On Microscopic Origin of Integrability in Seiberg-Witten Theory

A. M. Marshakov

Theory Department, P.N. Lebedev Physics Institute, Institute of Theoretical and Experimental Physics,
Moscow, Russia
e-mail: mars@lpi.ru, mars@itep.ru

We discuss microscopic origin of integrability in Seiberg-Witten theory, following mostly the results of [1], as well as present their certain extension and consider several explicit examples. In particular, we discuss in more detail the theory with the only switched on higher perturbation in the ultraviolet, where extra explicit formulas are obtained using bosonization and elliptic uniformization of the spectral curve.

1 Introduction

Supersymmetric gauge theories have become recently an area, which allows the application of the nontrivial methods of modern mathematical physics. In particular, one is often interested in the properties of the low-energy effective actions, which in the theories with extended supersymmetry can be expressed in terms of the holomorphic functions on moduli spaces of vacua, or prepotentials. These prepotentials obey remarkable properties, which can be shortly characterized by the fact, that they are quasiclassical tau-functions [2], and the low-energy effective theory [3] can be formulated in terms of an integrable system [4].

Exact form of the prepotential provides comprehensive information about the effective theory at strong coupling, while at weak coupling the prepotential can be expanded over the contributions of the gauge theory instantons. As often happens in conventional quantum field theory, even each term in this in finite expansion, containing the integration over the noncompact instanton moduli space, is ill-defined. It turns out, however, that there exists a preserving supersymmetry infrared regularization, which allows to perform a computation, reducing it to a sum over the point-like instantons, whose contributions are parameterized by random partitions [5]. Moreover, it turns out, that the regularized volume of the four-dimensional space-time can be re-interpreted as a coupling constant in dual topological string theory [6], providing a new form of the gauge/string duality.

This duality predicts a nontrivial relation between the deformed prepotentials of N = 2 supersymmetric gauge theories and the generating functions of the Gromov-Witten invariants. Similar to the latter [7], the deformed prepotentials can be expressed in terms of the correlation functions in the theory of two-dimensional free fermions. These correlation functions can be identified with the tau-functions of integrable systems, whose fermionic representation is essentially different from the conventional one [8]. We shall postpone the detailed discussion of this issue for the full deformed prepotentials and concentrate, following [1], their main quasiclassical asymptotic.

2 Preliminaries

Free fermions

Let us introduce, first, the main definitions and notations for the two-dimensional theory of a single free complex fermion the action $\tilde{\mathcal{S}}$ on a cylinder. One can expand the solutions to Dirac equation in holomorphic coordinates w, z by

$$\begin{align*}
(w) &= X \frac{r w}{w} \tilde{z} z \\
\bar{e}(w) &= \frac{1}{r z + \frac{1}{2}}
\end{align*}$$

so that the modes after quantization satisfy the (anti)commutational relations

$$f \bar{e} g = e \bar{f} g = rs$$

The fermionic Fock space is constructed with the help of the charge M vacuum state (a Dirac sea)

$$\mathcal{M} i = \frac{1}{M + \frac{1}{2}} M + \frac{1}{2} M + \frac{1}{2} \cdots = \bigwedge_{r > M} \frac{r}{r}$$

with

$$\mathcal{M} i = 0; r > M; \quad \bar{e} \mathcal{M} i = 0; r < M$$

and these definitions correspond to the two-point function

$$\hbar \tilde{\mathcal{S}}(z)(w) = \frac{\partial^2 dw}{z \bar{z}}$$

More conventional Japanese conventions (with the integer-valued fermionic operators $i, \bar{i}, i 2 \mathbb{Z}$, see e.g. [9]) can be got from these by

$$\tilde{r}! \mathcal{M} i = 0; r > M; \quad \bar{e} \mathcal{M} i = 0; r < M$$

It is also convenient to use the basis of the so-called partition states; for each partition $k = (k_1, k_2, \ldots, k_r; k_0 = 0; 0; \ldots)$ one introduces the state:

$$\mathcal{M} \bigwedge_{r > M} k_i = \frac{1}{M + \frac{1}{2} k_1 M + \frac{1}{2} k_2 \cdots = \bigwedge_{r > M} r k_i}$$

and defines the $U(1)$ current as:

$$J_n = \bar{e} \mathcal{M} i = \bigwedge_{r > M} k_{i+n}$$

Obviously

$$\begin{align*}
\{J_n; r\} &= r + n \\
\bar{e} \mathcal{M} i &= \bigwedge_{r > M} w^n (w) \\
\mathcal{M} \tilde{\tilde{n}} (w) &= w^n (w) \\
\mathcal{M} i \tilde{\tilde{n}} &= \bigwedge_{r > M} w^n (w)
\end{align*}$$
Recall the bosonization rules:
\[\tilde{e}^i : e^j ; \quad = : e^i : ; \quad J = i\mathbb{I} \] \hspace{1cm} (2.10)
where
\[(z) (z) \quad \log z + : : : \] \hspace{1cm} (2.11)
and a useful fact from U (N) and permutation’s group theory: the Schur-Weyl correspondence, which states that
\[(C^N) k = \sum_{k^j = k} R_k \] \hspace{1cm} (2.12)
as \(S_k \) \ U (N) representation. Now let \(U = \text{diag} \, u_1, \ldots, u_N \) be a U (N) matrix. Then one easily gets using the Weyl character formula and the bosonization rules (2.10), that:
\[\text{Tr}_k U = \frac{\text{det} u_1^k + N \ldots 1}{\text{det} u_1^N} \] \hspace{1cm} (2.13)
gives the (ratio of the) standard Schur functions for any partition \(k \), a very nice review of their properties can be found in [10]. In particular, from this formula one derives:
\[e^{\sum_{k^j = k} \frac{1}{j^i}} \mathcal{M} \mathcal{M} = \sum_{k^j = k} \frac{1}{j^i} \mathcal{M} \mathcal{M} = \frac{\text{dim} R_k}{k!} \mathcal{M} \mathcal{M} \] \hspace{1cm} (2.14)
with
\[m_k = \frac{\text{dim} R_k}{k!} = \frac{1}{j^i} \] \hspace{1cm} (2.15)
being the Plancherel measure. It follows from the fact that for particular values \(u_1 = \ldots = u_N = \frac{1}{N} \)
\[s_k \frac{1}{-N} ; \ldots ; \frac{1}{-N} \frac{1}{-N} = \frac{m_k}{-N} \] \hspace{1cm} (2.16)

