsilon g$. In the usual approach the surface term arising from $L_{R} / \theta^2 \epsilon g$ has to be ignored or canceled to get Einstein's equations from $L_{bulk} / (\theta^2 \epsilon g)$. But there is a peculiar (unexplained) relationship between L_{bulk} and L_{surf}:

$$p = g_{\epsilon} \frac{\partial}{\partial g_{\epsilon}} g_{\epsilon} - \frac{\partial p}{\partial g_{\epsilon}}$$

(17)

This shows that the gravitational action is holographic, with the same information being coded in both the bulk and surface terms and one of them is sufficient. One can indeed obtain Einstein's equations from a functional which uses only the surface term and the virtual displacement of the horizon [42,50]. Since the surface terms have the thermodynamic interpretation as the entropy of the horizon, this establishes a direct connection between spacetime dynamics and horizon thermodynamics.

Most importantly, recent work has shown that all the above results extend far beyond Einstein's theory. The connection between field equations and the thermodynamic relation $dS = dE + dV$ is not restricted to Einstein's theory alone, but is in fact true for the case of the generalized, higher derivative Lanczos-Lovelock gravitational theory in D dimensions as well [51, 52]. The same is true for the holographic structure of the action functional: the Lanczos-Lovelock action has the same structure and again the entropy of the horizon is related to the surface term of the action. These results show that the thermodynamic description is
far more general than just Einstein's theory and occurs in a wide class of theories in which the metric determines the structure of the light cones and null surfaces exist blocking the information.

The conventional approach to gravity fails to provide any clue on these results just as Newtonian continuum mechanics | without corpuscular, discrete, substructure for matter | cannot explain them od dynam ic phenomena. A natural explanation for these results requires a different approach to spacetime dynamics which I will now outline.

C. Gravity from normalized vector fields

Suppose there are certain microscopic | as yet unknown | degrees of freedom q_n, analogous to the atom's in the case of solids, described by some microscopic action functional $A_{\text{micro}}[q_n]$. In the case of a solid, the relevant long-wavelength elastic dynamics is captured by the displacement vector \mathbf{e}_d which occurs in the equation $x^a \equiv x^a(x)$. In the case of spacetime, we no longer want to use metric as a dynamical variable; so we need to introduce some other degrees of freedom, analogous to x^a in the case of elasticity, and an effective action functional based on it. Normally, varying an action functional with respect to certain degrees of freedom will lead to equations of motion determining those degrees of freedom. But we now make an unusual demand that varying our action principle with respect to some (non-metric) degrees of freedom should lead to an equation of motion determining the background metric which remains non-dynamical.

Based on the role expected to be played by surfaces in spacetime, we shall take the relevant degrees of freedom to be the normalized vector fields $n^a(x)$ in the spacetime \mathbb{R}^4 with a norm which is fixed at every event but might vary from event to event: (i.e., $n^a_n(x)$ (x) with X being a fixed function; one can choose the norm to be 0; 1 at each event by our choice of the vector fields but its nature can vary from event to event.). That is, just as the displacement vector \mathbf{e}_d captures the macro-description of a solid, the normalized vectors (e.g., norm ali ed to surfaces) capture the essential macro-description of gravity in terms of an effective action $S[n^a]$. More formally, we expect the coarse-graining of microscopic degrees of freedom to lead to an effective action in the long wavelength limit:

$$X \rightarrow \exp \left(A_{\text{micro}}[q_n] \right) \exp \left(S[n^a] \right)$$

To proceed further we need to determine the nature of $S[n^a]$. The general form of $S[n^a]$ in such an effective description, at the quadratic order, will be:

$$S[n^a] = \int d^n x \sqrt{-g} 4 P_{ab}^{cd} r c n^a r d n^b + T_{ab} n^a n^b ;$$

where P_{ab}^{cd} and T_{ab} are two tensors and the signs, notation etc. are chosen with hindsight. We will see that T_{ab} can be identified with the matter stress-tensor. The full action for gravity plus matter will be taken to be $S_{\text{tot}} = S[n^a] + S_{\text{matter}}$ with:

$$S_{\text{tot}} = \int d^n x \sqrt{-g} 4 P_{ab}^{cd} r c n^a r d n^b + T_{ab} n^a n^b + \int d^n x \sqrt{-g} g_{\text{matter}}$$

with an important extra prescription: Since the gravitational sector is related to spacetime microstructure, we must first vary the n^a and then vary the matter degrees of freedom. In the language of path integrals, we should integrate over all gravitational degrees of freedom in n^a first and use the resulting action for the matter sector. We shall comment more fully on this point at the end of this section.

