First Results from the XENON10 Dark Matter Experiment at the Gran Sasso National Laboratory

(XENON Collaboration)

1 Department of Physics, University of Florida, Gainesville, FL 32611, USA
2 Department of Physics, RWTH Aachen University, Aachen, 52074, Germany
3 INFN - Laboratori Nazionali del Gran Sasso, Assergi, 67010, Italy
4 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
5 Department of Physics, Case Western Reserve University, Cleveland, OH 44106, USA
6 Department of Physics, University of Coimbra, R. Larga, 3004-516, Coimbra, Portugal
7 Department of Physics, Princeton University, Princeton, NJ 08540, USA
8 Department of Physics, Brown University, Providence, RI 02912, USA
9 Department of Physics, Rice University, Houston, TX, 77251, USA
10 Department of Physics, Yale University, New Haven, CT 06511, USA
11 INGRID - National Institute Neutrino Gran Sasso, Assergi, 67010, Italy
12 Department of Physics, University of Coimbra, R. Larga, 3004-516, Coimbra, Portugal
13 Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
14 Deparment of Physics, Princeton University, Princeton, NJ 08540, USA
15 Deparment of Physics, Brown University, Providence, RI 02912, USA
16 Department of Physics, Yale University, New Haven, CT 06511, USA

(Dated: April 6, 2013)

The XENON10 experiment at the Gran Sasso National Laboratory uses a 15 kg xenon dualphase time projection chamber (XeTPC) to search for dark matter weakly interacting massive particles (WIMPs). The detector measures simultaneously the scintillation and the ionization produced by radiation in pure liquid xenon, to discriminate signal from background down to 4.5 keV nuclear recoil energy. A blind analysis of 58.6 live days of data, acquired between October 6, 2006 and February 14, 2007, and using a fiducial mass of 5.4 kg, excludes previously unexplored parameter space, setting a new 90% C.L. upper limit for the WIMP-nucleon spin-independent cross-section of 8.8 × 10^-46 cm^2 for a WIMP mass of 100 GeV/c^2, and 45 × 10^-44 cm^2 for a WIMP mass of 30 GeV/c^2. This result further constrains predictions of supersymmetric models.

PACS numbers: 95.35.+d, 29.40.Mc, 95.35.Nj

The well-established evidence for non-baryonic dark matter is a striking motivation for physics beyond the Standard Model of particle physics. Weakly interacting massive particles (WIMPs) as dark matter candidates arise naturally in various theories, such as Supersymmetry, Extra Dimensions, and Little Higgs models. Since by hypothesis the WIMPs interact through the weak interaction and can efficiently transfer kinetic energy by elastically scattering from atomic nuclei, the WIMP model can be tested by searching for nuclear recoils in a sensitive, low-background detector. Predicted event rates are less than 0.1 events/kg/day, with energy depositions of the order of 10 keV.

XENON10 is the first 3-D position sensitive TPC developed within XENON. It searches for dark matter in liquid xenon (LXe). Dual phase operation enables the simultaneous measurement of direct scintillation in the liquid and of ionization, via proportional scintillation in the gas. The ratio of the two signals is different for nuclear (from WIMP and neutrons) and electronic (from gamma and beta background) recoil events, providing event-by-event discrimination down to a few keV nuclear recoil energy. In March 2006 the detector was deployed underground at the Gran Sasso National Laboratory (LNGS), where it has been in continuous operation for a period of about 10 months, with excellent stability and performance. The TPC active volume is defined by a thin cylinder of 20 cm inner diameter and 15 cm height. The TPC is equipped with an active UV light veto system and electrical insulator. Four stainless steel (SS) mesh electrodes, two in the liquid and two in the gas, with appropriate bias voltages, define the electric drift region. Two arrays of 25 cm square, compact metal channel photomultiplier tubes (PMTs) (Hamamatsu R5202-06-A) detect both the direct (S1) and proportional (S2) scintillation light. The bottom array of 41 PMTs is in the liquid, 15 cm below the cathode mesh, to efficiently collect the majority of the direct light which is preferentially reflected downwards at the liquid-gas interface. The top
array of 48 PM Ts, in the gas, detects the majority of the proportional scintillation light. From the distribution of the PM T hits on the top array, the event location in XY can be reconstructed with a position resolution of a few m illimeter. The third coordinate is inferred from the electron drift time measured across 15 cm of LXe, with better than 1 m illimeter resolution. The PM Ts are digitized at 105 M Hz with the trigger provided by the S2 sum of 34 center PM Ts of the top array.