Instantons and Nekrasov’s computation

In the context of \(N = 2 \) supersymmetric gauge theories, one usually starts with the microscopic theory, determined by the ultraviolet prepotential \(F_{UV} \), which can be taken perturbed by arbitrary powers of the holomorphic operators
\[F_{UV} = \frac{1}{2} (t_0 + t_k) \text{Tr} \frac{X}{k} + \frac{1}{2} \text{Tr} \frac{X}{k} + \frac{1}{2} \text{Tr} \frac{X}{k} + \frac{1}{2} \text{Tr} \frac{X}{k} + \frac{1}{2} \text{Tr} \frac{X}{k} \] \hspace{1cm} (2.17)
and quadratic \(F_{UV} = \frac{1}{2} \text{Tr} \frac{X}{k} + \frac{1}{2} \text{Tr} \frac{X}{k} \). Then one integrates out the fast modes, i.e. the perturbative fluctuations with momenta above certain scale as well as the non-perturbative modes, e.g. instantons (and fluctuations around them) of all sizes smaller than \(1 \). The resulting effective theory has a derivative expansion in the powers \(\frac{1}{k} \).

The leading terms in the expansion are all determined, thanks to the \(N = 2 \) supersymmetry, by the effective prepotential \(F () \), as \(\frac{1}{k} \) is lowered all the way down to zero, we arrive at the infrared prepotential \(F_{UV} \). The supersymmetry considerations suggest that the renormalization cows of \(F \) and \(F \) proceed more or less
independently from each other. Thus one can simplify the problem by taking the limit, while F_{UV} kept fixed. In this limit the path integral is dominated by the gauge instantons. The setup of [5] allows to evaluate their contribution, as well as the contribution of the fluctuations around the instantons, exactly. The price one pays is the introduction of extra parameters into the problem, some of the infrared cutoff, which we denote by $\sim \frac{1}{a}$, since it appears to be a parameter of the loop expansion in dual topological string theory [6].

In particular, for the so-called noncommutative U(1) theory, or the theory on a single D3 brane in the background, which preserves only sixteen supercharges (so that the theory on the brane has only eight supercharges), the instanton partition function $Z(a; t; \tau)$, $t = (t_1; t_2; \cdots)$, can be shown to be given by the sum over the Young diagram s, i.e. over the partitions [5,6,11]:

$$Z(a; t; \tau) = \sum_{s} X_{\kappa} \frac{m_k^2}{(-\tau)^{\kappa_j}} \exp \left(\frac{1}{\kappa} \sum_{k > 0} t_k \frac{\mathcal{C}_{k+1}(a;k;\tau)}{k+1} \right)$$

(2.18)

where m_k is the Plancherel measure (2.15), and the Chern polynomials $\mathcal{C}_{k+1}(a;k;\tau)$ can be introduced, e.g. via

$$e^{\tilde{a}} = \exp \left(\frac{1}{\tilde{a}^2} \sum_{k=1}^{\infty} \frac{t_k}{k} \mathcal{C}_k(a;k;\tau) \right) = \exp \left(\frac{1}{\tilde{a}} \mathcal{C}_1(a;k;\tau) \right)$$

(2.19)

If the theory has the gauge group U(N), e.g. it is realized on the stack of N fractional D3 branes, the corresponding partition function is given by the generalization of (2.18):

$$Z(a; t; \tau) = Z_{\text{pert}}(a; t; \tau) = \sum_{s} X_{\kappa} \frac{m(a; k; \tau)}{a^{\kappa_j}} \exp \left(\frac{1}{\kappa} \sum_{k > 0} t_k \frac{\mathcal{C}_{k+1}(a;k;\tau)}{k+1} \right)$$

(2.20)

where $m(a; k; \tau)$ is the U(N) generalization of Plancherel measure [11] and $Z_{\text{pert}}(a; t; \tau)$ is the perturbative partition function.

Toda chain and tau-functions

Consider first, the well-known formula for the tau-function of the Toda molecule (or the open N-Toda chain with co-ordinates $q_{ij}(t; \mu) = \log \frac{Z(t; \mu; 0)}{Z(t; 0; 0)}$ [12]), given by all principal minors

$$Z(t; n; j) = \prod_{\kappa; \kappa < \kappa'} X_{\kappa} (\alpha^2)^{\kappa} \exp \left(\frac{1}{\kappa} \sum_{k = 0}^{\infty} t_k H_{1}(\alpha_k) = \prod_{\kappa; \kappa < \kappa'}^{\kappa = 1} X_{\kappa} \right)$$

(2.21)

of the $N \times N$ matrix, expressed as a matrix product with $A_{ij} = a_{ij}^{-1}, D_{ij} = i j \exp(z_i) \sum_{k = 1}^{N} \alpha_k$, a_{ij}^{-1}, $z_i = \left(- t_i a_1 + \cdots \right) + z_i^{(0)}$

(2.22)

where

$$Z(t; n; j) = \prod_{\kappa; \kappa < \kappa'} \exp \left(\frac{1}{\kappa} \sum_{k = 1}^{\infty} t_k H_{1}(\alpha_k) = \prod_{\kappa; \kappa < \kappa'}^{\kappa = 1} \exp \right)$$

(2.23)

we see that the sum in (2.21) is in fact taken over the partitions (k_1, k_2, \cdots, k_n) with the fixed length and

$$k_j = i_j + j = 1; j = 1, \cdots, n$$

(2.24)

\footnote{This theory can also be realized at a special point on the moduli space of U(N) gauge theory with $2 \text{N fundamential hypermultiplets.}
For the particular solution of the Toda chain with $a_i = 1$, one gets for (2.23)

$$Z(t|n) = \sum_{k \leq K} \frac{Q(i^2 k)(i!)}{(i!)(1!)} e^{2i\pi\frac{t}{(N-1)!}}$$

(2.25)

This is a singular or "stringy" solution, presenting a collection of particles moving each with a constant speed, proportional to its number. In KP/KdV theory the analog is u / $x=t$, a linear growing potential of Korteweg model[17], which never topples.