We next address the crucial conceptual difference between the dynamics in gravity and elasticity, say, which we mentioned earlier. In the case of solids, one will write a similar functional [say, for entropy or free energy] in terms of the displacement vector \mathbf{e}_d and extremizing it will lead to an equation which determines \mathbf{e}_d. In the case of spacetime, we expect the variational principle to hold for all vectors n^a with constant norm and lead to a condition on the background metric. Obviously, the action functional in Eq. (18) must be rather special to accomplish this and one needs to impose two restrictions on the coefficients P_{ab}^{cd} and T_{ab} to achieve this. First, the tensor P_{ab}^{cd} should have the algebraic symmetries similar to the Riemann tensor R_{abcd} of the D-dimensional spacetime. Second, we need:

$$r_a P^{abcd} = 0 = r_a T^{ab}$$

In a com plete theory, the explicit form of P^{abcd} will be determined by the long wavelength limit of the microscopic theory just as the elastic constants can | in principle | be determined from the microscopic theory of the lattice.
In the absence of such a theory, we can take a cue from the renormalization group theory and expand \(p^{abcd} \) in powers of derivatives of the metric \([50, 54]\). That is, we expect,

\[
p^{abcd} (g_{ij} R_{jk} R_{kl}) = c_1 p^{abcd} (g_{ij}) + c_2 p^{abcd} (g_{ij}, g_{kl}) + \cdots
\]

where \(c_1, c_2 \); \(c_3, c_4 \); and \(c_5 \) are coupling constants and the successive terms progressively probe smaller and smaller scales. The lowest order term must clearly depend only on the metric with no derivatives. The next term depends (in addition to the metric) linearly on curvature tensor and the next one will be quadratic in curvature etc. It can be shown that the \(m \)-th order term which satisfies our constraints is unique and is given by

\[
\frac{p^{abcd} (g_{ij} R_{jk} R_{kl})}{\Theta R_{cd}} = \frac{\Theta L_m^{(D)}}{\Theta R_{cd}}
\]

where \(c_m \) is the alternating tensor and the last equality shows that it can be expressed as a derivative of the \(m \)-th order Lanczos-Lovelock term and we assume \(D = 2K + 1 \). (See Appendix A for a brief description of Lanczos-Lovelock gravity.) The lowest order term (which leads to Einstein’s theory) is

\[
P^{(1)ab cd} = \frac{1}{16} \left(\frac{1}{2} \right) a_i b_i = \frac{1}{32} \left(\begin{array}{cccc} a & b & c & d \\ a & b & d & c \\ c & d & a & b \\ d & c & b & a \end{array} \right);
\]

while the first order term (which gives the Gauss-Bonnet correction) is:

\[
P^{(2)ab cd} = \frac{1}{16} \left(\frac{1}{2} \right) a_i b_i = \frac{1}{8} \left(\text{symmetric} \right);
\]

where the fourth order alternating tensor is

\[
\frac{a_i b_i a_i b_i a_i b_i}{\left(a_i b_i a_i b_i a_i b_i \right)} = \frac{1}{(4)!} c_i \cdot c_i \cdot c_i \cdot c_i \cdot \left(b_i b_i b_i b_i \right);
\]

The alternating tensors are totally antisymmetric in both sets of indices and take values \(1, 1 \) and \(0 \). They can be written in any dimension as an appropriate contraction of the Levi-Civita tensor density with itself. All higher order terms are obtained in a similar manner (see Appendix A).

