D i rac N e utrino D ark M atter

Geneviève Belangera, Alexander Pukhovb and Geraldine Servantc,d

a Laboratoire de Physique Théorique LAPTH, F-74941 Annecy-le-Vieux, France
b Skobeltsyn Inst. of Nuclear Physics, Moscow State Univ., Moscow 119992, Russia
c CERN Physics Department, Theory Division, CH-1211 Geneva 23, Switzerland
d Service de Physique Théorique, CEA Saclay, F91191 Gif-sur-Yvette, France

\texttt{belanger@lapp.in2p3.fr, pukhov@lapp.in2p3.fr, geraldine.servant@cern.ch}

Abstract

We investigate the possibility that dark matter is made of heavy Dirac neutrinos with mass $m \approx (1) \text{ GeV}$ (a few TeV) and with suppressed but non-zero coupling to the Standard Model Z as well as a coupling to an additional Z^0 gauge boson. The first part of this paper provides a model-independent analysis for the relic density and direct detection in terms of four main parameters: the mass, the couplings to the Z, to the Z^0 and to the Higgs. These WIMP candidates arise naturally as Kaluza-Klein states in extra-dimensional models with extended electroweak gauge group $SU(2)_L \times SU(2)_R \times U(1)$. They can be stable because of Kaluza-Klein parity or of other discrete symmetries related to baryon number for instance, or even, in the low mass and low coupling limits, just because of a phase-space-suppressed decay width. An interesting aspect of warped models is that the extra Z^0 typically couples only to the third generation, thus avoiding the usual experimental constraints. In the second part of the paper, we illustrate the situation in details in a warped GUT model.
Introduction

It is well-known that a heavy (m > 1 GeV) Dirac neutrino with Standard Model interactions is ruled out as dark matter because of its large coupling to the Z. On the one hand, it annihilates too strongly into Z to have the right relic abundance. On the other hand, even if it had the right relic density from a non-standard production mechanism, it would scatter elastically off nuclei with a large cross section induced by the Z exchange and should have been seen in direct detection experiments, unless its mass is larger than several tens of TeV [1,2]. Moreover, this type of neutrino is excluded by electroweak precision tests [3]. In contrast, a sterile Majorana neutrino as dark matter is a possibility that has raised interest lately [4,5]. In this case, the neutrino mass m_s that has been considered is rather in the keV - MeV range and behaves as warm dark matter if m_s < 20 keV. In addition, the Majorana mass scale is determined by the see-saw formula for neutrino masses.

In the present work, we are considering a different type of Dirac neutrino, denoted 0, corresponding to a typical cold dark matter WIMP candidate with a mass at the electroweak scale, suggesting that dark matter and the electroweak scale are somehow related (even if the mass of the dark matter particle does not come from electroweak symmetry breaking). We do not assume any particular relation between the mass scale of 0 and that of the light standard model neutrinos. The relic density of 0 is entirely determined by the standard thermal mechanism and therefore by its annihilation cross section. We are assuming that the coupling to the Standard Model Z is suppressed. There are various reasons why this can happen. A typical framework is to start with an SU(2)_L singlet neutrino but charged under SU(2)_R. Because the gauge bosons of SU(2)_R are heavy, their interactions with R are quite feeble and this makes R behave as a WIMP. In addition, electroweak (EW) symmetry breaking typically induces a mixing between Z and Z^0, leading to an effective small coupling of R to the Z. Examples of this type were studied in warped extra dimensions [6,7,8], and in universal extra dimensions [9]. Note that the most promising realistic warped extra-dimensional scenarios need the EW gauge group to be extended to SU(2)_L ⊗ SU(2)_R ⊗ U(1). In this context, Kaluza-Klein Dirac neutrinos charged under SU(2)_R are necessarily part of these constructions, even though their stability typically requires an additional ingredient. For instance, it was shown in [6,7] that in plugging baryon number conservation in warped GUTs leads to the stability of a KK RH neutrino.

Finally, even in the absence of an additional symmetry, 0 can be cosmologically stable if the couplings involved in its decay are very suppressed. This can happen even if the neutrino has a large annihilation cross section providing the correct relic density.

Dirac neutrino dark matter was also studied in the 4D models of Ref. [10] where the Z-coupling suppression has a different origin and results from mass mixing between gauge eigen states with opposite isospin. Ref. [10] did not consider the effect of Z^0 that we study in details here. In the first part of this paper, we present a model-independent analysis for the viability of Dirac Neutrino dark matter in terms of three main parameters, the mass, the Z-coupling and the Z^0-coupling of 0. We also discuss the effect of a coupling with the Higgs. The remaining part of the paper is a detailed analysis of the dark matter candidate which arises in the warped GUT models of Ref. [6,7]. In both studies, the computation of the relic density is performed with micrOMEGAs2.0 [11] after implementing new model inputs into CalcHEP [12].
Part I – Model-independent analysis

In this part, we consider a generic extension of the Standard Model (SM) containing a stable heavy Dirac neutrino denoted ν^0, with mass M_ν. We assume a parity symmetry (except in Section 2.2) that does not act on SM fields and ν^0 is the lightest new particle charged under it. The model also contains an additional Z^0 gauge boson and potentially a charged gauge boson W^0, with masses M_{Z^0}; $M_{W^0} > 500$ GeV. To avoid most low energy constraints we will assume that these new gauge bosons couple only to the fermions of the third generation. $Z_{Z_{Z0}}$ is the mixing which induces the $Z^0 W^0$ and $Z^0 H$ couplings. We also introduce g_{Z^0} as the Higgs coupling to the Z^0 (for instance induced via mixing with a heavy L as illustrated in Part III). We assume that only one chirality of Z^0 couples to the gauge bosons (in our numerical examples, we chose the right-handed chirality). The effective couplings of Z^0 to Z, Z^0 and H are denoted g_{Z^0}, g_{Z^0} and g_{Z^0} respectively:

$$g_{Z^0} = \frac{1 + \frac{s}{2}}{\frac{s}{2}} z^0 ; \quad g_{Z^0} = \frac{1 + \frac{s}{2}}{\frac{s}{2}} z^0 ; \quad g_{Z^0} = \frac{1 + \frac{s}{2}}{\frac{s}{2}} z^0$$

We work at the level of a low energy effective theory. We assume that the remaining new physics which makes the model incomplete does not interfere much with our dark matter analysis.

1 Direct detection constraints

Direct detection constraints are very simple for a Dirac neutrino (see for instance section 3 of Ref. [1]). The cross-section σ_{N}^0 for N scattering on nucleons is governed by the t-channel exchange of the Z, the Z^0 exchange is comparatively negligible. In contrast with Majorana dark matter, the Z exchange contributes to the spin-independent scattering cross section. Therefore, strong constraints on g_{Z^0}, the Z^0 coupling to the Z, are derived from direct detection experiments, in particular CDM S [13] and recently XENON which has now the most stringent limit [14]. The dependence on M_{Z^0} that we observe for this constraint is related to the experimental sensitivity, which is optimal around 500 GeV. The theoretical prediction does not depend on M_{Z^0}, as illustrated on Fig.1. In our plots, we use the parameter $g = g_{Z^0}$ where g is the SM electroweak coupling $g = (\sin^2 \theta_W)$. The direct detection limit has been rescaled to take into account the fact that, for a Dirac fermion, the interaction of the Z with protons is suppressed by a factor $(1 - 4 \sin^2 \theta_W)^2$ (see Eq.2) so that the scattering with nucleons is completely dominated by neutrons. When CDM S and XENON quote their limit they rather assume that protons and neutrons contribute equally. This means that CDM S and XENON exclusion curves go up by a factor $A^2 = (1 - 4 \sin^2 \theta_W)^2$ (A Z) ie 3.7 and 3.4 respectively. We should keep in mind that the bound from direct detection experiments is subject to some astrophysical uncertainties such as the velocity distribution of the WIMP. Based on Ref. [15], we could estimate these uncertainties and allow for a factor 3 in the interpretation of the CDM S and XENON limits, over the full 10 GeV – 1 TeV WIMP mass range even though there are actually much larger uncertainties for masses below 40 GeV. For clarity, we have not displayed this uncertainty in our plots.

It is clear from Fig.1 that we have to impose $g_{Z^0} < g = 100$ for $M_{Z^0} < 400$ GeV to satisfy the XENON constraint. If Z^0 has a sizable coupling to the Higgs, the elastic scattering
Figure 1: Neutrino-neutron scattering cross section due to Z-exchange for $g=g_z=10;30;100;300$ where $g=e=(\sin W)$ is the SM coupling. The dotted line shows the effect of adding the Higgs exchange for $g_H=0.25, m_H=120$ GeV, in the case where $g=g_z=300$. Also represented is the CDMS limit as well as the recent XENON limit [14].

via Higgs exchange is not always negligible compared to the Z-exchange especially when θ^c couples weakly to the Z. The spin-independent elastic scattering cross section on nucleons is the sum of two contributions (when averaging over θ^c and θ^c, the negative interference term cancels):

$$
\sigma_{n+p}^{\text{neutron}} = \frac{g^2 m^2_{n+p}}{64 M_W^4 \cos^2 \theta} 4 g_z^2 \left(1 - 4 \sin^2 \theta \right)^2 + \frac{X}{\varphi} \sigma_{n+p}^{\text{Higgs}} 4 \cos \theta^c g_H \frac{m_n}{M_W} \frac{M_Z^2}{M_H^2} \frac{1}{2} \frac{3}{2} \frac{3}{2}
$$

where φ are taken from Ref. [16]. For example, when $m_H=120$ GeV, $g_H=0.25$ and $g=g_z=300$, the Higgs and Z contributions become comparable for elastic scattering on neutrons, as illustrated in Fig.1, while for elastic scattering on protons, the Higgs contribution dominates.