Comparing (2.25) to (2.21), one ends that

$$k^2 a_i = \frac{Q(i^2 k)(i!)}{(i!)(1!)} e^{2i\pi\frac{t}{(N-1)!}}$$

(2.26)

In the limit $N \to \infty$, after particular choice of the Hamiltonians (2.19)

$$H_1(a_i)_{|a_i = 1} = \chi_{11} \left(a_i | j \right)$$

(2.27)

and renormalization of the initial phase $\chi(0)$, passing from summation over partitions with a fixed length $k = n$ to a "grand-canonical" ensemble by a sort of Fourier transform, one gets $Z(t|n)$ / $Z(t;i;\cdots)$ the (2.18) partition function. By (2.14), it becomes equivalent to the following fermionic correlator

$$Z(a; t; \cdots) = \sum_{k \leq K} \left(\frac{m}{2} \frac{(i!)^2}{(i!)(i!)} e^{2i\pi\frac{t}{(N-1)!}} \right) = \sum_{k \leq K} \left(\frac{m}{2} \frac{(i!)^2}{(i!)(i!)} e^{2i\pi\frac{t}{(N-1)!}} \right)$$

(2.28)

where the mutually commuting modes of the $-\infty$ generators can be defined as

$$w_{k+1} = \left(\begin{array}{c} k+1 \\ 1 \end{array} \right)$$

(2.29)

The matrix element (2.28) is a particular non-standard fermionic representation of the tau-function, where the Toda times are coupled to the \hat{W}-generators (2.29) instead of the modes of the $U(1)$ current (2.8), and it has been discussed in [7, 13].

If only $t_i \neq 0$ the correlator (2.28) gives

$$Z(a = -M ; t_i ; 0 ; \cdots) = \sum_{k \leq K} \left(\frac{m}{2} \frac{(i!)^2}{(i!)(i!)} e^{2i\pi\frac{t}{(N-1)!}} \right) = \exp \left(\frac{1}{2} t_i a_i^2 + e^{i\pi} \right) = \exp \left(F_{t_i} \right)$$

(2.30)

the partition function of topological string on P^1. This is the only case when summing over partitions can be performed straightforwardly, using the Burnside theorem

$$m^2 k^{2k} \sum_{k \geq K} \frac{1}{k!} = \frac{1}{k!}$$

(2.31)
Baker-Akhiezer functions

In addition to (2.14), one can consider

$$\sim r e^{\frac{j}{2} M + \frac{1}{2} i} = \text{C}_k M; k$$

(2.32)

with (computed by the Wick theorem and using the properties of the Schur functions (2.13))

$$\text{C}_k = \text{M; k} j r e^{\frac{j}{2} M + \frac{1}{2} i} = \sum_{k} \frac{1}{(r + \frac{1}{2})^k M} \text{Y}_k i, k + r \frac{1}{2} M$$

(2.33)

where the infinite product is actually finite

$$\prod_{i=1}^{\infty} \frac{1}{(r + \frac{1}{2})^i M} = \frac{1}{(z^M; \frac{1}{M})}$$

(2.34)

Therefore, one gets for the Baker-Akhiezer functions

$$\sim (r) = \frac{\text{M; j} e^{\frac{j}{2} M + \frac{1}{2} i} \sum_{k>0} \frac{t_k}{(r + \frac{1}{2})^k M} \sum_{k>0} \frac{t_k}{(r + \frac{1}{2})^k M}}{Z (a; t; x)}$$

(2.35)

with $$a = M \sim$$ and the shift $$r = z$$, (2.35) gives

$$\sim (z; a; t; x) = \exp \frac{1}{z} t_k z^k \text{X}(\log z + 1) + a \log z + \cdots$$

(2.36)

In the quasiclassical asymptotic $$\sim 1$$, with $$\sim = z$$, (2.35) gives

$$\sim (z; a; t; x) = \exp \frac{1}{z} t_k z^k \text{X}(\log z + 1) + a \log z + \cdots$$

(2.37)

(similar formulas in the context of ve-dimensional Seiberg-Witten theory [14] were considered in [15]). In the same way one can define the two-point function

$$E(r) = \frac{\text{M; j} e^{\frac{j}{2} M + \frac{1}{2} i} \sum_{k>0} \frac{t_k}{(r + \frac{1}{2})^k M} \sum_{k>0} \frac{t_k}{(r + \frac{1}{2})^k M}}{Z (a; t; x)}$$

(2.38)
with

$$S(z;a;t) = \sum_{k>0} \log k \frac{2z(\log z) + 2az + \cdots}{k}$$

(2.39)

The asymptotics (2.39) plays an essential role in the study of the quasiclассical solution. Formula (2.38) can be also interpreted as an average of the r-th Fourier mode of the \textit{symmetrically split} Hamiltonian operator

$$E(r) = \frac{1}{z} \sum_{-2}^{2} r \cdot e^{-2}$$

introduced in [7]. The \textit{doubling} of the fermions and their symmetric splitting along the w-cylinder turn into the double covering of Z-plane by the quasiclассical spectral curve.

Bosonization

On a small phase space (t = 0 with k > 1) the tau-function of the \textit{model} (2.30) can be easily computed exploiting the fact that it can be presented as a matrix element of the evolution operator in hamonic oscillator for the initial and final coherent states. Indeed, after identifying L0 = \frac{1}{2} J_0^2 + J_1 J_1 = \frac{1}{2} \mu^2 + \frac{1}{2} \gamma^2, where \[
\begin{bmatrix}
0
\end{bmatrix}
\text{and}
\begin{bmatrix}
\gamma
\end{bmatrix}
\text{with }

\text{the system of coupled oscillators}
\begin{bmatrix}
\gamma
\end{bmatrix}
\text{are also switched on, the partition function}

\begin{align}
Z(\Omega; t_0; t_2; 0; 0; \cdots) = \prod_{n>0} \left(\frac{2}{\pi} \gamma^2 A + 2A^2 \gamma + \cdots \right)
\end{align}

(2.43)

the system of coupled oscillators \[\begin{bmatrix}
\gamma
\end{bmatrix}
\text{is just a kernel of the evolution operator in the holomorphic representation with}\]

\text{the quadratic Hamiltonian, perturbed by special,}

\text{preserving the energy due to }

\text{interaction}

\begin{align}
W_0 + W_1 = \frac{2}{\pi} \gamma^2 A + 2A^2 \gamma + \cdots
\end{align}

(2.43)