In our paradigm based on Eq. (15), the field equations for gravity arises from extremizing \(S \) with respect to variations of the vector field \(n^a \), with the constraint \(n^a n_a = 0 \), and demanding that the resulting condition holds for all normal vector fields. Varying the normal vector field \(n^a \) after adding a Lagrange multiplier function \((\lambda) \) for imposing the constraint \(n^a n_a = 0 \), we get

\[
S = \int \frac{Z}{\Theta} d^D x \frac{\partial}{\partial g} 4 P^{ab cd} (r c n^a) r_d n^b \quad \text{or} \quad T_{ab} n^a n^b \quad \text{(27)}
\]

where we have used the symmetries of \(P^{ab cd} \) and \(T_{ab} \). An integration by parts and the condition \(r_d P^{ab cd} = 0 \), leads to

\[
S = \int \frac{Z}{\Theta} d^D x \frac{\partial}{\partial g} 4 P^{ab cd} (r c n^a) \quad (T_{ab} + g_{ab}) n^a n^b + \int \frac{Z}{\Theta} d^D x \frac{\partial}{\partial g} k_d P^{ab cd} (r c n^a) \quad n^b ;
\]

where \(k^a \) is the D-vector field normal to the boundary \(\partial V \) and \(h \) is the determinant of the intrinsic metric on \(\partial V \). As usual, in order for the variational principle to be well defined, we require that the variation \(n^a \) of the vector field should vanish on the boundary. The second term in Eq. (28) therefore vanishes, and the condition that \(S(n^a) \) be an extremum for arbitrary variations of \(n^a \) then becomes

\[
2 P^{ab cd} (r c n^a) r_d n^b \quad (T_{ab} + g_{ab}) n^a = 0 ;
\]
where we used the antisymmetry of P_{ab}^{cd} in its upper two indices to write the first term. The definition of the Riemann tensor in terms of the commutator of covariant derivatives reduces the above expression to

$$2P_{ab}^{ijk} R_{ijkl} T_b^a + \frac{a}{b} n_a = 0;$$ \hspace{1cm} (31)$$

and we see that the equations of motion do not contain derivatives with respect to n^a which is, of course, the crucial point. This peculiar feature arose because of the symmetry requirements we imposed on the tensor P_{ab}^{cd}. We further require that the condition in Eq. (31) hold for arbitrary vector fields n^a. A simple argument based on local Lorentz invariance then implies that

$$2P_{ab}^{ijk} R_{ijkl} T_b^a = \frac{a}{b};$$ \hspace{1cm} (32)$$

The scalar is arbitrary so far and we will now show how it can be determined in the physically interesting cases. To see what is involved, consider the lowest order approximation (viz. Einstein gravity) in which we take P_{ab}^{cd} to be given by Eq. (25) so that the above equation reduces to:

$$\frac{1}{b} R_{ab} T_b^a = \frac{a}{b};$$ \hspace{1cm} (33)$$

where R_{ab} can be an arbitrary function of the metric. Writing this equation as $(G_b^a = 8 T_b^a) = Q(g_a^b)$ with $Q = 8(1 = 2)R$ and using $e_0 G_b^a = 0; R_a T_b^a = 0$ we get $\theta_a Q = \theta_a [8 (1 = 2)R] = 0$; so that Q is an undetermined integration constant, say, and must have the form $8 = (1 = 2)R$. The resulting equation is

$$R_{ab} (1 = 2)R_{ab} = 8 T_b^a + \frac{a}{b};$$ \hspace{1cm} (34)$$

which leads to Einstein's theory if we identify T_{ab} as the matter energy momentum tensor using the standard Newtonian limit of the theory. Clearly, the cosmological constant appears as an integration constant. The mathematical similarity with the unimodular gravity is apparent; keeping the function $n_a = (x)$ fixed while varying n_b is equivalent to keeping $\gamma = \gamma(x)$ fixed in unimodular gravity. Taking the trace of Eq. (33) will lead, for example, to Eq. (16) etc. But the conceptual structure is quite different and we maintain full general covariance.