In contrast with Majorana fermions like in the MSSM, the parameter that determines the elastic scattering of Dirac neutrino dark matter on nucleus is the same parameter that drives annihilation and determines the relic density. We now look at what Dirac neutrinos can inherit the correct thermal abundance.
2 Annihilation

Figure 2: 0 annihilation diagram into $f ar{f}, WW, Zh, hh$ and ZZ.

2.1 Annihilation via s-channel Z exchange

Annihilation channels of 0 are listed in Fig.2. We first look at the effect of the coupling to the Z, g_Z, and set $g_Z = 0$. For $M_0 < 100$ GeV, annihilation into fermions dominate due to the Z resonance. For $M_0 > 100$ GeV, main annihilation channels are into WW and Zh (the relative contribution of Zh increases for larger M_0). The contribution from top pairs is small. Figure 3a shows how h^2 decreases as function of M_0 for different g_Z couplings. In Fig.3b, we show for comparison the prediction for a fourth generation Dirac neutrino with SM coupling to the Z and a Yukawa coupling to the Higgs as studied in [17]. Since 0 has non-standard couplings, the total annihilation cross section grows with M_0. Unitarity breaks down for M_0 at the multi-TeV scale and we do not show any predictions beyond these values. Figure 3b shows the effect of a coupling of 0 with the Higgs, in particular the resonance at $M_0 = M_H = 2$. The contributions of the different annihilation channels are also displayed in Fig.4. The ZZ channel is important if 0 has a sizable coupling to the Higgs.

Near the Z resonance, only a weak coupling is necessary to get $h^2 = 0.1$. We combine the relic density constraints with the direct detection constraints in Figure 6 where we show the WMAP [18] allowed region $(0.97 < h^2 < 1.13)$ in the $g=g_Z$ M_0 plane, as well as the CDM and Xenon limits. The region satisfying both constraints corresponds to either $M_0 > 40$ (50 GeV) or $M_0 > 500$ GeV if the Higgs coupling is negligible. For $M_0 > 500$ GeV, the relic density constraint on g_Z is more severe than the direct detection constraint. If the Higgs coupling to 0 is sizable, a region around $M_0 = M_H = 2$ opens up.

1 This is different from the behaviour of the vector-like Kaluza-Klein neutrino studied in [19].
2 We neglect the contribution to the mass of 0 due to the Yukawa coupling.
3 A more conservative upper bound, $0.97 < h^2 < 0.134$, was recently advocated in [20].
Figure 3: ϕh^2 versus ϕ for $g = g_z = 10; 30; 100; 300; 1000$ where $g = e = (\sin W)$ is the SM coupling. In a), only the Z-exchange is included. For comparison, we also show in dotted line the relic density of a fourth generation Dirac neutrino with SM coupling to the Z and a Yukawa coupling to the Higgs. For this curve, we set $m_H = 200$ GeV. In b) the Higgs exchange is included as well with $g_H = 0.25$.

Figure 4: Annihilation cross sections at freeze-out. The effect of a Z^0 is omitted here and will be shown in Fig.9.
For WIMPs masses below 10 GeV, direct detection constraints do not apply. We concentrate on this particular case in this section. Light WIMPs also potentially offer the interesting prospect that they can be stable without the need to introduce an extra symmetry, just because there is no SM particle they can decay into, at least on a cosmological time scale.

In the absence of any particular discrete symmetry, our exotic light neutrino can have a three-body decay, like the muon. For instance, if the underlying theory is 5-dimensional with SU(2)$_R$ gauge symmetry, there are gauge couplings between the KK mode and the zero mode of $R: (1)_R Z^0_R, (1)_R W^+_R, (1)_R W^-_R$. They induce, via $Z Z^0$ and $W_R W$ mixings, the effective couplings (0 then corresponds to $(1)_R): Z Z^0_R$ and W^0_R. If these are sufficiently suppressed, with strength of order $g\, g_0$, the lifetime of 0 can indeed exceed the age of the universe, as illustrated in Fig.3, using the width $(g - g)^2 G_F^2 M^5 = 1.92 10^{-5}$. For a neutrino mass in the 1-10 GeV range, these couplings should be smaller than 10$^{-15}$ for the neutrino to be cosmologically stable. This is actually naturally realized in Randall-Sundrum models where the zero mode neutrino is localized near the Planck brane while the KK R is peaked on the TeV brane. The overlap of their wave functions is therefore very suppressed, resulting in a tiny effective 4D coupling. However, in this case, we expect the KK R to have a mass in the TeV range rather than 10 GeV. The only KK fermions that can be naturally light
are those belonging to the multiplet containing the top quark, as discussed in Part II. For instance, in warped GUT models, the KK \(R \) belonging to the 10 of SO(10) which contains the top quark (that is the only zero-mode SM particle in the 10) does not couple directly to any light SM fermion. The only SM fermion it can directly couple to is the top, via an SO(10) gauge boson. Therefore, its decay has to go through a very large number of intermediate states and will be very suppressed. In other words, the boundary conditions on the different components of the multiplet containing \(R \) are such that no three-body decay is allowed.

Now the question is whether such a neutrino can naturally inherit the correct abundance. The interesting aspect here is that these models typically offer the possibility that the multi-body decay is suppressed while the self-annihilation can be large. This can be explained in terms of the different localizations for the wave functions of SM light fermions on one side and KK modes (of both fermions and gauge bosons) on the other side.

\[g_0 \text{ is the typical size for the couplings } Z^0 \text{ and } W^0. \text{ Below the line, } 0 \text{ is cosmologically stable.} \]

It is clear from Fig.3 that for \(M_0 = O(\text{GeV}) \), \(g_0 = O(1) \) is needed to obtain the correct thermal relic density; this is in contradiction with the experimental constraint from the invisible decay width of the Z which requires \(g_0 < 0.035 \). One way to open the window could be to consider that \(g_0 \) couples to a light (\(O(\text{GeV}) \)) singlet scalar field that decays into SM fermions via its mixing with the Higgs. Near the resonance, \(m_0 = m_1 = 2 \), the right amount of annihilation can be obtained. Another possibility is to assume that the reheat temperature is below the freeze-out temperature \(T_F \) \(< 25 \). For \(M_0 = 10 \text{ GeV} \), \(T_F = 0.4 \text{ GeV} \), this is still well above the BBN temperature. In this case, the neutrino is produced through scattering in the plasma and the correct relic abundance may be reproduced with an appropriate choice of reheat temperature and \(g_0 \) coupling. Note that in addition to \(g_0 \) production via the \(g_0 \), \(g_2 \), and \(g_4 \) couplings, there is production of \(0 \) via the \(g_0 \) couplings defined above, which is similar to production via neutrino oscillation \([4,21]\) but it is very suppressed given the \(g_0 \) values that we consider for cosmological stability.

Even if the lifetime of the neutrino exceeds the age of the universe, there are additional bounds on \(g_0 \) from EGRET and COMPTEL measurements of the diffuse gamma ray spectrum, that constrain the radiative decay with gamma ray emission \(\tau^0 \) \([22]\). In conclusion, this \(O(\text{GeV}) \) Dirac neutrino scenario would deserve a detailed analysis.
2.3 Annihilation via t-channel heavy lepton exchange

We now consider the effect of the t-channel exchange of a heavy charged lepton W^0 (potentially a Kaluza-Klein lepton, see also the toy model of Ref. [10]) leading to the annihilation into W. The coupling is defined as

$$g_W \equiv \frac{g_W}{2} \left(1 - \frac{M_W^2}{M_{W^0}^2} \right)^2 = g_W \quad (3)$$

where g_W is written here in terms of the $W-W^0$ mixing resulting from EW symmetry breaking. According to Fig. 7, quite a large g_W coupling is needed to see the effect of these diagrams. For instance, if g_W arises from $W-W^0$ mixing and $M_{W^0} = 1$ TeV, then we need $x_W > 10$. We can make the following observations:

1. There is a destructive interference between the s and t channels leading to an increase in ρh^2 compared to the case with Z exchange only.

2. When one W^0 can be produced in association with a W in the annihilation, there is a decrease in ρh^2 (see the kink around $M_{W^0} = 500$ GeV).

3. When W^0 is not too much heavier than W, coannihilation effects can reduce the relic density. For illustration, we show the case $M_{W^0} = M_W = 1.2$ where coannihilations more than compensate for the increase of ρh^2 due to the t-channel exchange. In addition, near the W^0 resonance, there is a sharp drop in the relic density.