M ore strictly,

\begin{align}
Z(\Omega; t_0; t_2; 0; 0; \cdots) &= \exp \left[\frac{1}{2} \sum_{n>0} \epsilon^n (t_0^0 a H_0 + t_2^0 a H_1) e^{\gamma_i} \right]
\end{align}

(2.44)

with \[t(a) = -\frac{a^2}{2} + \frac{a^3}{3}, t^0(a) = t_0 + t_2 a. \text{ Therefore the problem reduces to the computation of the matrix elements}

\begin{align}
H_0 \exp \left[\frac{1}{2} \sum_{k=0}^\infty \frac{t_0^k}{k!} \gamma^k \right] H_1 \exp \left[\frac{1}{2} \sum_{k=0}^\infty \frac{t_2^k}{k!} \gamma^k \right]
\end{align}

(2.45)

for the coherent states

\begin{align}
\begin{bmatrix}
\gamma
\end{bmatrix}
\text{is also switched on, the partition function}

\begin{align}
Z(\Omega; t_0; t_2; 0; 0; \cdots) = \prod_{n>0} \left(\frac{2}{\pi} \gamma^2 A + 2A^2 \gamma + \cdots \right)
\end{align}

(2.43)

M ore strictly,

\begin{align}
Z(\Omega; t_0; t_2; 0; 0; \cdots) &= \exp \left[\frac{1}{2} \sum_{n>0} \epsilon^n (t_0^0 a H_0 + t_2^0 a H_1) e^{\gamma_i} \right]
\end{align}

(2.44)

with \[t(a) = -\frac{a^2}{2} + \frac{a^3}{3}, t^0(a) = t_0 + t_2 a. \text{ Therefore the problem reduces to the computation of the matrix elements}

\begin{align}
H_0 \exp \left[\frac{1}{2} \sum_{k=0}^\infty \frac{t_0^k}{k!} \gamma^k \right] H_1 \exp \left[\frac{1}{2} \sum_{k=0}^\infty \frac{t_2^k}{k!} \gamma^k \right]
\end{align}

(2.45)

for the coherent states

\begin{align}
\begin{bmatrix}
\gamma
\end{bmatrix}
\text{is also switched on, the partition function}

\begin{align}
Z(\Omega; t_0; t_2; 0; 0; \cdots) = \prod_{n>0} \left(\frac{2}{\pi} \gamma^2 A + 2A^2 \gamma + \cdots \right)
\end{align}

(2.43)

M ore strictly,

\begin{align}
Z(\Omega; t_0; t_2; 0; 0; \cdots) &= \exp \left[\frac{1}{2} \sum_{n>0} \epsilon^n (t_0^0 a H_0 + t_2^0 a H_1) e^{\gamma_i} \right]
\end{align}

(2.44)

with \[t(a) = -\frac{a^2}{2} + \frac{a^3}{3}, t^0(a) = t_0 + t_2 a. \text{ Therefore the problem reduces to the computation of the matrix elements}

\begin{align}
H_0 \exp \left[\frac{1}{2} \sum_{k=0}^\infty \frac{t_0^k}{k!} \gamma^k \right] H_1 \exp \left[\frac{1}{2} \sum_{k=0}^\infty \frac{t_2^k}{k!} \gamma^k \right]
\end{align}

(2.45)

for the coherent states

\begin{align}
\begin{bmatrix}
\gamma
\end{bmatrix}
\text{is also switched on, the partition function}

\begin{align}
Z(\Omega; t_0; t_2; 0; 0; \cdots) = \prod_{n>0} \left(\frac{2}{\pi} \gamma^2 A + 2A^2 \gamma + \cdots \right)
\end{align}

(2.43)

M ore strictly,

\begin{align}
Z(\Omega; t_0; t_2; 0; 0; \cdots) &= \exp \left[\frac{1}{2} \sum_{n>0} \epsilon^n (t_0^0 a H_0 + t_2^0 a H_1) e^{\gamma_i} \right]
\end{align}

(2.44)

with \[t(a) = -\frac{a^2}{2} + \frac{a^3}{3}, t^0(a) = t_0 + t_2 a. \text{ Therefore the problem reduces to the computation of the matrix elements}

\begin{align}
H_0 \exp \left[\frac{1}{2} \sum_{k=0}^\infty \frac{t_0^k}{k!} \gamma^k \right] H_1 \exp \left[\frac{1}{2} \sum_{k=0}^\infty \frac{t_2^k}{k!} \gamma^k \right]
\end{align}

(2.45)

for the coherent states

\begin{align}
\begin{bmatrix}
\gamma
\end{bmatrix}
\text{is also switched on, the partition function}

\begin{align}
Z(\Omega; t_0; t_2; 0; 0; \cdots) = \prod_{n>0} \left(\frac{2}{\pi} \gamma^2 A + 2A^2 \gamma + \cdots \right)
\end{align}

(2.43)

M ore strictly,
Figure 1: Prepotential, as a sum of all connected tree diagrams in the bosonic cubic ELDI theory. Each vertex is weighted by t_2 and each pair of external legs (by e^{t_2}). The depicted diagrams correspond literally to the contribution of truncated 'bosonic BCS model', with the dashed lines being the $\lambda A^3 i$-"propagators".

with $\lambda = \frac{1}{\hbar}$ and $\theta = \frac{1}{\hbar} \exp t^0(\alpha)$, \hbar.

Quasiclassically, the matrix element (2.45) gives

$$\hbar^0 \psi\gamma = \exp \frac{1}{\hbar^2} \left(t^0(\alpha) H_0 + t_2 H_1 \right) \exp - \frac{1}{\hbar^2} \sum_{\alpha} \exp F(t^0; t_2)$$

so that for the prepotential $\log Z = \frac{1}{\hbar} F + O(1)$ one gets from (2.44) (2.47)

$$F = t(a) + F(t^0(a); t_2)$$

Its nontrivial part $F(t^0(a); t_2)$ can be presented as a sum over all connected tree diagrams (see g. 1) in the bosonic cubic ELDI theory (2.45), which is encoded by appearance of the Lambert function in the exact quasiclassical solution. An interesting issue would be to solve this theory exactly, at least quasiclassically, which is already not quite obvious even for the truncated BCS model of two coupled oscillators, corresponding to the first term in (2.42), (2.43) and diagrams depicted at g. 1. The corresponding classical system

$$\gamma = t^0 + t_2 \gamma A; \quad \gamma = t^0 + 2t_2 \gamma A$$

$$A = 2t^0 A + t_2 \gamma A; \quad A = 2t_2 \gamma A + t_2 \gamma A$$

(2.49)

can be integrated in terms of elliptic functions, and possesses, in particular, a "kink" solution. We shall return to a detailed discussion of these issues elsewhere.