The crucial feature of the coupling between matter and gravity through $T_{ab} n^a n^b$ is that under the shift $T_{ab} + \delta_{ab}$ the a-term in the action in Eq. (13) decouples from n^a and becomes irrelevant:

$$Z \int \sqrt{g} \mathrm{d}^4x T_{ab} n^a n^b + Z \int \sqrt{g} \mathrm{d}^4x T_{ab} n^a n^b + Z \int \sqrt{g} \mathrm{d}^4x T_{ab} n^a n^b + Z \int \sqrt{g} \mathrm{d}^4x T_{ab} n^a n^b.$$ \hspace{1cm} (35)$$

Since n_b is not varied when n_a is varied there is no coupling between ϕ and the dynamical variables n_a; the theory is invariant under the shift $T_{ab} + \delta_{ab}$. We see that the condition $n_a n^a = \text{constant}$ on the dynamical variables have led to a gauge freedom which allows an arbitrary integration constant to appear in the theory which can absorb the bulk cosmological constant. This was our key objective.

The same procedure works with the more general structure in the family of theories starting with Einstein's GR, Gauss-Bonnet gravity etc and in the general case one obtains the eik equations:

$$16 P_{ab}^{ijk} R_{ijkl} T_b^a = \frac{a}{b};$$ \hspace{1cm} (36)$$

These are identical to the eik equations for Lanczos-Lovelock gravity with a cosmological constant arising as an undetermined integration constant. To the lowest order when we use Eq. (25) for P_{ab}^{ijk}, the Eq. (36) reproduces Einstein's theory. More generally, we get Einstein's equations with higher order corrections which are to be interpreted as emerging from the derivative expansion of the action functional as we probe smaller and smaller scales. Remarkably enough, we can derive not only Einstein's theory but even Lanczos-Lovelock theory from a dual description in terms of the normed algebras vectors in spacetime without varying g_{ab} in an action functional!

To gain a bit more insight into what is going on, let us consider the on-shell value of the action functional. Manipulating the covariant derivatives in Eq. (15) and using the eik equation Eq. (36) we can write

$$S_{\text{tot. on-shell}} = S[n] + S_{\text{mat}} = \int \sqrt{g} \mathrm{d}^4x P_{ab}^{cd} (r_i c^a) n^b + 4P_{ab}^{cd} (r_i c^a) n^b \int \sqrt{g} \mathrm{d}^4x L_{\text{matter}}^{(D)} + \frac{a}{b} n_a + \int \sqrt{g} \mathrm{d}^4x P_{ab}^{cd} (r_i c^a) n^b + S_{\text{mat}}$$ \hspace{1cm} (37)$$
where η^a. We see that, on shell, the only dependence on n_a is through a surface term. Since the metric tensor is not dynamical, second term is irrelevant and we can now vary the matter Lagrangian with respect to matter variables to determine the behaviour of matter in a given curved spacetime, which, of course, is sourced by the matter stress tensor through Eq. (38) obtained earlier.

The key new feature, which survives and depends on our original variables n_a is the surface term which we shall now explore further. Explicitly, this surface term is given by:

$$S_{\text{in shell}} = \frac{1}{8} d^9 x \frac{P_{\text{in}}}{\eta_a} n^a K + a^i$$

(38)

where we have manipulated a few indices using the symmetries of P_{abc}. The expression in the second line, after the arrow, is the result for general relativity. Note that the integrand has the familiar structure of $k_i (n^i K + a^i)$ where $a^i = n^i P_{corn}$ is the acceleration associated with the vector $\text{eld} n^a$ and $K = \eta_a n^b$ is the trace of extrinsic curvature in the standard context. If we restrict to a series of surfaces foliating the spacetime with n_1 representing their unit nom a and take the boundary to be one of them, we can identify k_i with n_i; then $a_i n^i = 0$ and the surface term is just

$$S_{\text{in shell}} = \frac{1}{8} d^9 x \frac{P_{\text{in}}}{\eta_K}$$

(39)

which is the York-Gibbons-Hawking boundary term in general relativity if we normalize to 1 depending on the nature of the surface.