The TPC is enclosed in a SS vessel, insulated by a vacuum cryostat, a 12 m ade of SS. Reliable and stable cryogenics is provided by a pulse tube refrigerator (PTR) with sufficient cooling power to liquefy the Xe gas and maintain the liquid temperature at -93 °C. The Xe gas used for the XENON10 experiment was com mercially procured with a guaranteed Kr level below 10 part per billion (ppb). The XENON10 detector is surrounded by a shield made of 20 cm-thick polyethy lene and 20 cm-thick lead, to reduce background from external neutrons and gamma rays. At the Gran Sasso depth of 3100 m eters, the surface m uon ux is reduced by a factor of 10^6, such that a m uon veto was not necessary for the sensitivity reach of XENON10.

We report here the analysis of 58.6 live- days of WIMP search data taken with the XENON10 detector at Gran Sasso during the period between October 6, 2006 and February 14, 2007. The analysis was performed "blind", i.e., the events in and near the signal region were not analyzed until the data acceptance window and event cuts were tested and defined, using low energy electron and nuclear recoils from calibration data, as well as 40 live- days of "un-asked" WIMP search data. In this letter we interpret the data in terms of spin-independent WIMP-nucleon scattering cross-section. A nother letter will focus on the spin-dependent interpretation of the same data. More details on the analysis and the estimation of backgrounds will be reported elsewhere [17].

A total of 10^4 electron recoil events, in the a priori set energy range of interest (4.5 - 26.9 keV nuclear recoil equivalent energy) for the WIMP search, were collected with 137Cs source. The number of events in the fiducial volume is about 2400, 1.3 times the statistics of the WIMP search data. The detector's response to nuclear recoils was obtained from 12 hours irradiation in-situ, using a 200 n/s AmBe source.

The S1 signal associated with each triggered event is searched for in the o -line analysis. By requiring a coincident signal in at least two PM Ts, the e ciency of the S1 signal search algorithm is larger than 99%, above a threshold of 4.4 photoelectrons (pe), or 4.5 keV nuclear recoil equivalent energy. The S2 hard阈 trigger threshold is 100 pe, corresponding to about 4 electrons extracted from the liquid, which is the expected charge from an event with less than 1 keV nuclear recoil equivalent energy [14]. The S2 trigger efficiency is about 99% for 4.5 keV nuclear recoils. Basic-quality cuts, tuned on calibration data, are used to remove uninteresting events (e.g., multiple scatter and m issing S2 events), with a cut acceptance for single-scatter events close to 99%.

Energy calibration was obtained with an external 57Co gamma ray source and with gamma rays from m etastable Xe isotopes produced by neutron activation of a 450 g Xe sam ple, introduced into the detector after the WIMP search data taking. The S1 and S2 response from the 137m Xe 164 keV gamma rays, which interact uniformly within the detector, were used to correct 20% variations of the signal due to the position dependence of the light collection efficiency. S1 for 122 keV gamma rays, after position-dependent corrections, gives a volum e-averaged light yield, L_v, of 30 0.01(stat) 0.01(sys) pe/keVee (keVee is the unit for electron-recoil equivalent energy) at the drift eld of 0.73 kV/cm. The nuclear recoil equivalent energy (in unit of keV) can be calculated as E_n = L_vE_ee n = L_v S_y S_ee (s_t a t) pe/keVee. Here E_ee is the nuclear-recoil scintillation efficiency relative to that of 122 keV gamma rays in LXe at zero drift eld. We used a constant L_eff value of 0.19 which is a simple assumption for the data, consistent with the most recent measurements [21,22]. S_y and S_ee are the scintillation quenching factors due to the electric eld, for electron and nuclear recoils, respectively. S_y and S_ee were measured to be 0.54 and 0.93, respectively, at a drift eld of 0.73 kV/cm [14].