3 Quasiclassical free energy

The instanton calculation in $N = 2$ extended gauge theory (2.17) gives rise to the Seiberg-Witten prepotential as a critical value of the functional $\mathbf{2}$

$$F = \frac{1}{Z} \int \psi^0(x) \left(\begin{array}{c} x_1^k + 1 \\ x_1 > x_2 \end{array} \right) \frac{Z}{2} \psi^0(x_1) \psi^0(x_2) F(x_1, x_2)$$

(3.50)

extremized w.r.t. second derivative of the propagator function $f^0(x) = \frac{d^2 F}{dx^2}$ with the kernel

$$F(x) = \frac{x^2}{2} \log x - \frac{3}{2}$$

(3.51)

coincides with the perturbative prepotential of pure $N = 2$ supersymmetric Yang-Mills theory. Formula (3.50) means that the quasiclassical free energy for the partition functions (2.18) and (2.20) is saturated onto a single

2 We choose here different (by a factor of 2) normalization of the time variables compared to [1] and correct some misprints.
large" partition k with the profile function $f_k(x) = f(x)$, where for each partition $k = k_1 \ k_2 \ \ldots \ \ k_r$, $k_{r+1} = 0; \ldots$ the profile function is defined by

$$f_k(x) = \sum_{j=1}^{k} a_{j+}^{-(k_1 + 1)j} k a^{-(k_1 i)j} k a^{-(1 i)j} k a^{-i}) = 0 \ (3.52)$$

(see [11,1] for details). In particular, one can write for (2.19)

$$c_h(a; k) = \frac{Z}{Z} dx f_k^0(x) \prod_{i=1}^{k} (a + -(k_1 i)j)$$

The variational problem for the functional (3.50) should be solved upon normalization condition for $f(x)$ and the constraint

$$a = \frac{1}{2} \ Z \ dx x f^0(x) \ (3.54)$$

which can be in standard way taken into account by adding it with the Lagrange multiplier

$$F ! F + a^D a = \frac{1}{2} \ Z \ dx x f^0(x) \ (3.55)$$

having a sense of the $k = 0$ term in the summation in formula (3.50). The whole setup of (3.50) is almost identical to the standard quasiclassics of the matrix models, where the Coulomb gas kernel is replaced by a (multivalued!) Seiberg-Witten function (3.51).

The extremal solution for the (3.50) gives

$$S(x) = \prod_{k=0}^{\infty} x^k \ dx f^0(x) (x x) (\log x x 1) = a^D \ (3.56)$$

on the support I where $f^0(x) \neq 0$. Generally, for the microscopic non-abelian theory this support consists of a set of several (disjoint) segments along the real axis in the complex plane, where the filling fractions are fixed separately with the help of several Lagrange multipliers, see below. Equation (3.56) means that

$$S(z) = \prod_{k=0}^{\infty} x^k \ dx f^0(x) (z x) (\log(z x) 1) = a^D \ (3.57)$$

is an analytic multivalued function on the double-cover of the z-plane with the following properties:

The real part of the multivalued function (3.57) vanishes

$$S(x) = \frac{1}{2} \ (S(x + i0) + S(x - i0)) = 0; x \ 2 \ I \ (3.58)$$

on the cut, due to (3.56).

For its imaginary part one can write

$$\frac{1}{2} \ \text{Im} S(z i0) = \frac{Z}{z} dx f^0(x) (z x) = 0; z > x^* \ a z + f(z); x < z < x^* \ (3.59)$$

\text{Im} S(z i0) = 2(a z); z < x.
We see from (3.59) that even the differential dS is multivalued. Indeed, one can easily establish for
\[
\frac{dS}{dz} = t^0(z) \frac{Z}{dxf^0(x) \log(x - z)}
\]
that
\[
\frac{1}{\text{Im} \ z \ i0} = \begin{cases}
8 & \text{for } z > x^* \\
0 & \text{for } z < x^* \\
1 & \text{for } 0 < z < x \\
2 & \text{for } z < x
\end{cases}
\]

However, the differential
\[
d = t^0(z) dz + dz \frac{dxf^0(x)}{z - x}
\]
is already single-valued on the double cover of the cut z-plane with the periods $H = 4$ i2, so dS is defined modulo 4 i dz, and one can make sense of the periods dS due to $dz = 0$. Therefore, the exponent $\exp(-2)$ is already single-valued on the double cover and equals to unity on the cut.

In order to consider the asymptotic of (3.57) in what follows we shall always choose a branch, which is real along the real axis, i.e. take it at real $x + 1$. In particular, all residues below could be understood in this sense, as coefficients of expansion of generally multivalued differential at $x = 1$.

Taking derivatives of (3.56) in x-variable, or integrating by parts, one can bring it literally to the form, arising in the context of matrix model. However, for the purposes of Seiberg-Witten theory one needs a solution with different analytic properties: in matrix models the resolvent G $\frac{dS}{dz}$ does not have poles at the branching points where $dz = 0$ (see e.g. [16] and references therein), which is not true for (3.57).

Asymptotically from (3.57) one gets
\[
S(z) = \begin{cases}
2z(\log z - 1) + \frac{X}{k+1} t_k z^k + \log z \ dx f^0(x) \ a^D \frac{Z}{k^x} dxf^0(x) z^{k+1} \frac{1}{k+1} & \\
= 2z(\log z - 1) + \sum_{k > 0} \frac{X}{k+1} t_k z^k + 2a \log z \ \frac{\partial F}{\partial a} \ \frac{1}{k+1} \ \frac{Z}{k^x} dxf^0(x) z^{k+1} & \\
\end{cases}
\]
where, according to (3.50), (with convention that $\text{res}_1 \frac{dz}{z} = 1$)
\[
\frac{\partial F}{\partial t_k} = \frac{1}{2(k+1)} \ dxf^0(x) z^{k+1} ; \quad k > 0
\]
and, due to (3.55)
\[
a^D = \frac{\partial F}{\partial a}
\]
The coefficient at the $z(\log z - 1)$ term is fixed by normalization
\[
\int dxf^0(x) = f^0(x^*) \ f^0(x) = 2
\]
where x (in the one-cut case) can be defined as two solutions to the equation
\[
f(x) = \pm \text{log } x
\]
Using variational equation (3.56), one can also write for the functional (3.50) the double-integral representation (cf. with [18])

\[F = \frac{1}{2} \int_{x_1 > x_2} dx_1 dx_2 f^0(x_1) f^0(x_2) F(x_1, x_2) + aa^0 + \theta \tag{3.68} \]

expressing it in terms of the perturbative kernel \(f^0(x) \) and extremal shape \(f(x) \), solving (3.56). The (time-dependent) constant \(\theta \) arises in (3.68) due to constraint (3.66) and appears to be the constant part of the first primitive of the function (3.57).