It is now obvious that this term in the on-shell action will lead to the entropy of the horizons (which will be 1/4 per unit transverse area in the case of general relativity). More formally, we treat the horizon surface as a limit of a sequence of timelike surfaces; for example, in the case of Schwarzschild metric we consider surfaces with $r = 2M + \epsilon > 0$. In fact, the result is far more general. Even in the case of a more general P_{cd} it can be shown that the on-shell value of the action reduces to [54] the entropy of the horizons. The general expression is:

$$S_{\text{in}} = \frac{\chi}{4} m c_\mu \int dm \frac{p_{\text{in}}}{h_{\mu}} p_{\text{in}} + \frac{1}{4} [\text{Area}]_{\mu} + \text{corrections}$$

where χ denotes the transverse coordinates on the horizon H, m is the determinant of the intrinsic metric on H and we have restored a sum over m thereby giving the result for the most general Lanczos-Lovelock case obtained as a sum of individual Lanczos-Lovelock lagrangians. The expression in Eq. (40) is precisely the entropy of a general Killing horizon in Lanczos-Lovelock gravity based on the general prescription given by Wald and others [54] and computed by several authors. Further, in any spacetime, if we take a local Rindler frame around any event we will obtain an entropy for the locally de ned Rindler horizon. In the case of GR, this entropy per unit transverse area is just 1/4 as expected.

This result shows that, in the so-called limit in which the action can possibly be related to entropy, we reproduce the conventional entropy which scales as the area in Einstein’s theory. Since the entropy counts the relevant degrees of freedom, this shows that the degrees of freedom which survives and contributes in the long wavelength limit scales as the area. The quantum fluctuations in these degrees of freedom can then lead to the correct, observed, value of the cosmological constant. The last aspect can be made more quantitative and we will briefly describe in the next section how this can be done.

Our action principle is somewhat peculiar compared to the usual action principles in the sense that we have varied n_a and demand that the resulting equations hold for all vector fields of constant norm. Our action principle actually stands for an in nite number of action principles, one for each vector field of constant norm! This class of all n^a allows an extensive, coarse grained, description of some (unknown) aspects of spacetime microphysics. This is why we need to rst vary n_a and obtain the equations constraining the background metric and then use the action in Eq. (40) to obtain the equations of motion for matter. (If, instead we vary matter termsrst the coupling $T_{\mu \nu} n^\mu n^\nu$ will couple to n^a which will remain undetermined since we have no equation for n_a. In other cases, $T_{\mu \nu} n^\mu = 0$ will take care of the dynamical equations for matter and these issues are irrelevant [53].

At this stage, it is not possible to proceed further and relate n^a to some microscopic degrees of freedom q^a. This issue is conceptually similar to asking one to identify the atomic degrees of freedom, given the description of an elastic solid in terms of a displacement field q^a, which we know is impossible. However, the same analogy tells us that the relevant degree of freedom in the long wavelength limit (viz. 3 orb n) can be completely different from the microscopic degrees of freedom and it is best to proceed phenomenologically.

The description of gravity using the action principle given above provides a natural back drop for gauging away the bulk value of the cosmological constant since it decouples from the dynamical degrees of freedom in the theory. Once the bulk term is eliminated, what is observable through gravitational effects, in the correct theory of quantum gravity, should be the fluctuations in the vacuum energy. These fluctuations will be non-zero if the universe has a de Sitter horizon which provides a comoving volume. In this paradigm the vacuum structure can readjust to gauge away the bulk energy density \(\rho \) while quantum fluctuations can generate the observed value \(\rho_c \).

The role of energy fluctuations contributing to gravity also arises more formally when we study the question of detecting the energy density using gravitational fields as a probe. Recall that an unruh-de Sitter detector with a local coupling \(L = M () [x] () \) to the field actually responds to \(\delta \hbar j (x) (y) \delta j \) rather than to the field itself. Similarly, one can use the gravitational field as a natural detector of energy momentum tensor \(T_{ab} \) with the standard coupling \(L = \hbar_{ab} T^{ab} \). Such a model was analyzed in detail in ref. [5] and it was shown that the metric gravitational field responds to the two point function \(\delta \hbar j (x) \delta j (y) \) \(\delta \). In fact, it is essentially these fluctuations in the energy density which is computed in the inflationary models [6] as the source for gravitational fields, as stressed in ref. [7]. All these suggest treating the energy fluctuations as the physical quantity "detected" by gravity, when one incorporates quantum effects.