Figure 7: Effect of the t-channel annihilation on ρh^2 for $g = g_z = 100$. The blue full curve includes the Z s-exchange only, the dashed (dot) curve includes the t-channel with $M_{W^0} = 1$ TeV, $x_W = 10$, leading to $g_W = 0.065$ and $M_{W^0} = 1.2$ without (with) coannihilations.
2.4 Constraints on the W^0

If the W^0 comes from a Left-Right model, there are strong limits on the W^0 mass and mixing assuming a manifest L.R. symmetry i.e. the same mixing matrix in L and R quark sectors. Typical limits on the mixing angle are approximately $< 10^3$ (assuming $g_0 \sim g$), while limits on the mass are around 1 TeV. The best limit is from K.L. K_S mixing, $M_W^0 > 1.5$ TeV [23]. There are also Tevatron limits using the decay channel into electron and right-handed neutrino leading to $M_W^0 > 750$ GeV [24]. In our analysis, we consider that only the coupling of W^0 to the third generation is non-suppressed, as well motivated in Randall-Sundrum models. In this case, the Tevatron constraints are weakened if we restrict the decay to the s-channel and indirect limits from K or τ decays do not apply. Nevertheless, if W^0 couples to quarks of the third generation (as in Randall-Sundrum models) there is an important constraint from $b \to s$ [23,26]. The W^0 leads to an enhancement of the $b \to s$ amplitude by a factor m_t/m_b. Irrespective of the W^0 mass, a limit on the mixing is $0.015 < g_0/g < 0.003$ [25,26]. This assumes similar quark mixing matrices in the L and R sectors. If the W^0 coupling to leptons is similar to that of quarks, the above constraint is incompatible with the values chosen in Fig.7: $m_W = 10$, $M_W^0 = 1$ TeV, corresponding to $g_0 = 0.065$. Relaxing the assumption that the mixing matrix is the same in the left and right sectors will not help sufficiently. In conclusion, the W^0 effects can be ignored.

2.5 Annihilation via s-channel Z and Z^0 exchange

We now consider the combined effect of the two annihilation channels through Z and Z^0. We first look at the Z^0 coupling to W pairs, arising from $Z-Z^0$ mixing:

$$g_{ZWW} = g_{ZWW}^{zz0}$$

where g_{ZWW} is the Standard Model coupling. Next we add the interaction of the Z^0 with top quarks. There can be a noticeable reduction of the relic density due to this extra channel. Figure 8 shows the effect of the Z^0 exchange on χ^2 for different values of the parameters. It opens a region at the Z^0 resonance, for $M_{Z^0} = 2$, and also reduces the upper bound on M_{Z^0} from WMAP compared to the case with Z exchange only. We show in Fig.8 the contributions of the different channels to the total annihilation cross section. There is a destructive interference between the Z and Z^0 contributions in the WW channel beyond the Z^0 resonance. However, this does not produce a significant increase in the relic density, since the Z^0 annihilation into ZH is still important. In Fig.9 we choose $g_{ZWW}^{zz0} = 0.5g_{ZWW}$.

2.6 Constraints on the Z^0

The coupling of Z^0 to the Z can be induced, for example, via $Z-Z^0$ mixing or via mixing with another heavy neutrino which has a large coupling to the Z. If the $Z-Z^0$ mixing comes from the Higgs vev only, then

$$g_{ZWW}^{zz0} = \frac{g_{ZWW}^{zz0}}{Z \cos W} g_{ZWW}^{zz0} \frac{v^2}{M_{Z^0}}$$

In the absence of a custodial symmetry protecting the T (or T) parameter, we have to impose the constraint $T_{Z^0}^2 M_{Z^0}^2 M_{Z^0}^2 < 10^3$. When the g_{ZWW} coupling is induced only via $Z-Z^0$
Figure 8: $v h^2$ for $g_{Z} = 100, g_{H} = 0$ and $g_{Z_0} = 0$ (black), $g_{Z_0} = 0.3$ (red). Also shown is the case where Z^0 couples in addition to all third generation fermions (green dash) with $g_{Z_0_{\text{eff}}} = g_{Z_0} = 0.3$ in a) and $g_{Z_0_{\text{eff}}} = 1$ in b). We also show in b) the case with $g_{Z_0} = 1$ (blue) and the case where Z^0 couples to top quarks with $g_{Z_0_{\text{tt}}} = 1$ (pink/dash-dot). Note that we fixed $Z_{Z_0} = 10^{-3}$ in both a) and b) even though it is expected to scale as $M_Z^2 = M_{Z_0}^2$.

Figure 9: Annihilation cross-sections at freeze-out into WW (solid), Zh (dash), ZZ (blue dash-dot), hh (red dash-dot) and tt (dot) for $g_{Z} = g = 100, g_{H} = 0.25, m_{H} = 200 \text{ GeV}$. In black, only the Z exchange is included ($g_{Z_0} = 0$); in green, the Z^0 exchange is included with $g_{Z_0} = 1, g_{Z_0_{WW}} = 10^{-3} g_{Z_0_{WW}}$ and $g_{Z_0_{tt}} = 0.5g_{Z_0_{tt}}$.

11
mixing, then $Z_0 = g_2 = g_3$ and it is difficult to satisfy the constraint on the T parameter if $g_0^{\chi H} = g_0^Z$. A similar LEP constraint comes from the shift in the vectorial coupling of the Z to the t and the b, leading to $Z_0 g_0^{\chi H} < 4 \times 10^{-3}$. The T parameter constraint can be relaxed in models with SU(2)$_L$ gauge symmetry which are in any case a strong motivation for Dirac neutrino dark matter. The constraint on the Zb coupling can also be evaded (see e.g. [27]).

Like the limits on W^0, most direct collider searches involve fermions of the first and second generations and if we assume that Z^0 couples to the third generation only, we can tolerate Z^0 as light as 500 GeV [2]. A Z^0 which has generation-dependent couplings (like in Randall-Sundrum models) will induce tree-level FCNC. If it couples to the third generation only:

$$L = (g_Z b_L P_L b + g_Z h_b b R P_R b) Z_0^0$$

avours non-diagonal couplings to the down-type quarks are induced

$$L = (g_Z U_{3L_i} U_{3L_j} L + g_Z h_b d_i P_R U_{3R_i} U_{3R_j} d) Z_0^0$$

with U_{LR} the mixing matrix for the left- (right-) handed down-type quarks. This will now induce a favours non-diagonal coupling to the Z due to Z^0 mixing. FCNC effects due to a Z^0 with non-universal couplings are analysed in Ref. [28, 29]. Constraints are model-dependent and can be avoided. They are typically weaker than the T-parameter constraint.

Figure 10: WMAP region in the ($M^0 - g=g_2$) plane with Z exchange only (blue), with Z^0 exchange for $g_0^Z = 0.3$ (green) and $g_0^Z = 1.2$ (red). The effect of adding a Z^0tt coupling is also shown (pink) assuming $g_0^{\chi H} = g_2 = 1.2$. In these plots, $Z_2 = 10^{-3}$ and $g_H = 0$. The allowed region is above the XENON dashed line and below the h^2 bands.
2.7 Contour plots

We summarize our results and show the WMAP region in three different planes: \((M_0; g=g_Z)\) in Fig. 10 and 11, \((M_0; g_Z)\) in Fig. 12 and \((M_0; M_Z)\) in Fig. 13. In Fig. 12 and 13, we neglect for simplicity the coupling of \(Z^0\) to the fermions. In Fig. 10 and 11, we fixed \(g_Z = 10^{-3}\) independently of the relation (5) while the two plots of Fig. 12 satisfy Eq. (5). In addition, the two right-handed plots of Fig. 12 assume that the only source of the \(g_Z\) coupling is the \(Z^0\) mixing. As a result, the \(Z^0\) coupling is suppressed and \(h^2\) falls within the WMAP range only for a large coupling to \(Z^0\), \(g_Z = 1\), or for \(M_0 = M_Z = 2\).

The situation is best summarized in Figure 11 which captures what is the allowed region of parameter space after imposing the WMAP bound and XENON constraints: There is a small mass window allowed for \(M_0 = M_Z = 2\). There are other wider mass windows near \(M_H = 2\) and \(M_Z = 2\). Away from these resonance effects, a large region opens up for \(M_0 > 700 \text{ GeV}\).

![Figure 11: Summary plot: WMAP region in the \((M_0; g=g_Z)\) plane with \(Z\) exchange only (blue), with \(Z^0\) exchange for \(g_Z = 0.3\) and \(M_Z = 1 \text{ TeV}\) (green) and Higgs exchange with \(g_H = 0.5\) (red). In this plot, \(g_Z = 10^{-3}\). The CDMS and XENON direct detection constraints are shown with (dashed) and without (solid) a \(Z\) Higgs coupling. The allowed region of parameter space is above the XENON line and below the \(h^2\) bands.](image-url)
Figure 12: WMAP region in the \((M_0; g_{Z^0})\) plane. In all cases, \(Z_{2\,Z^0} = 0.36 g_{Z^0}^2 (v=M_{Z^0})^2\) and \(g_{Z^0} = g_{Z^0}^Z\). In the two plots on the left, \(g_{Z} = g_{Z} = 100\) (red) and \(g_{Z} = g_{Z} = 300\) (blue) independently of the \(g_{Z^0}\) value. In the two plots on the right, \(g_{Z} = g_{Z} = 100\) is fully due to \(Z^0Z^0\) mixing.