4 Dispersionless Toda chain

In the case of a single cut let us present the double cover of the \(z \)-plane \(y^2 = (z - x^+)(z - x^-) \) in the form

\[z = v + w + \frac{1}{w} \tag{4.69} \]

with \(x = v \), 2 and

\[y^2 = (z - v)^2 - 4 \tag{4.70} \]

On the double cover (4.69), which is in the case of single cut just \(P^1 \) with two marked points \(P \), with \(z(P) = 1 \), \(w \rightarrow (P) = 1 \), formula (3.57) defines a function with a logarithmic cut and asymptotic behavior (3.63), odd under the involution \(w \rightarrow -\frac{1}{w} \) of the curve (4.69). In terms of the uniformizing variable \(w \) one can globally write

\[S = 2v + w + \frac{1}{w} \log w + 2(\log 1) w + \frac{1}{w} + \sum_{k > 0} t_k k(w) + 2a \log w \tag{4.71} \]

where

\[k(w) = z^k; \quad k > 0 \tag{4.72} \]

are the Laurent polynomials, odd under \(w \rightarrow -\frac{1}{w} \). The first term in (4.71) comes from the Legendre transform of the Seiberg-Witten differential \(z \frac{dw}{dz} \).

The canonical Toda chain times are defined by the coefficients at the singular term \(s \) in (3.63)

\[t_0 = \text{res}_x dS = \text{res}_x dS = 2a \tag{4.73} \]

and

\[t_k = \frac{1}{k} \text{res}_x z^k dS = \frac{1}{k} \text{res}_x z^k dS; \quad k > 0 \tag{4.74} \]

From the expansion (3.63) it also immediately follows, that

\[\theta F \frac{\partial}{\partial t_k} = \frac{1}{2} \text{res}_x z^k dS = \frac{1}{2} \text{res}_x z^k dS; \quad k > 0 \tag{4.75} \]

Formulas (4.73), (4.74), (4.75) together with (3.65) identify the generating function (3.50) with the logarithm of quasiclassical tau-function, being here, in the case of a single cut, a tau-function of dispersionless Toda chain hierarchy.

The consistency condition for (4.75) is ensured by the symmetry of second derivatives

\[\frac{\partial^2 F}{\partial t_n \partial t_k} = \frac{1}{2} \text{res}_x (z^k d^m) \tag{4.76} \]
where the time derivatives of (3.63)

\[
0 = \frac{\partial S}{\partial a} \bigg|_{t^!} = 2 \log z \frac{\partial^2 F}{\partial a^2} + \frac{2v}{z} \frac{\partial^2 F}{\partial a \partial t} + X \frac{\partial^2 F}{\partial a \partial t} \bigg|_{n>0} \frac{1}{n} z^n \bigg|_{n>0} \frac{1}{n} z^n
\]

(4.77)

from a basis of meromorphic functions with poles at the points \(P \), with \(z(P) = 1 \). All time-derivatives here are taken at constant \(z \).

Expansion (4.77) of the Hamiltonian functions (4.72) expresses the second derivatives of \(F \) in terms of the coefficients of the equation of the curve (4.69), e.g.

\[
0 = \bigg|_{z^!} \frac{2 \log z}{z} \bigg|_{z!} = 2 \log z \frac{2v}{z} \frac{\partial^2 F}{\partial a \partial t} + \frac{2v^2}{z} + \cdots
\]

(4.78)

Comparison of the coefficients in (4.78) gives, in particular,

\[
\frac{\partial^2 F}{\partial a^2} = \log z, \quad \frac{\partial^2 F}{\partial a \partial t} = v
\]

(4.79)

and

\[
\frac{\partial^2 a}{\partial t^2} = \frac{2}{\partial a} \exp \frac{\partial^2 F}{\partial a^2}
\]

(4.80)

which becomes the long-wave limit of the Toda chain equations after an extra derivative with respect to \(a \) is taken

\[
\frac{\partial^2 a^D}{\partial t^2} = \frac{\partial}{\partial a} \exp \frac{\partial^2 a^D}{\partial a^2}
\]

(4.81)

for the Toda co-ordinate \(a^D = \frac{\partial}{\partial a} \). Substituting expansions (4.78) into (4.76), one gets the expressions for the so-called contact terms [19] in the \(U(1) \) case, which are the polynomials of a single variable \(v \) with \(- \) dependent coefficients.

One can now find the dependence of the coefficients of the curve (4.69) on the deformation parameters of the macroscopic theory by requiring \(dS = 0 \) at the ramification points, where \(dz = 0 \). This condition avoids from arising of extra singularities at the branch points in the variation of \(dS \) w.r.t. moduli of the curve. Equation

\[
\frac{dz}{d \log w} = w \frac{1}{w} = 0
\]

(4.82)

gives \(w = 1 \), where now

\[
\frac{dS}{d \log w} \bigg|_{w=1} = X \frac{t_k}{k>0} \frac{d_k}{d \log w} \bigg|_{w=1} + 2v \frac{4 \log 0}{2} = 0
\]

(4.83)

If \(t_k = 0 \) for \(k > 1 \), solution to (4.83) immediately gives

\[
v = a, \quad 2 = e^b
\]

(4.84)
and the prepotential
\[
F = \frac{1}{2} a a^b + \frac{1}{2} \text{res}_{z} (z \text{d}S) \quad \frac{a^2}{2} = \frac{1}{2} a^2 t_1 + e^{t_1} \tag{4.85}
\]