If the cosmological constant arises due to the fluctuations in the energy density of the vacuum, then one needs to understand the structure of the quantum gravitational vacuum at cosmological scales. Quantum theory, especially the paradigm of renormalization group has taught us that the concept of the vacuum state depends on the scale at which it is probed. The vacuum state which we use to study the lattice vibrations in a solid, say, is not the same as vacuum state of the QED and it is not appropriate to ask questions about the vacuum without specifying the scale. If the space-time has a cosmological horizon which blocks information, the natural scale is provided by the size of the horizon, \(L \), and we should use observables defined within the accessible region. The operator \(H (x) \), corresponding to the total energy inside a region bounded by a cosmological horizon, will exhibit fluctuations \(E \) since vacuum state is not an eigenstate of this operator. The corresponding fluctuations in the energy density, \((E) = L^3 \), will now depend on both the ultraviolet cut-off \(L \) as well as \(L \). To obtain \((E) = L^3 \), which scales as \((L_c L) \), we need to have \((E) \propto L^4 \); that is, the square of the energy fluctuations should scale as the surface area of the bounding surface which is provided by the cosmological horizon. Remarkably enough, a rigorous calculation [32] of the dispersion in the energy shows that for \(L \), the result indeed has the scaling

\[
(E)^2 = \frac{L^2}{L_p^2}
\]

where the constant \(c_1 \), depends on the manner in which ultra violet cut-off is imposed. Similar calculations have been done (with a completely different motivation, in the context of entanglement entropy) by several people and it is known that the area scaling found in Eq. (41) is proportional to \(L^2 \), a generic feature [53]. For a simple exponential UV cut-off, \(c_1 = (1/30^2) \) but cannot be computed reliably without knowing the full theory. We thus find that the fluctuations in the energy density of the vacuum in a sphere of radius \(L \) is given by

\[
\frac{E}{L^3} = \frac{L^2}{L_p^2} \frac{2}{3} \frac{H^2}{G}
\]

The numerical constant will depend on \(c_1 \) as well as the precise nature of infrared cut-off radius; but it is a fact of life that a fluctuation of magnitude \(\frac{E}{L^3} \) \(L^2 G \) will exist in the energy density inside a sphere of radius \(L \). On the other hand, since observations suggest that there is a vacuum of 30\(\times 10^2 \) m at minima to identify the two. Our approach explains why there is a surviving cosmological constant which satisfies \(\rho > \rho_c \).

We stress that the compton energy fluctuations is completely meaningless in the conventional models of gravity in which the metric couples to the bulk energy density. Once a UV cut-off at Planck scale is imposed, one will always get a bulk contribution \(\rho \) which will not change the energy density. It is only because we have a way of decoupling the bulk term from the dynamical equations that we have a right to look at the subdominant term \(\rho \) \((L_p = L)^2 \). Approaches in which the subdominant term is introduced by an ad hoc manner are technically avoided since the bulk term cannot be ignored in these usual approaches to gravity. Getting the correct value of the cosmological constant from the energy fluctuations is not as difficult as understanding why the bulk value (which is larger by \(10^{120} \)) can be ignored. Our approach provides a natural back drop for ignoring the bulk term | as a bonus | we get the right value for the cosmological constant from the fluctuations. It is small because it is a purely quantum effect.
IV. CONCLUSIONS

It is obvious that the existence of a component with negative pressure constitutes a major challenge in theoretical physics. The simplest choice for this component is the cosmological constant; other models based on scalar fields as well as those based on branes etc., which I have not discussed, do not alleviate the difficulties faced by cosmological constant and in fact make them worse. The key point I want to stress is that the cosmological constant is most likely to be a low energy relic of a quantum gravitational sector or principle and its explanation will require a radical shift in our current paradigm.