3 Collider signatures

Like in other WIMP models, the standard searches rely on pair production of the heavier exotic particles which ultimately decay into the WIMP, leading to signals with energetic leptons and/or jets and missing \(E_T\). We list below some signatures which are more specific to the neutrino WIMP model.
Figure 13: Relic density in the \((M_0; M_{Z0})\) plane for \(Z_{0} = 10^{3}, g_{H} = g_{Z} = 0.7, m_H = 115\) GeV and we neglect the coupling of the \(Z^0\) to fermions. The blue (dark grey band) corresponds to the WMAP range while in the green (light grey band) \(\phi h^2 > 0.113\) and in the white region \(\phi h^2 < 0.097\). On the first plot, the contours of \(\phi h^2 = 0.097; 0.113\) for \(g_H = g = 100\) and \(Z_{0} = g_{Z} = g_{Z} = 0\) (dash) are also shown.

3.1 Invisible Higgs decay into \(0\)

As seen previously, if \(0\) has a significant coupling \(g_{H}\) to the Higgs, it can account for the dark matter of the universe for \(m_0 = m_H = 2\) corresponding to the Higgs resonance. A significant \(g_{H}\) coupling can arise, for instance, in the model of \([6,7]\) (see section 9.3).

As a result, the Higgs can decay invisibly into \(0\) with a significant branching fraction. The \(g_{H}\) coupling could be probed at the LHC in Higgs production associated with gauge bosons \([30]\), or with top quarks or in the weak boson fusion process \([31]\). The weak boson fusion process seems to be the most promising. In the following we use the results of Ref. \([32]\) where an analysis including a detector simulation was performed and a limit on the invisible width was obtained for various Higgs masses. In general, this limit takes into account the fact that the production cross-section could be modified relative to the SM one, here we assume that the couplings of the Higgs to quarks are the standard ones. A more recent study \([33]\) performed a re-visited analysis of the \(ZH\) channel, combined with the boson fusion channel. For light Higgses \((m_H < 160\) GeV\) the results are similar to the ones of Ref. \([32]\). The partial width of the Higgs into neutrinos is

\[
\langle h \rightarrow \nu \bar{\nu} \rangle = \frac{g_{H}^2}{8} M_H \left(1 - \frac{M_{Z0}^2}{M_H^2} \right)^{3/2}.
\]
Figure 14 shows the resulting limit that can be obtained on the g_{h} coupling at LHC.

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{fig14.png}
\caption{Above the lines, an invisible Higgs would be probed at LHC with $L = 100 \text{ fb}^{-1}$.}
\end{figure}

Figure 15: Lines delimiting the region where 0 is too long-lived to decay inside the detector for three values of Δ, the relative mass splitting between 0 and 0.

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{fig15.png}
\caption{Lines delimiting the region where 0 is too long-lived to decay inside the detector for three values of Δ, the relative mass splitting between 0 and 0.}
\end{figure}

3.2 0 production

Let us consider models where 0 belongs to a gauge multiplet, for instance an SU (2)$_L$ multiplet. If 0 and its partner are nearly degenerate in mass, 0 is long-lived and the pair production of 0 could lead to interesting stable CHAMELEON-like signatures. This is to be contrasted with the standard scenario in which the dark matter is dominantly produced through decays of colored particle and therefore accompanied by energetic jets rather than

\cite{charged_massive_particles} Charged Massive Particles
by charged tracks. This situation was also discussed in the dark matter model of [34]. Fig. 15 shows the region in the \((q_0 \leftrightarrow \chi_0; m_0)\) plane where \(0\) decays outside the detector. Limits from LEP [35] \((m_0 > 100 \text{ GeV})\) and DØ [36] are reproduced on our plot (Fig. 16) of the \(0\) pair production cross section, which is dominated by the \(Z\) exchange since \(Z^0\) only couples to the third generation. A more likely possibility is that \(0\) will decay inside the detector. In this case, the search is similar to that of sleptons with signature two leptons + \(E_T\) (see Ref. [37,38] for LEP constraints).

4 Conclusion of Part I

In summary, Dirac neutrinos are viable dark matter candidates. The situation is best summarized in Figure 11. For a mass between 10 GeV and 500 GeV, the main requirement is that the coupling to the \(Z\) should be at least 100 times smaller than the SM neutrino-\(Z\) coupling in order to satisfy the direct detection constraint. Once this is satisfied, there is a large range of neutrino and \(Z^0\) masses as well as \(Z^0\) couplings that lead to the correct relic abundance. The annihilation via \(Z\) is the dominant mechanism for \(m_0\) masses below 100 GeV. Near \(M_Z = 2\), the annihilation mechanism is even too efficient. If \(0\) has a large coupling to the Higgs, \(M_H = M_{H^0} = 800\) GeV can lead to the correct relic density. Finally, \(Z^0\) couplings open a large spectrum of possibilities in the multi-hundred GeV range up to the \(Z^0\) mass.

In this work, we have assumed that there is no primordial leptonic asymmetry in the
dark matter sector \((n = \tilde{n}) \). Obviously, our predictions for the relic density could change significantly if there was such an asymmetry, like there is in the visible matter sector. In contrast, this issue does not arise with neutralino dark matter or heavy Kaluza-Klein gauge boson dark matter. We have also restricted our analysis to the case where Dirac neutrinos would constitute all the dark matter. Constraints would be relaxed if we assumed instead that they constitute only a subdominant piece of dark matter.\(^5\) Moreover, we only studied the case where Dirac neutrinos are thermal relics. Very different conclusions can be drawn if instead, the production mechanism is non thermal, and this is left for a future project.

Except in Section 2.3, we have not considered coannihilation effects, as this is a more model-dependent issue. They will be studied in the explicit example of Part II. Finally, we have not discussed indirect searches in this work, this was done in \([8]\) for the case of the Lzp model that we now present in details.

Part II - An explicit example: The Lzp in warped GUTs

In Ref. \([6,7]\) it was shown that in models of warped extra-dimensions embedded in a GUT, the symmetry introduced to prevent rapid proton decay, a \(Z_3 \) symmetry, also guarantees the stability of a light KK fermion, a KK right-handed neutrino. This particle is called the Lzp and its properties have been studied in \([6,7]\). A detailed analysis of the indirect detection prospects in neutrino telescopes, cosmic positron experiments and gamma ray telescopes was also presented in \([8]\) and in \([40]\) for antiproton experiments. Some collider signatures were discussed in \([7]\) and more recently in \([41]\). In this paper, we revisit the properties of the Lzp and perform a complete calculation of its relic density.

The underlying model is based on the Randall-Sundrum setup \([42]\), where the hierarchy between the electroweak (EW) and the Planck scales arises from a warped higher dimensional spacetime. A full Standard Model (SM) fields except the Higgs (to solve the hierarchy problem), it is sufficient that just the Higgs (or alternative dynamics responsible for electroweak symmetry breaking) be localized at the TeV brane) have been promoted to bulk fields rather than brane fields. EW precision constraints require the EW gauge symmetry in the 5-dimensional bulk to be enlarged to \(SU(2)_L \times SU(2)_R \times U(1) \).\(^{43}\) The AdS/CFT correspondence suggests that this model is dual to a strongly coupled CFT Higgs sector \([44]\). Also, the SU(2)_L gauge symmetry in the RS bulk implies the presence of a global custodial isospin symmetry of the CFT Higgs sector, thus protecting EW observables from excessive new contributions \([43]\).

In this framework, Kaluza-Klein (KK) excitations of gauge bosons of mass \(M_{KK} \) 3 TeV are allowed and interestingly, light KK fermions are expected in the spectrum as a consequence of the heaviness of the top quark. The heaviness of the top quark is explained by the localization of the wave function of the top quark zero mode near the TeV brane. This is done by choosing a small 5D bulk mass (the so-called \(c' \) parameter), guaranteeing a large Yukawa coupling with the Higgs. It is clear that if we want to embed these models

\(^5\) The scenario where a fourth generation neutrino with mass near the \(M_Z = 2 \) window is a subdominant component of dark matter was studied in \([43]\).
into a GUT, we cannot consider SU (5) but rather Pati-Salam or SO (10) schemes. When the Right-Handed (RH) top quark is included in a GUT multiplet, its KK partners do not have a zero mode but their rest KK excitation turn out to be light. The masses and some of the couplings of these KK fermions are determined by the c-parameters (see Eq. 22 in the appendix). To have 0 (1) top Yukawa, the right-handed top must have $c_R < 0$. The top quark associated with the top quark to be $c_L = c_R = 0.4; c_L = c_R = 0.5$. Among all SM particles, the c of the RH top quark is the smallest. As a consequence, the KK modes inside its multiplet are predicted to be light (see Eq. 22). They are likely to be the lightest KK states in these models and could be produced at the LHC [7, 41].