Adding nonvanishing \(t_2 \), one nds
\[
v = a \begin{pmatrix} \frac{1}{2} t_1 \\
L \quad 4t_2^2 e^{t_1 + 2t_2 a}
\end{pmatrix}
\]
\[
\text{log } 2 = t_1 + 2t_2 a \quad L \quad 4t_2^2 e^{t_1 + 2t_2 a} \tag{4.86}
\]
where the Lambert function \(L(t) \) is defined by an expansion
\[
L(t) = \frac{X}{n!} \left(\begin{array}{c}
(n) n^1 t^n \\
\end{array} \right) = t^2 + \frac{3}{2} t^3 + \frac{8}{3} t^4 + \cdots \tag{4.87}
\]
and satisfies the functional equation
\[
L(t) e^{L(t)} = t \tag{4.88}
\]

Hence, for the prepotential with \(t_1; t_2 \not\equiv 0 \) one gets
\[
F = \frac{1}{2} \left[a a^b \right] + \frac{1}{2} \frac{\partial F}{\partial a} + (1 - k) \frac{\partial F}{\partial t_k} + \frac{\partial F}{\partial t_1} \frac{a^2}{2} =
\]
\[
= \frac{1}{2} a a^b + 4 \sum_{k>1}^{X} (1 - k) \text{res}_{z} (z \text{d}S) \quad \frac{a^2}{2} =
\]
\[
t_k = \frac{1}{2} a a^b + \frac{1}{2} \text{res}_{z} (z \text{d}S) \quad \frac{t_k^2 \text{res}_{z}}{2} z^2 \text{d}S \quad \frac{a^2}{2}
\]
wherefrom the instanton expansion can be computed (which can be strictly got as an expansion in parameter \(q \) after \(t_k + \frac{1}{2} \text{log } q \))
\[
F = t(a) + e^{t_0(a)} + 8 \lambda_2 e^{2t_0(a)} + \frac{160}{3} t_2 e^{\lambda_0(a)} + \frac{1536}{5} t_2 e^{\lambda_0(a)} + \cdots = t(a) + S(a) + \frac{1}{4} S(a)S^I(a) + \cdots \tag{4.90}
\]
with \(S(a) = \exp t_0(a) \). Expansion (4.90) directly corresponds to summing over connected tree diagrams in bosonic model, presented at g.1.

It is also easy to compute the explicit form of the extremal shape for nonvanishing \(t_1; t_2 \), which reads
\[
f_0^0(x) = \frac{2}{\text{arc} \sin} \left[\frac{x}{2} \right] + t_2 \frac{p}{4} \left(\frac{x}{v} \right)^2
\]
\[
\text{where } v = v(t) \text{ and } = (t) \text{ are given by } (4.86), \text{ or obey}
\]
\[
v \quad a = 2t_2 \quad 2 \quad \text{log } 2 = t_1 + 2t_2 v \tag{4.92}
\]
Formula (4.91) is a direct consequence of (3.62) and directly following from (4.71) upon the relations (4.92) expression
\[
(w; t_1; t_2; a) = 2t_2 y \quad 2 \text{log } w + (t_1 + 2t_2 v) \quad \text{log } 2 \quad \text{z} \quad y \quad \frac{a}{y} \quad \frac{v + 2t_2}{2}^2
\]
\[
\begin{pmatrix}
\left(4.93 \right) \\
\end{pmatrix}
\]
Note, that (4.91) says that the Vershik-Kerov \arcsin law" [20] for the limiting shape is deform ed by the Wigner semicircle distribution.

If the first three Toda times \(t_1; t_2; t_3 \) are nonvanishing, instead of (4.91) one gets

\[
f^0(x) = \frac{2}{\pi} \arcsin \frac{x}{2} v + \left(t_2 + 3t_3 v \right) \frac{P}{4} \frac{2}{(x^2)} \frac{x}{v^2} + \frac{3}{2} t_3 \frac{P}{4} \frac{2}{(x^2)} \frac{x}{v^2}
\]

where \(v \) and \(\nu \) are now subjected to

\[
v = a = 2(t_2 + 3t_3 v)^2 \]
\[
\log^2 = t_1 + 2t_2 \nu + 3t_3 (\nu^2 + 2^2)
\]

Generally we obtain for the limit shape

\[
f^0(x) = \frac{2}{\pi} \arcsin \frac{x}{2} v + \frac{X}{k > 1} \frac{t_k Q_k(x)}{4} \frac{2}{(x^2)} \frac{x}{v^2}
\]

where \(v \) and \(\nu \) obey some sort of hodograph equations \(v = P_v (v; \nu; t), \log^2 = P (v; \nu; t) \) for some polynomials \(P_v \) and \(P \), whose expansion in Toda times \(t \) can be easily reconstructed from the presented above formulas of general solution.

5 Extended non-abelian theory

In the case of U(N) gauge theory one has to consider solution with \(N \) cuts \(I_{i} I_{j}, i = 1, \ldots, N, \) which arises after adding to the functional (3.50) \(N \) constraints with the Lagrange multipliers

\[
\sum_{i=1}^{X} a_{i}^{D} = \frac{1}{Z} \frac{\partial x}{\partial I_{i}}
\]

i.e. solution to the integral equation

\[
X k > 0 \frac{t_k x^k}{Z} \frac{dx}{dx} = \frac{1}{Z} \frac{\partial x}{\partial I_{i}} (\log(z \times x) - 1) = a_{i}^{D} \quad x 2 I_{i}; \quad i = 1, \ldots, N
\]

Now it can be expressed in terms of the Abelian integrals on the double cover

\[
y^2 = \frac{Y}{\prod_{i=1}^{X} (z \times x \times 1)}
\]

which is a hyperelliptic curve of genus \(g = N - 1 \). Define, as before:

\[
S(z) = t^0(z) \frac{dx}{dx} = \frac{1}{Z} \frac{\partial x}{\partial I_{i}} (\log(z \times x) - 1) a_{i}^{D}
\]

where the integral is taken over the whole support \(I = \{ I_{i} \}_{i=1}^{N}, a_{i}^{D} = \frac{1}{Z} \frac{\partial x}{\partial I_{i}} a_{i}^{D}, \) and consider its differential,

\[
(z) = \frac{dS}{dz} = \frac{X}{k > 0} \frac{k t_k z^k}{Z} \frac{dx}{dx} (\log(z \times x)
\]
satisfying
\[(x + i0) + (x - i0) = 0; \quad x \neq 1; \quad i = 1; \ldots; N\] (5.102)
on each cut, and normalized to
\[
(x^+_N) = 0;
(x^+_j) = (x^+_j + i0) = 2 iN (j + 1); \quad j = 2; \ldots; N
(x^-_i) = 2 iN
\] (5.103)