I have tried to advertise a new approach to gravity as a possible broad paradigm to understand the cosmological constant. On the negative side, there are some very obvious difficulties with the ideas that I have outlined. The most serious objections are the following:

The normalised vectors \mathbf{a} were introduced in a totally ad hoc manner and do not relate to anything we know about gravity and hence the motivation for the condition $n^i \eta = \text{constant}$ is unclear. The unusual nature of this variable and the action $S[\eta]$ makes it difficult to construct a quantum theory via path integrals.

While we have fairly attractive scheme to eliminate the bulk cosmological constant term, the arguments given in the last section to obtain the observed value is, at best, tentative. The area scaling for surviving degrees of freedom emerges naturally but it is unclear how to connect up the energy fluctuations in these degrees of freedom to the source of gravity.

Against this, one should compare the attractive features of the approach in a broader context. The conceptual basis for this approach rests on the following logical ingredients.

1. It is impossible to solve the cosmological constant problem unless the gravitational sector of the theory is invariant under the shift $T_{ab} = \lambda \mathbf{g}_{ab}$. Any approach which does not address this issue cannot provide a comprehensive solution to the cosmological constant problem.

2. General covariance requires us to use the measure $\rho \mathbf{g}^{ab} \mathbf{x}^{D}$ in D dimensions in the action. This will couple the metric (through its determinant) to the matter sector. Hence, as long as we insist on metric as the fundamental variable describing gravity, one cannot address the issue in (1) above. So we need to introduce some other degrees of freedom and an effective action which, however, is capable of constraining the background metric.

3. We found an action principle, based on the normalised vector fields in spacetime, that satisfies all these criteria mentioned above. The new action does not couple to the bulk energy density and maintains invariance under the shift $T_{ab} = \lambda \mathbf{g}_{ab}$. What is more, the on-shell value of the action is related to the entropy of horizons showing the relevant degrees of freedom scales as the area of the bounding surface.

4. Since our formalism ensures that the bulk energy density does not contribute to gravity and only because of that it makes sense to compute the next order correction due to fluctuations in the energy density. This is impossible to do rigorously with the machinery available but a plausible case can be made as how this will lead to the correct, observed value of the cosmological constant.

5. In the long wavelength limit, the relevant physics is captured in terms of an effective theory related to the degrees of freedom contained in the fluctuations of the normalised vectors. The resulting theory is far more general than Einstein gravity since the thermodynamic interpretations should transcend classical considerations and incorporate some of the microscopic corrections. Einstein's equations provide the lowest order description of the dynamics and calculable, higher order, corrections arise as we probe smaller scales. The mechanism for ignoring the bulk cosmological constant is likely to survive quantum gravitational corrections which are likely to bring in additional, higher derivative, terms to the action.

Taking stock, I strongly believe there is no way out of the points mentioned in (1) and (2) above and a tenable description of gravity must be based on variables other than the metric. Such a theory is very likely to have most of the ingredients I have outlined here.

V. ACKNOWLEDGEMENTS

I thank A. Paranjape and K. Subramanian for useful comments on the draft of the review.
The Lanczos-Lovelock Lagrangian is a specific example from a general class of Lagrangians which describes a (possibly semi-classical) theory of gravity and are given by

$$L = Q_{abcd} R^{abcd};$$ \hspace{1cm} (43)

where Q_{abcd} is the most general fourth rank tensor sharing the algebraic symmetry of the Riemann tensor R^{abcd} and further satisfying the criterion $\varepsilon Q_{abcd} = 0$. Several general properties of this class of Lagrangians are discussed in Ref. [53]). It can be shown that (see e.g., [53]) the equations of motion for a general theory of gravity derived from the Lagrangian in Eq. (43) using the standard variational principle with g^{ab} as the dynamical variables, are given by

$$E_{ab} = \frac{1}{2} T_{ab} ; \quad E_{ab} = \frac{1}{\sqrt{g}} \frac{\partial}{\partial g^{ab}} \left(\frac{1}{\sqrt{g}} g^{ab} R \right) - \frac{1}{2} \sqrt{g} P_{amnb} ;$$ \hspace{1cm} (44)

Here T_{ab} is the energy-momentum tensor for the matter fields. The tensor P_{amnb} is defined through $P_{abcd} \equiv \varepsilon Q_{abcd}$ ($\partial L = \partial R^{abcd}$). The partial derivatives are taken treating g^{ab}, R^{abcd} and P_{abcd} as independent quantities.