The main feature of unification in extra dimensions is that the SM fermions have to be split into different GUT multiplets (unless the SM fermions are localized on the Planck brane). However, this is still not enough to prevent proton decay from dangerous higher dimensional operators localized on the TeV brane. In [3, 7], the problem of baryon number violation was solved by imposing a Z_3 symmetry. The consequence of the Z_3 symmetry is also to provide a stable particle. In this model, for each fermion generation, there are at least three 6 multiplets. Each of them is assigned a baryon number. For instance, for the third generation:

$$B = \begin{cases} 1 = 3 & \begin{array}{c} t_L; b_L; t^C_R; t^C_L; l^C_L; l^C_R; c^C_L; c^C_R \end{array} \\ 1 = 3 & \begin{array}{c} t_L; b_L; t^C_R; t^C_L; l^C_R; l^C_L; c^C_R; c^C_L \end{array} \\ 0 & \begin{array}{c} t_L; b_L; t^C_R; t^C_L; l^C_R; l^C_L; c^C_R; c^C_L \end{array} \end{cases}$$

(9)

where the particles in bold have zero modes and correspond to the SM fermions. The Z_3 symmetry is

$$\frac{e^{2i(\frac{n_e-n_L}{3})}}{10}$$

(10)

where n_e (n_L) is the number of color indices of the (anti)particle. SM particles do not carry any Z_3 charge. The Lightest Z_3 charged Particle (LZP) is therefore stable.

Although there are many new fermions in this model, we focus on the lightest ones, i.e. the level one KK fermions that belong to the multiplet containing the SM t_L (the $B = 1= 3$ multiplet of the third generation in Eq. [3]). The LZP belongs to this multiplet. The only phenomenologically acceptable choice is that t^C_R is the LZP (t^C_L couples too strongly to the Z). All fermions inside a given multiplet should have the same c-parameters. However, because of bulk GUT breaking effects, there can be effective large splittings so that the c-parameters of each component in the multiplet can be treated as free parameters. The c-parameters of members of SU (2) doublets are identical, for example c_R for both $t^{(1)}_L$, $b^{(1)}_L$.

The model therefore includes six free parameters for the third generation KK fermions,

$$c^C_R; c^C_L; c^C_R; c^C_L; c^C_R; c^C_L$$

(11)

We ignore the KK partner of the right-handed top. t^C_R has different boundary conditions to provide the zero mode of the RH top quark and its rest KK mode is in the multi-TeV range.

We also consider the invariance of the \tilde{g}^{0} of the $B = 1= 3$ multiplet which plays a role because of the mixing induced to the LZP. We will not include this particle in the model or compute explicitly its contribution to scattering processes but we will take into account its mixing with the LZP which will invariance the Z-LZP coupling.
Among the 45 gauge bosons of $SO(10)$, we only consider the gauge bosons of $SU(2)_L$, $SU(2)_R$, $U(1)_W$, W^+_R, W^-_R, W^0, B^0, which neutral components combine to give Z; Z^0; and a leptoquark gauge boson of electric charge $Q = 2 = 3$ which belongs to a color triplet + anti-triplet invariant under $SU(2)'s$, X_3; X_3. This state has Z_3 number $1 = 3$. Other gauge bosons will not directly enter the Z; Z^0 annihilation cross-sections that are relevant for us. The mass of these KK gauge bosons are taken to be equal, $M_{X} = M_{Z} = M_{KK}$.

The parameters that we expect to have an effect on the annihilation rates are: g_{10}, the 4D $SO(10)$ coupling which determines the strength of the Z^0 couplings (thus the coupling of the Z to the LZP) and can be considered as a free parameter; c_{s} which determines the LZP mass; c_{s}, which enters the $\nu_{L0}^{t}m$ mixing thus acts the Z-LZP coupling; the Higgs mass which is relevant mainly when M_{LZP} is near 2 and M_{KK} which sets the mass of the new gauge bosons, in particular Z^0 and X_3.

We have in addition, r, parameterizing the amount of bulk GUT breaking, and the cut-off scale of the effective 4D theory. Both enter the expression of the $X_{3}X_{S}m$ mixing (see Eq. 21) thus the LZP coupling to $t_{3}X_{S}$. The mass of W^0 should be important when it can contribute to a coannihilation process near a resonance. Finally, masses of KK fermions should be mostly relevant when they are near M_{LZP} and contribute to coannihilation.

All the formulae for the calculation of masses and couplings needed for the implementation of the model into CalcHEP [12] are listed in the appendix.

The Z coupling to the LZP is induced via Z_{L0}^{0}; m_{L0} mixing as well as via the mixing with ν_{L0}^{t}, the LH KK neutrino that belongs to the $B = 1$ multiplet that contains the SM LH top. The Z^0 coupling to the LZP is of order 1 and proportional to g_{10}. The Z^0; m_{L0} mixing therefore increases with g_{10} and the resulting induced LZP-Z coupling goes as g_{10}^{2}, for approximately like $M_{LZP} = M_{Z}^{2}$, thus is large when the left-handed neutrino is light. This corresponds to $c_{s} = 0$. Furthermore, the mixing increases significantly when the mass of the LZP approaches that of the ν_{L0}^{t}. Figure 17 shows the two components of the Z-LZP coupling vary with M_{LZP}. The component which arises from m_{L0}; m_{R0} mixing clearly dominates, and steeply increases when $M_{LZP} > 1$ TeV.

The Higgs coupling to the LZP is also suppressed by a KK mass, specifically, in the limit $M_{L0}^{2} > > M_{LZP}$,

$$g_{h} = \frac{m_{t}M_{LZP}}{M_{L0}^{2}(1 - 2g)(1 - 2g)} \frac{1}{2c_{s}}$$

where M_{L0}, M_{KK} and the term under the square root is there only if $c_{s} < 1/2$. Exact expressions used in the code can be found in the Appendices. This coupling increases with M_{LZP}; the largest contribution of the Higgs exchange is expected for a heavy LZP. On the other hand, the Higgs contribution is important for $M_{LZP} < M_{h} = 2$.

5 Relic density

In this section, we compute the LZP relic density and explore the parameter space of the model. The new features of our calculation compared to Ref. [6,7] are the following:

We include all annihilation and coannihilation channels involving level 1 KK fermions of the third generation (with the exception of the KK partner of the right-handed top
Figure 17: LZP-\(Z\) coupling as a function of the LZP mass. We show separately the contribution from \(Z - Z^0\) mixing (dash-dot) and \(R - Z^0\) mixing (dash) as well as the total coupling \(g^Z\) (full). a) \(M_{KK} = 3\) TeV, \(g_{10} = 0.3\); b) \(M_{KK} = 6\) TeV, \(g_{10} = 0.3\) (blue/dark) and \(g_{10} = 1.2\) (green/light grey). Lower (upper) curves are for \(c_L = 0.4\) (0.1).

that is heavy) that belong to the \(t_K\) multiplet. We include as well the exchange of level 1 KK gauge bosons, \(W^\pm; Z^0\) and vector leptoquarks, \(X_s\).

We include all possible resonances in either annihilation and coannihilation channels and perform precise evaluation of annihilation cross-section near resonances, in particular the Higgs resonance which was neglected in [6, 7].

We exactly solve the Boltzmann equation for the LZP number density. Specifically, we do not rely on the non-relativistic approximation \(v^2 = a + b v^2\) (which fails near the resonances).

We achieve this using micrOMEGAs 2.0. We have rewritten the model in the CalcHEP notation, specifying the new particles and their interactions. All details can be found in the appendix. Since we have a \(Z_3\) symmetry rather than a \(R\)-parity, special care had to be taken to specify the particles that could coannihilate with the LZP. We included all level one KK fermions. The diagrams that contribute to each (co)-annihilation process are chosen automatically according to the interactions specified in the model. We have also written a module for the direct detection cross-section. This only includes the dominant contribution that arises from the \(Z\)-exchange diagram. The value of \(g_H\), Eq. (12), in the LZP model is indeed typically too small for the Higgs exchange to contribute, according to the analysis of Part I.

Unless otherwise noted, we consider the following range of values for the free parameters of the model:

\[
M_{KK} = 3\) TeV, \(g_{10} = 0.3\)
\(M_{KK} = 6\) TeV, \(g_{10} = 0.3\) (blue/dark) and \(g_{10} = 1.2\) (green/light grey). Lower (upper) curves are for \(c_L = 0.4\) (0.1).
3 TeV < M_{KK} < 10 TeV, \quad 115 < M_H < 500 GeV, \quad 2M_{KK} < < 6M_{KK}

0 \leq c_0^l < 0.9, \quad 0 < r < 0.2, \quad 0.3 < g_{10} < 1.2

The central value $c_0^l = 0.4$ is fixed by the zero mode of the LH top quark c_L, and we allow deviations from bulk breaking effects (0.5). The lower value for M_{KK} is constrained by EW precision tests and direct detection experiments. The upper value is set arbitrarily to concentrate on models that are relevant to low energy phenomenology.