Background rejection is based on the ionization/scintillation (S2/S1) ratio, which is different for nuclear and electron recoils in LXe. Figure 4 shows the energy dependence of the logarithm of this ratio for electron recoils from 137Cs gammas and for nuclear recoils from AmBe fast neutron calibrations. The separation of the mean Log_{S2/S1} values between electron and nuclear recoils increases at lower energy. In addition, the width of the recoil band is smaller at lower energy. The combination of these two effects gives a better electron recoil rejection efficiency at the lower energy, reaching 99.9%. The different ionization density and track structure of low energy electrons and Xe ions in LXe result in different recombination rate and associated fluctuations, which might explain the observed behavior.

The Log_{S2/S1} values increase with decreasing energy for both electron and nuclear recoils, within the energy window of interest (4.5 - 26.9 keV nuclear recoil equivalent energy). The same behavior has been observed previously in small prototype detectors [12,14]. In our analysis, we subtract the energy-dependent mean Log_{S2/S1} from the recoil signal band to obtain Log_{S2/S1} for all events. After this band attenuation, the energy window of interest for the WIMP search is divided into seven individual energy bins (see Table 2). For each energy bin, the nuclear recoil accept ance window is defined to be between Log_{S2/S1} = 0 and Log_{S2/S1} = 3 . Here and are the m ean and sigma from a Gaussian fit of the nuclear recoil Log_{S2/S1} distribution. The nuclear recoil acceptance efficiency is the fraction of nuclear recoil events within the acceptance window. The Log_{S2/S1} distribution for electron recoils from the 137Cs data is found
emiprically to be statistically consistent with Gaussian events, except for a small number of non-almost background events. From these events, we estimate the electron recoil rejection efficiency and predict the number of statistical leakage events in the WIMP search data, for the defined nuclear recoil acceptance window. For each energy bin, the derived electron recoil rejection efficiency and the nuclear recoil acceptance values are listed in Table I.

In addition to the statistical events leaking from the electron recoil band into the nuclear recoil acceptance window, we observed anomalous leakage events in the WIMP search data. These events were identified to be multiple-scatter events with one scatter in the non-active LXe emostly below the cathode and a second scatter in the active LXe volume. The S2 signal from this type of event is from the interaction in the active volume only, while the S1 signal is the sum of the two S1's in both the active and non-active volume. The result is a smaller S2-S1 value compared to that for a single-scatter event, making some of these events appear in the WIMP-search window. Two types of cuts, one using the S1 signal asymmetry between the top and bottom PMT arrays and the other using the S1 hit pattern, defined as $S_{1\text{RM}} = \sqrt{\frac{1}{n} (S_1 - S_1')^2}$ (i.e., 1 pixel), on either the bottom or the top PMT array, are defined to remove these anomalous events. The S1 signal from the scatter outside the active volume tends to be clustered on a few of the bottom PMT's (larger $S_{1\text{RM}}$), while the S1 signal from a normal event in the active volume is distributed more evenly over the PMT's (smaller $S_{1\text{RM}}$). A large fraction of events that leaked into the WIMP-search window are of this type of background and could be removed by the cuts discussed above. The cut acceptance ϵ_c for single-scatter nuclear recoil events, based on AmBe neutron calibration data, is listed in Table I.

FIG. 1: Log$_{10}$ (S2-S1) as a function of energy for electron recoils (top) and nuclear recoils (bottom) from calibration data. The colored lines are the mean Log$_{10}$ (S2-S1) values of the electron recoil (upper, red) and nuclear recoil (lower, blue) bands. The region between the two vertical dashed lines is the energy window (4.5 - 26.9 keV nuclear recoil equivalent energy) chosen for the WIMP search. An S2 threshold of 300 pe is also imposed (black lines).