The d-dimensional Lanczos-Lovelock Lagrangian is given by [53] a polynomial in the curvature tensor:

$$L^{(d)} = \sum_{m=1}^{\infty} c_m L_m^{(d)} ; \quad L_m^{(d)} = \frac{1}{16} \sum_{a_1 \ldots a_m} R_{a_1 a_2} R_{a_2 a_3} \ldots R_{a_m a_1} ;$$ \hspace{1cm} (45)

where the c_m are arbitrary constants and $L_m^{(d)}$ is the m-th order Lanczos-Lovelock term. Here the generalised alternating tensor is the natural extension of the one defined in Eq. (27) for $2m$ indices and we assume $d = 2k + 1$. The m-th order Lanczos-Lovelock term $L_m^{(d)}$ given in Eq. (45) is a homogeneous function of the Riemann tensor of degree m. For each such term, the tensor $Q_{abcd}^{(m)}$ defined in Eq. (43) carries a label m and becomes:

$$Q_{ab}^{(m)} = \frac{1}{16} \sum_{a_1 \ldots a_m} R_{a_1 a_2} R_{a_2 a_3} \ldots R_{a_m a_1} ;$$ \hspace{1cm} (46)

The full tensor $Q_{abcd}^{(m)}$ is a linear combination of the $Q_{ab}^{(m)}$ with the coefficients c_m. Einstein's GR is a special case of Lanczos-Lovelock gravity in which only the coefficient c_1 is non-zero. Since the tensors $Q_{abcd}^{(m)}$ appear linearly in the Lanczos-Lovelock Lagrangian and consequently in all other tensors constructed from it, for most applications it is sufficient to concentrate on the case where a single coefficient c_m is non-zero. All the results that follow can be easily extended to the case where more than one of the c_m are non-zero, by taking suitable linear combinations of the tensors involved.

For the m-th order Lanczos-Lovelock Lagrangian $L_m^{(d)}$, since P_{abcd} is divergence-free, the expression for the tensor E_{ab} in Eq. (44) becomes:

$$E_{ab} = \frac{\partial L_m^{(d)}}{\partial g^{ab}} - \frac{1}{2} \sqrt{g} L_m^{(d)} ;$$ \hspace{1cm} (47)

where we have used the relation $\varepsilon (g^D \partial g^{ab}) = \varepsilon g^{ab}$. The first term in the expression for E_{ab} in Eq. (47) can be simplified to give:

$$\frac{\partial L_m^{(d)}}{\partial g^{ab}} = m Q_{a}^{ijk} R_{bijk} = E_{a}^{ijk} R_{bijk} ;$$ \hspace{1cm} (48)

where the expressions in Eq. (48) can be verified by direct computation, or by noting that $L_m^{(d)}$ is a homogeneous function of the Riemann tensor R^{abcd} of degree m. To summarise, the Lanczos-Lovelock field equations are given by:

$$16 P_{b}^{ijk} R_{a}^{ijk} \frac{1}{2} L_m^{(d)} = 8 T_{b}^{d} ;$$ \hspace{1cm} (49)

where we have included a possible cosmological constant in the definition of T_{b}^{d}. Taking the trace of this equation, we find that $L_m^{(d)} = (2m + 1) T$. In other words, the on-shell value of the Lagrangian is proportional to the trace
of the stress tensor in all Lanczos-Lovelock theories, just like in GR...

C. F. R. Ellis and M. S. M. and, Class Q. Grav. 8, 667 (1991); also see E. E. Schumack, E. W. Mielke, [Phys Rev D 50, 4794 (1994)].

Incidentally, L_0 is m ms across space; it is also pretty close to the length scale associated with a neutrino mass of 10^{-2} eV another intriguing coincidence?!.