A light LZP could contribute to the invisible width of the Z. We have taken this constraint into account, $M_{KK} \leq 1.5$ TeV, and found that it plays a role only for the near maximal value of $g_{10} = 1.2$, and $M_{KK} = 3$ TeV.

5.1 LZP annihilation

We first look at self-annihilation before analysing the impact of various fermion coannihilation channels. We consider the range $0.7 < c_{\pm} < 0$ which leads to a LZP mass ranging from 1 (2.4) GeV to 2 (4) TeV, for $M_{KK} = 3 (6)$ TeV and $= 2M_{KK}$. Figure 18 shows the behaviour of h^2 as a function of the LZP mass for two extreme values of the SO (10) coupling, $g_{10} = 0.3; 1.2$ and $M_{KK} = 3; 10$ TeV. We see respectively the effects of the Z, the Higgs and Z^0 resonances. At large LZP mass, the main annihilation channels are into W pairs, heavy fermion resonances (b; t) through Z^0 exchange and into top quarks through t-channel exchange of X_S.

Figure 18: Relic density of the LZP without coannihilation. The blue full curves correspond to $g_{10} = 0.3$ and the red dashed curves to $g_{10} = 1.2$. Lower (upper) curves are for $c_{\pm} = 0.9 (0.1)$. The WMAP preferred region corresponds to the horizontal lines. Here, the mass of all other KK fermions is $0.9 \ M_{KK}$.

from 1 (2.4) GeV to 2 (4) TeV, for $M_{KK} = 3 (6)$ TeV and $= 2M_{KK}$. Figure 18 shows the behaviour of h^2 as a function of the LZP mass for two extreme values of the SO (10) coupling, $g_{10} = 0.3; 1.2$ and $M_{KK} = 3; 10$ TeV. We see respectively the effects of the Z, the Higgs and Z^0 resonances. At large LZP mass, the main annihilation channels are into W pairs, heavy fermion resonances (b; t) through Z^0 exchange and into top quarks through t-channel exchange of X_S.

22
Figure 19: Same as Fig. 18 with a) $M_H = 115$ GeV, b) $M_H = 500$ GeV.

Figure 20: Relic density of the LZP for $M_H = 500$ GeV, $g_{10} = 1.2; c_0 = 0.1; r = 0.1; = 2M_{KK}$, corresponding to $10^{-2} < g_2 < 7 \times 10^{-2}$ and $X = 3 \times 10^4$, with (full) and without (dash) the contribution of X_S.

5.1.1 Annihilation into top

Models with Pati-Salam SU(4) SU(2) SU(2) gauge group instead of SO(10) share most of the properties that we have discussed. As far as dark matter annihilation is concerned, the main difference comes from the absence of the X_S gauge boson. For this reason, we estimate separately the contribution from the t-channel diagram with X_S exchange. It is
particularly important near the threshold where the s-channel contribution of neutral gauge bosons is not so large. In Fig. 20, we compare \(\text{LZP} h^2 \) with and without the contribution from \(X_S \). The difference can reach an order of magnitude. As one moves in the TeV region, the shift is more modest as the annihilation into \(W \) pairs becomes much more important. The net impact of ignoring the contribution of \(X_S \) would be to increase the lower bound on \(M_{\text{LZP}} \) from 250 to 600 GeV for this choice of parameters.

5.2 Coannihilation with KK fermions

![Figure 21: LZP relic density for \(M_{KK} = 6 \text{ TeV} \), \(g_0 = 0.78; \rho_c = 0.4; \alpha = 0.4; \lambda = 2M_{KK} \), corresponding to \(5 \times 10^3 < \rho_\omega < 10^2 \) and \(X = 3 \times 10^4 \), including the contribution of coannihilation channels. The NLZP is a) (black/full), b) (red/dash-dot). The NLZP-LZP mass difference is zero to = 0.3 (black/full), = 0.4 (red/dash) and = 0.05 (blue/dash-dot).

As we said, all KK fermions belonging to the multiplet containing \(t_R \), except the KK mode of \(t_R \), are expected to be light (compared to the KK gauge boson mass) and close to the LZP mass. Among all possible coannihilation channels, we first examine those with KK leptons. The couplings of KK leptons \(L; R; L \) to the \(Z \) are much enhanced compared to the LZP which is the only one to be suppressed by mixing angles. Therefore, we expect a large impact of coannihilation channels for \(M_{\text{LZP}} = 100 \text{ GeV} \) where the \(Z \) exchange dominates. On the other hand, the coupling of KK leptons to the \(Z^0 \) are only slightly suppressed as compared to the \(Z^0 \)-LZP coupling and coannihilation effects are more modest when the \(Z^0 \) exchange dominates as illustrated in Fig. 21. The coannihilation channels are dominated by the NLZP pair annihilation into fermion pairs. Fig. 22 shows the impact of coannihilation for two sets of parameters where \(\text{LZP} h^2 \) is much above WMAP if one considers only annihilation
Figure 22: L2P relic density versus the NL2P-L2P mass difference, when the NL2P is \((L; L)\) (red), \((R)\) (black). Here, \(g_{10} = 0.78, M_R = 500 \text{ GeV}, c_R = 0.55, c_{L} = 0.4\) and \(c_{f} = 0.1\) for all other KK fermions.

5.3 Direct detection and Summary

As pointed out in [6,7], the L2P models have large rates in direct detection. In Figure 22 we plot \(n_{\text{L2P}}\) as a function of the L2P mass for the same range of parameters as in Figure 18, compared to the CDMS and XENON limits [13,14]. For \(M_{KK} = 3 \text{ TeV}\), the \(Z^0\) mixing is large and the L2P-nucleon cross-section is above the XENON limit for most of the parameter space. From these figures, we conclude that it might be difficult to satisfy both the WMAP
upper bound on the relic density and the limit from direct detection.

To investigate this more carefully, we scan randomly, generating 10^5 models within the parameter space 3 TeV < M_{KK} < 6 TeV, 3 < g_{10} < 12, 0.1 < c_L < 0.9 and 0.7 < c_R < 0. Here we x = 2M_{KK} and r = 0.1. We keep only models for which \(M_{LZP} h^2 < 0.13 \). The predictions for \(n_{LZP} \) range from \(10^7 \) to \(10^4 \) pb. Most of these values are already excluded by XENON, see Fig.24, in particular for light LZP's where annihilation proceeds through Z or Higgs exchange. Only models for which \(M_{LZP} > 400 \) GeV survive. The full set of parameters that we have scanned all predict large signals for direct detection and the whole parameter space, at least for \(M_{LZP} < 1 \) TeV, will be probed within a few years as this requires only a factor 6 in provenent in the best limit. If we had scanned up to KK mass of 10 TeV, the lower limit on \(n_{LZP} \) would be roughly the same and we would reach similar conclusions once we impose the WMAP constraint.

The presence of coannihilation channels changes the picture since coannihilation helps reducing the relic density but does not affect the elastic scattering cross section. Therefore, models with weak couplings to the Z that are still allowed by direct detection experiments can also satisfy the upper limit on the relic density. For example, \(M_{LZP} = 400 \) GeV, \(M_{Z^0} = 6 \) TeV and \(c_L^0 = 0 \) (0.9) lead respectively to \(n = 3 \times (2 \times 10^7) \) pb, below the XENON limit.
Figure 24: a) Relic density of LZP for a scan over input parameters, $3 < M_{KK} < 6$ TeV, $0.3 < g_{10} < 1.2; 0.1 < c_0 < 0.9, 0 < r < 0.2; M_{KK} < 2M_{KK}$. Here $c_i = 0.1$ for all other KK fermions and $M_{11} = 500$ GeV. Green/light grey dots show all models included in the scan, red/grey crosses show only models that also satisfy the XENON bound while black crosses show models that satisfy in addition the WMAP upper limit. The WMAP preferred region corresponds to the horizontal lines. b) Same as above except that the masses of the KK leptons are fixed to $1.05M_{LZP}$.

6 Acknowledgements

This work was supported in part by GDRI-ACPP of CNRS. We are grateful to K. Agashe for discussions. We thank M. Cirelli and A. Boyarsky for useful comments. A. Pukhov thanks the CERN Theory division for their hospitality.

7 Appendix

Here we give the details of the implementation of the LZP model [6,7] within CalcHEP and micrOMEGAs.

7.1 Particle Content

We only consider the first level KK fermions that are in the same multiplet as the SM right-handed top quark, which has $B = 1$.