TABLE I: The software cut acceptance of nuclear recoils ϵ_c, the nuclear recoil acceptance A_{nuc}, and the electron recoil rejection efficiency R_{el} for each of the seven energy bins (E$_{\text{el}}$ in nuclear recoil equivalent energy). The expected number of leakage events, N_{leak}, is based on R_{el} and the number of detected events, N_{evt}, in each energy bin, for the 58.5 live-days WIMP-search data, with 5.4 kg of LXe. Errors are the statistical uncertainty from the Gaussian fits on the electron recoil Log$_{10}$ (S2-S1) distribution.

| E_{el} (keV) | ϵ_c | A_{nuc} | $1-R_{\text{el}}$ (10$^{-3}$) | N_{evt} | N_{leak}
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5 - 6.7</td>
<td>0.94</td>
<td>0.83</td>
<td>1.7</td>
<td>423</td>
<td>0.2</td>
</tr>
<tr>
<td>6.7 - 9.0</td>
<td>0.90</td>
<td>0.89</td>
<td>1.1</td>
<td>195</td>
<td>0.3</td>
</tr>
<tr>
<td>9.0 - 11.2</td>
<td>0.89</td>
<td>0.89</td>
<td>1.1</td>
<td>183</td>
<td>0.2</td>
</tr>
<tr>
<td>11.2 - 13.4</td>
<td>0.82</td>
<td>0.89</td>
<td>1.2</td>
<td>190</td>
<td>0.8</td>
</tr>
<tr>
<td>13.4 - 17.9</td>
<td>0.83</td>
<td>0.89</td>
<td>1.2</td>
<td>332</td>
<td>1.4</td>
</tr>
<tr>
<td>17.9 - 22.4</td>
<td>0.80</td>
<td>0.89</td>
<td>1.2</td>
<td>328</td>
<td>1.4</td>
</tr>
<tr>
<td>22.4 - 26.9</td>
<td>0.77</td>
<td>0.89</td>
<td>1.2</td>
<td>374</td>
<td>2.7</td>
</tr>
<tr>
<td>Total</td>
<td>1815</td>
<td>7.0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIG. 2: Position distribution of events in the 4.5 to 26.9 keV nuclear recoil energy window, from the 58.5 live-days WIMP-search data. (+) Events in the WIMP-signal region before the software cuts. () Events remaining in the WIMP-search region after the software cuts. The solid lines indicate the ducial volume, corresponding to a mass of 5.4 kg.

The 3D position sensitivity of the XENON10 detector gives an additional background suppression with ducial volume cuts. Due to the high stopping power of LXe, the background rate in the central part of the detector is lower (0.6 events/keVee/kg/day) than that near the
edges (3 events/keVee/kg/day). For this analysis, the fiducial volume is chosen to be within 15 to 65 cm in Z, out of the total drift distance of 15 cm) drift time window and with a radius less than 8 cm (out of 10 cm) in $X-Y$, corresponding to a total mass of 5.4 kg (Fig. 2). The cut in Z also removes any anomalous events due to the LXe around the bottom PMTs, where they happen more frequently compared to the top part of the detector.

After all the cuts were normalized for the energy window of interest, we analyzed the 58.6 live-days of WIMP-search data. From a total of about 1800 events, ten events were observed in the WIMP search window after cuts (Fig. 3). We expect about seven statistical leakage events (see Table I) by assuming that the $\log_{10}(S=2-S=1)$ distribution from electron recoils is purely Gaussian, an assumption which is statistically consistent with the available calibration data, except for a few vanishing leakage events*. However, the uncertainty of the estimated number of leakage events for each energy bin in the analysis of the WIMP search data is currently limited by available calibration statistics. Based on the analysis of multiple scatter events, no neutron induced recoil event is expected in the single scatter WIMP-search data set. To set conservative limits on WIMP-nucleon spin-independent cross section, we consider all ten observed events with no background subtraction. Figure 4 shows the 90% C.L. upper limit on WIMP-nucleon cross sections as a function of WIMP mass, calculated for a constant 19% L_{eff}, the standard assumption for the galactic halo [24], and using the \textquotedblleft minimum gap\textquotedblright{} method in [25]. For a WIMP mass of 100 GeV/c2, the upper limit is 8.8 \times 10$^{-44}$ cm2, a factor of 2.3 lower than the previously best published limit [23]. For a WIMP mass of 30 GeV/c2, the limit is 4.5 \times 10$^{-44}$ cm2. Energy resolution has been taken into account in the calculation.