27
generation as well as those of the first and second generations. Explicitly we include
\[t_L, b_L, r_L; l_L; r_L; r_R = LZP \]
(13)

where we use the shorthand notation \(t_L = t_L^{(1)} \). The first KK level of \(t_R \) is not included. \(t_R \) has different boundary conditions to provide the zero mode of the RH top quark and its first KK mode is in the multi-TeV range. We include of course the zero mode of the right-handed top, \(t_R^{(0)} \). Although we do not include \(\tau_0 \) of the \(B = 1 \) multiplet, this particle plays a role because it mixes with the LZZ via the top Yukawa coupling. This in turnces the coupling of the LZZ to the Z and to the Higgs. We will use the \(c \)-parameters associated with it, \(c_L \). The 5D Yukawa coupling of the top is related to the \(c \)-parameters of the zero mode of the top quark,
\[k_5 = \frac{1}{(1 - 2q)(1 - 2q)} \]
(14)

We choose \(c_L = 0.4, c_R = 0.5 \) leading to \(k_5 = 1.58 \).

Table 1: KK states included in the model

<table>
<thead>
<tr>
<th>name</th>
<th>Charge</th>
<th>(Z_3)</th>
<th>name</th>
<th>Charge</th>
<th>(Z_3)</th>
<th>name</th>
<th>Charge</th>
<th>(Z_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t_L)</td>
<td>2/3</td>
<td>-2/3</td>
<td>(l_L)</td>
<td>-1</td>
<td>-1/3</td>
<td>(X_0)</td>
<td>2/3</td>
<td>-1/3</td>
</tr>
<tr>
<td>(b_L)</td>
<td>-1/3</td>
<td>-2/3</td>
<td>(b_L)</td>
<td>0</td>
<td>0</td>
<td>(W_0)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(r_R)</td>
<td>0</td>
<td>0</td>
<td>(r_R)</td>
<td>0</td>
<td>1/3</td>
<td>(W_0)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>(t_R) (SM zero mode)</td>
<td>2/3</td>
<td>0</td>
<td>(r_L)</td>
<td>-1</td>
<td>1/3</td>
<td>(W_0)</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

The new gauge bosons of \(SU(2)_L \times SU(2)_R \times U(1) \) are \(Z^0 \) and \(W^0 \) (with dominantly right-handed couplings to fermions). The two neutral gauge bosons mass eigenstates are a mixture of the standard model \(Z \) and the first KK mode of the \(Z^0 \) (\(Z^0 \))

\[
Z = \cos_{22} Z_{SM} + \sin_{22} Z^0
\]
(15)

\[
Z^0 = \sin_{22} Z_{SM} + \cos_{22} Z^0
\]
(16)

Since the lighter state has to be dominantly the standard model \(Z \), \(\sin_{22} < 1 \), and we will ignore the contribution of terms that are suppressed by mixing except when the leading term is absent. For charged gauge bosons, the lighter state is denoted by \(W \) and is dominantly the standard \(W_L \) while the heavier state \(W^0 \) is dominantly \(W_R \).

\[
W = \cos_{WW} w L + \sin_{WW} w R
\]
(17)

\[
W^0 = \sin_{WW} w L + \cos_{WW} w R
\]
(18)

Again we ignore the contribution of terms suppressed by mixing, \(\sin_{WW} \ll 1 \). The mixing angle depends on the overlap between the wave function of the Higgs and that of \(Z^0 \) or \(W^0 \), denoted \(G_{Z^0}^H \) (see Eq. [34])

\[
\sin_{WW} = \frac{G_{Z^0}^H}{M_{Z^0}} \frac{M_w}{M_{W^0}} \quad (19)
\]

28
In addition, we include the leptoquark gauge boson of SO(10), X_S, which is coloured and has electric charge $2/3$. The mixing angle χ between the two SO(10) gauge bosons X^0 and X_S appears in the $t_L X_S$ vertex and reads (see Ref. [3,7] for more details)

$$\chi = k_5 (v=) r^2$$

Here r parametrizes the amount of bulk GUT breaking and will be chosen 0.1.

7.2 Parameters

We list the parameters of the model in Table 2. Unless otherwise noted we take $M_{X_S} = M_{Z^0} = M_W = M_{KK}$. The masses $M (c; M_{KK})$ in TeV of the KK fermions are approximated by (see Fig.1 of Ref. [7])

$$M (c; M_{KK}) = 2 \times 405 \frac{g_{10} 2 s_W c_W}{10} e^{G_{Z^0}^2} \frac{M_2}{M_{Z^0}} \frac{1}{2}$$

$$M_{KK}^2 = \frac{g_{10}^2 2 s_W c_W}{10} \frac{M_2}{M_{Z^0}} \frac{1}{2}$$

Table 2: Parameters of the model

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_{KK}</td>
<td>Mass of KK gauge bosons</td>
</tr>
<tr>
<td>r_0</td>
<td>$\log (M_{KK} / M_{KK})$</td>
</tr>
<tr>
<td>r</td>
<td>SO(10) bulk breaking</td>
</tr>
<tr>
<td>g_{10}</td>
<td>Cut-off of RS theory</td>
</tr>
<tr>
<td>M_H</td>
<td>Higgs mass</td>
</tr>
<tr>
<td>c_i</td>
<td>c-parameter of RH top quark</td>
</tr>
<tr>
<td>c_l</td>
<td>c-parameter of LH top quark</td>
</tr>
<tr>
<td>c_r</td>
<td>c-parameter of LH top quark</td>
</tr>
<tr>
<td>c_{L1}</td>
<td>c-parameter of RH fermions</td>
</tr>
<tr>
<td>c_{L0}</td>
<td>c-parameter of LH fermions</td>
</tr>
<tr>
<td>c_{BH}</td>
<td>c-parameter of b</td>
</tr>
<tr>
<td>c_{B0}</td>
<td>c-parameter of \tilde{b}</td>
</tr>
</tbody>
</table>

where $a(c) = \sqrt{c + \frac{1}{2} j}$. The numerical value 2.405 arises from the solution to the eigenvalue problem in the Randall-Sundrum geometry where the wave functions are given by Bessel functions.

5D fermions lead to two chiral fermions in 4D. The two chiralities have different boundary conditions on the TeV and Planck branes. The LH helicity of the LZP turns out to be localized near the Planck brane while the RH helicity is near the TeV brane (see Ref. [7] for more details). Therefore, only the RH helicity couples significantly to the KK gauge bosons.
7.3 Wave functions

7.3.1 Fermions: SM t_R and KK R

\[f_{t_R}(z;c) = (ze^{r_c})^2 e^{r_c} \frac{(1 - 2c)}{2e^{r_c}} 1^{i=2} \]
(23)

\[f_{LZP}(z;c;m) = (ze^{r_c})^\frac{1}{2} e^{r_c} \sum_{i=1}^{2} J_{a(c)}(m \ z) + b(c;m)Y_{a(c)}(m \ z) \]
(24)

where \(b(c;m) = \frac{J_{a(c)}(m \ e^{r_c})}{Y_{a(c)}(m \ e^{r_c})} \)
(25)

\[N_z(c;m) = \frac{e^{2r_c}}{2r_c} J_{a(c)}(m \) + b(c;m)Y_{a(c)}(m \)^2 e^{2r_c} J_{a(c)}(m \ e^{r_c}) + b(c;m)Y_{a(c)}(m \ e^{r_c})^2 i \]
(26)

7.3.2 KK gauge bosons

\[f_{a}(z;x) = e^{r_c} \frac{z}{N_{ga}(x)} [J_1(zx) + b_{ga}(x)Y_1(zx)] \]
(27)

\[b_{ga}(x) = \frac{J_1(xe^{r_c})}{Y_1(xe^{r_c})} \]
(28)

\[N_{ga}(x) = \frac{1}{2} (J_1(x) + b_{ga}(x)Y_1(x))^\frac{1}{2} e^{2r_c} J_0(xe^{r_c}) + b_{ga}(x)Y_0(xe^{r_c})^2 i \]
(29)

7.3.3 Higgs boson

\[f_h(z) = \frac{r}{2ze^{r_c}} \]
(30)

7.3.4 Wave function overlaps

\[g_1^R(c_1; c_2) = e^{r_c} \int_{-1}^{1} dz (z e^{r_c})^4 f_{a}(z;2.405) f_{LZP}(z;c_1;2.405) \]
(31)

\[g_2^R(c_1; c_2) = e^{r_c} \int_{-1}^{1} dz (z e^{r_c})^4 f_{a}(z;2.405) f_{LZP}(z;c_1;2.405) f_{LZP}(z;c_2;2.405) \]
(32)

\[g_3^R(c) = e^{r_c} \int_{-1}^{1} dz (z e^{r_c})^4 f_{a}(z;2.405) f_{LZP}^2(z;c;2.405) \]
(33)

\[g_4^R(c) = e^{r_c} \int_{-1}^{1} dz (z e^{r_c})^4 f_{a}(z;2.405) f_{LZP}^2(z;c) \]
(34)

\[G_{a,0}^R = \int_{-1}^{1} dz (z e^{r_c})^4 f_{a}(z;2.405) f_{LZP}^2(z) \]
(35)
Table 3: Couplings of KK fermions to neutral SM gauge bosons