The largest systematic uncertainty is attributed to the limited knowledge of L_{eff} at low nuclear recoil energies. Our own measurements of this quantity [21] did not extend below 10.8 keVr, yielding a value of (13.8 \pm 2.4)% at this energy, more recent measurements by Chepel et al. [22] have yielded a value of 34% at 5 keVr, with a large error.

A comparison between the XENON10 neutron calibration data and Monte Carlo simulated data, including the effects of detector resolution and energy dependence of L_{eff}, provides a consistent constraint on the variation of L_{eff} for all energies in the analysis range [26]. The constant L_{eff} assumption used to calculate the limits above shows reasonable agreement at the 10% level between the Monte Carlo predicted spectrum and the measured energy dependence and intensity of the single scatter nuclear recoil spectrum. The L_{eff} assumption which gives the best agreement implies a slightly more sensitive exclusion limit L_{eff}, and is not quoted. A conservative exclusion limit was calculated by including estimates of possible systematic uncertainties in the signal acceptance near threshold. A limit included was an estimate of the uncertainty in the energy dependence of the neutron scattering cross sections used in the Monte Carlo simulations. The L_{eff} assumption which gives the best exclusion limit implies a slightly more sensitive exclusion limit L_{eff}, and is not quoted. A conservative exclusion limit was calculated by including estimates of possible systematic uncertainties in the signal acceptance near threshold. A limit included was an estimate of the uncertainty in the energy dependence of the neutron scattering cross sections used in the Monte Carlo simulations. The L_{eff} assumption which gives the best exclusion limit implies a slightly more sensitive exclusion limit L_{eff}, and is not quoted. A conservative exclusion limit was calculated by including estimates of possible systematic uncertainties in the signal acceptance near threshold.
WIMP interactions. Log$_{10}$(S2=S1) values for 5 events (summed with 7 predicted) are statistically consistent with the electron recoil band. These are labeled as No.'s 3, 4, 5, 7, 9 in Fig. 2 and Fig. 3. As shown in Table 1, these leakage events are more likely to occur at higher energies. A posteriori inspection of event No. 1 shows that the S1 coincidence requirement is met because of a noise glitch. Event No.'s 2, 6, 8, 10 are not favored as evidence for WIMPs for three main reasons. First, they are all clustered in the lower part of the molar volume (see Fig. 3) where anomalous events happen more frequently, as discussed above. Second, the anomalous S1 hit pattern cut discussed earlier for the p'rim ary blind analysis was designed to be very conservative. An independent secondary blind analysis performed in parallel with the primary analysis, used a more stringent cut to identify anomalous S1 patterns in S1 and rejected 3 (No.'s 6, 8, 10) of these 4 candidate events. Third, the expected nuclear recoil spectrum for both neutrons and WIMPs fails exponentially with energy, whereas the candidate events appear preferentially at higher energy.

The new XENON10 upper limit on WIMP-nucleon spin-independent cross section further excludes some parameter space in the minimal supersymmetric model [3] and the constrained minimal supersymmetric models (CMSSM) [eg. 1,2,3].

This work is supported by the National Science Foundation under grants No. PHY-03-02646 and PHY-04-00596, and by the Department of Energy under Contract No. DE-FC02-91ER40688, the CAREER Grant No. PHY-0542066, the Volkswagen Foundation (Germany) and the FCT Grant No. POCI/FIS/60534/2004 (Portugal). We thank the Director of the Gran Sasso National Laboratory, Prof. E. Coccia, and his staff for support throughout this effort. Special thanks go to the Laboratory engineering team, P. Aprili, D. Orlandi and E. Tatananni, and to F. Redaelli of COMASUD for their contribution to the XENON10 installation.