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{t}_L t_L G)</td>
<td>(g_5)</td>
</tr>
<tr>
<td>(\bar{t}_L t_A)</td>
<td>(\frac{2}{3} e)</td>
</tr>
<tr>
<td>(\bar{t}_L t_Z)</td>
<td>(\frac{\kappa_t}{\alpha_t})</td>
</tr>
<tr>
<td>(b_L b_G)</td>
<td>(g_5)</td>
</tr>
<tr>
<td>(b_L b_A)</td>
<td>(\frac{1}{3} e)</td>
</tr>
<tr>
<td>(b_L b_Z)</td>
<td>(\frac{\kappa_b}{\alpha_t})</td>
</tr>
<tr>
<td>(\bar{b}_R b_G)</td>
<td>(g_5)</td>
</tr>
<tr>
<td>(\bar{b}_R b_A)</td>
<td>(\frac{\kappa_b}{\alpha_t})</td>
</tr>
<tr>
<td>(\bar{b}_R b_Z)</td>
<td>(\frac{\kappa_b}{\alpha_t})</td>
</tr>
<tr>
<td>(\bar{b}_L b_Z)</td>
<td>(\frac{\alpha_t}{2\kappa_b} f_{c_h})</td>
</tr>
</tbody>
</table>

Table 4: Couplings of KK fermions to W

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\bar{t}_L t_W)</td>
<td>(\frac{1}{2} (g_{R_q L W}^0 + \frac{m_{c_{r}}}{m_{t W}} (1 + \frac{5}{3}))</td>
</tr>
<tr>
<td>(b_L b_W)</td>
<td>(\frac{1}{2} V_{ub})</td>
</tr>
<tr>
<td>(\bar{L}_L W)</td>
<td>(\frac{g_{R_{1}}}{2m_{</td>
</tr>
<tr>
<td>(\bar{R}_R W)</td>
<td>(2 (g_{R_{1}}^{0} + \frac{m_{r}}{m_{</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{Table 3: Couplings of KK fermions to neutral SM gauge bosons} \\
\begin{array}{|c|c|}
\hline
\text{Vertex} & \text{Value} \\
\hline
\bar{t}_L t_L G & g_5 \\
\bar{t}_L t_A & \frac{2}{3} e \\
\bar{t}_L t_Z & \frac{\kappa_t}{\alpha_t} \\
b_L b_G & g_5 \\
b_L b_A & \frac{1}{3} e \\
b_L b_Z & \frac{\kappa_b}{\alpha_t} \\
\bar{b}_R b_G & g_5 \\
\bar{b}_R b_A & \frac{\kappa_b}{\alpha_t} \\
\bar{b}_R b_Z & \frac{\kappa_b}{\alpha_t} \\
\bar{b}_L b_Z & \frac{\alpha_t}{2\kappa_b} f_{c_h} \\
\hline
\end{array}
\end{align*}
\]

\[
\begin{align*}
\text{Table 4: Couplings of KK fermions to W} \\
\begin{array}{|c|c|}
\hline
\text{Vertex} & \text{Value} \\
\hline
\bar{t}_L t_W & \frac{1}{2} (g_{R_q L W}^0 + \frac{m_{c_{r}}}{m_{t W}} (1 + \frac{5}{3}) \\
b_L b_W & \frac{1}{2} V_{ub} \\
\bar{L}_L W & \frac{g_{R_{1}}}{2m_{||}} \\
\bar{R}_R W & 2 (g_{R_{1}}^{0} + \frac{m_{r}}{m_{||}} (1 + \frac{5}{3}) \\
\hline
\end{array}
\end{align*}
\]

\[
7.4 \text{ Neutrino mixing and coupling to the Higgs} \]

The large Yukawa coupling between the 16 with \(B = 1 \) and the 16 with \(B = 1 \) generates a mixing mass term between \(\nu_0 \) and the LZP. This induces LZP couplings to the Higgs and the Z after diagonalization of the mass matrix

\[
M_{LZP} = \begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\]

where

\[
\begin{align*}
M_{LZP} &= M_{KK} \\
m_{0}^{0} &= M_{KK} \\
m_{1/2}^{0} &= m_{KK} \\
f_{c} &= 1 \text{ if } c_{r} > 1/2 \text{ and } f_{c} = 1 \text{ if } c_{r} < 1/2 \text{ and } f_{c} = \frac{2}{1 - 2c}
\end{align*}
\]

\[
\text{(35)}
\]

\[
\text{(36)}
\]

31
Table 5: Couplings of SM particles and KK fermions to new gauge bosons

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Value</th>
<th>Couplings</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\ell_R X_S$</td>
<td>$\frac{g}{2} (1 + \delta)$</td>
<td>$g_1 = g_0 \frac{g}{2} g_{1R} (c_{\ell} c_{\ell R})$</td>
</tr>
<tr>
<td>$\ell_L X_S$</td>
<td>$\frac{g_1}{2} (1 + \delta)$</td>
<td>$g_4 = g_1 \frac{g}{2} g_{1L} (c_{\ell} c_{\ell R})$</td>
</tr>
<tr>
<td>$\ell_R \ell_R Z^0$</td>
<td>$\frac{g_2}{2} (1 + \delta)$</td>
<td>$g_2 = g_1 \frac{g}{2} g_{2L} (c_{\ell} c_{\ell R})$</td>
</tr>
<tr>
<td>$\ell_L \ell_L Z^0$</td>
<td>$\frac{g_2}{2} (1 + \delta)$</td>
<td>$g_3 = g_2 g_{3L} (c_{\ell} c_{\ell R})$</td>
</tr>
<tr>
<td>$W^+ B^0$</td>
<td>$\frac{g_3}{2} (1 + \delta)$</td>
<td>$g_{W^+ B^0} = g_0 g_{W^+ B^0} (c_{\ell} c_{\ell R})$</td>
</tr>
<tr>
<td>$W^+ H^0$</td>
<td>$\frac{g_4}{2} (1 + \delta)$</td>
<td>$g_{W^+ H^0} = g_1 g_{W^+ H^0} (c_{\ell} c_{\ell R})$</td>
</tr>
</tbody>
</table>

The LH and RH helicities of the LZP (respectively the mass eigenstates of $M^\gamma M$ and $M^\gamma M^\gamma$) are

$$ (1)_L = \cos \bar{\gamma}_L + \sin \bar{\gamma}_L \tag{37} $$

$$ (1)_R = \cos \gamma_R + \sin \gamma_R \tag{38} $$

where $\bar{\gamma}_L$ and γ_R are the 5D KK partners of γ_L and γ_R, which have respectively LH and RH chiralities (see Ref. [11] for more details). Therefore, the LZP coupling to the Higgs is given by:

$$ g_1 = f_{\ell L} f_{ch} \sin \gamma_L \cos \gamma_R \tag{39} $$

32
where we used $2k_5 = f_{c3} f_{c6}$. All fermions whose coupling to the Higgs are also induced via mixing with a heavier KK state ($R_L; L; L; R_L$) have a coupling g_{Hff} given by Eq. [39]. However, in the mixing angle one should substitute the following masses for the fermion f

$$m_1 = M_{KK}(c_{L}^2 M_{X} ; z) \quad m_2 = M_{KK}(c_{L}^2 M_{X} ; z) \quad m_3 = m_{c3} f_{c6} f_{c6} f$$

(40)

Here we assume that all the heavy states which mix with level one KK fermion have a common mass equal to $M_{KK}(c_{L}^2 M_{X} ; z)$. The mixing angles are

$$\sin_{L=R} = 1 + \left(\frac{m_1^2 + m_2^2}{m_1^2 + m_3^2} \frac{p_{--}^2}{4m_1^2 m_3^2} \right)^{1/2}$$

(41)

$$\cos_{L=R} = \left(\frac{m_1^2 + m_3^2}{2m_1 m_3} \frac{p_{--}^2}{4m_1 m_3^2} \right)^{1/2}$$

(42)

where $m_1 = M_{LZP}, m_2 = m_{0}^{L}, m_3 = m_{0}^{R}$ and $m_{1}^{L} = 4m_{0}^{L} m_{2}^{L} + (m_{0}^{L} + m_{0}^{R} + m_{0}^{L})^2$.

7.5 The Z--LZP coupling

The Z--LZP coupling (g_{Z}^γ) has one component due to Z^{0} mixing, g_{Z}^{0}, as well as another component from 0_{L}^{R} mixing, g_{L}^{R}. Both components are comparable although small. Explicitly,

$$g_{Z}^{\gamma} = g_{Z}^{0} + g_{L}^{R}$$

$$g_{Z}^{0} = g_{Z}^{0} g_{Z}^{0}$$

$$g_{L}^{R} = g_{Z}^{0} \sin^2 R$$

(43)

where $g_{Z}^{0} = e^{-2\alpha_{h}} g_{W}$ is the Z coupling to 0_{L}^{R} and $\sin_{L=R}$ is defined in Eq[41]. For $m_{0}^{L}, m_{0}^{R}, \sin_{L}, \sin_{R}$ and we can neglect the coupling of the LH helicity of the LZP. g_{Z}^{0} is given by Eq. [20] and g_{Z}^{0} is the Z0 coupling to the LZP, (see Table [3]),

$$g_{Z}^{0} = g_{10} \frac{\sin_{L}}{\sin_{R}} (c_{a})$$

(44)

References