Vanishing microscopic times

Consider, rst, all \(t_k = 0\) for \(k \neq 1\), and define \(2^N = e^z\). Now \(dS/dz\) is an Abelian integral on the curve (5.99) with the asymptotic
\[P! = 2N \log z \quad 2N \log z + O(z^{-1})\] (5.104)
w hose jumps are integer-valued due to (5.103), or \(d \quad 4 \quad i \quad z^2\). It means that the hyperelliptic curve (5.99) can be seen also as an algebraic Riemann surface for the function \(w = \exp(-2z)\), satisfying quadratic equation
\[N \quad w + \frac{1}{w} = P_N(z) = \sum_{i=1}^N (z^i + v_i)\] (5.105)
since for the two branches \(w_+ = w\) and \(w_- = -\frac{1}{w}\), one immediately nds that their product \(w_+ w_- = 1\) and sum \(w_+ + w_-\) are polynomials of \(z\) of given powers (zero and \(N\) correspondingly).

Equivalently, the ends of the cuts in (5.99) are restricted by \(N\) constraints in such a way, that this equation can be rewritten as
\[y^2 = P_N(z)^2 = 4^{2N}\] (5.106)
i.e. \(x_i\) are roots of \(P_N(z) \quad 2^N = 0\), and
\[y = N \quad w \quad \frac{1}{w}\] (5.107)

The generating differential (5.101) is now
\[dS = 2 \log w dw = d(2z \log w) + 2z \frac{dw}{w}\] (5.108)
just the Legendre transform of the Seiberg-Witten differential \(z \frac{dw}{w}\) on the curve (5.105), (5.106). It periods
\[a_i = \frac{1}{2} \quad 1 \quad \frac{dz}{w}
\] (5.109)
c oincide with the Seiberg-Witten integrals and the only nontrivial residues at infinity give
\[\text{res}_{w} \quad z \quad i \quad dS = \sum \text{res}_{w} \quad z \quad i \quad dS = \log 2^N\]
\[\text{res}_{w} \quad (dS) = \sum \text{res}_{w} \quad (dS) = 2 \quad v_j \quad j = 1\] (5.110)
The differential \((5.108) \) satisfies the condition

\[
dS = \frac{w}{w} dz = \frac{P(z)}{y} \frac{dz}{y} \quad \text{holomorphic}
\]

(5.111)

where the variation is taken at constant co-ordinate \(z \) and constant scale factor. Thus, the integrable system on \"small all phase space" is solved for the scale \(2^N = e^a \) and the modulus \(v_j, j = 1; \ldots; N \) of vacua of the \(U(N) \) gauge theory, satisfying the equation \(\sum_{j=1}^{N} v_j = 0 \) and the transcendental equations for the Seiberg-Witten periods (5.122).

Nonvanishing microscopic times

When we switch on \"adiabatically\" the higher times (2.17) with \(k > 1 \), the number of cuts in (5.98) remains intact, and the differential (5.101) can be still defined on hyperelliptic curve (5.99). However, now the role of bipolar differential \(\frac{dx}{y} \) of the third kind is played by

\[
d = dz \frac{X}{k(k-1)t} z^k \frac{Z}{k(k-1)t} \frac{dx f^0(x)}{x} \quad \text{holomorphic}
\]

(5.112)

where \(d!_i, i = 1; \ldots; N \) are canonical holomorphic differentials normalized to the A-cycles, surrounding first \(N-1 \) cuts. The differentials \(d_k \) in (5.112) are fixed by their asymptotic at \(z \to 1 \)

\[
d_k = \frac{dz}{z} + O(z^2); \quad k = 0
\]

(5.113)

and vanishing A-periods

\[
d |_{A_i} = 0; \quad k = 0; \quad 8 i = 1; \ldots; N
\]

(5.114)

The nonvanishing periods of \(d \) are fixed by

\[
d |_{A_j} = 2 i \int_{x_j}^{x_j'} f^0(x) dx = 2 i \Gamma(x_j') \Gamma(x_j) = 4 i
\]

(5.115)

which justifies that generating differential \(dS \) is still defined modulo \(4 \) \(dz \). The only important difference with the previous case is that integrality of the periods \(d |_{A} \), which was reformulated in terms of an algebraic equation (5.105) for the theory on \"small all phase space" remains now a transcendental equation, which cannot be resolved explicitly.

Nevertheless, on the curve (5.99) any odd under hyperelliptic involution differential can be always presented as

\[
d = \frac{s(z) dz}{y}
\]

(5.116)

where \(s(z) \) is a polynomial of power \(N + K \). In case of nonvanishing microscopic times \(t_1; \ldots; t_K \) up to the \(K \)-th order. Its higher \(K \) coefficients are fixed by leading asymptotic \((t_2; \ldots; t_K) \) and the residue at infinity

\[
\text{Res}, \quad d = 2N
\]

(5.117)
and the rest $N+1$ coefficients can be determined from (5.115). This xes completely the differential on the curve (5.99) which still remain to be dependent upon $2N$ (yet arbitrary) branch points f_{x_j}. The generating differential dS can now be defined in terms of the Abelian integral (z)

$$dS = dz = dz z_0$$

(5.118)

The dependence upon $2N+1$ parameters (the positions of the branch points in (5.99) together with z_0) is constrained by additional to (5.115) vanishing of the B-periods

$$A_j = 0; j = 1;:::;N + 1$$

(5.119)

Integral representation (5.101) suggests a natural normalization (5.103), i.e.

$$z_0 = x_N^+; (z_0) = (x_N^+) = 0$$

(5.120)

where x_N^+ is the largest among real ramification points f_{x_j}. These conditions lead to the following form of expansion of (z) in the vicinity of ramification points

$$(z) = \sum_{j=1}^{N+1} (x_j) + \sum_{j=1}^{N+1} z x_j + ::::$$

(5.121)

where the constants (x_j) are given by (5.103).

The rest $N+1$ parameters are eaten by the periods

$$a_j = \frac{1}{2} \int_{z_j} Z dxx f(x) = \frac{1}{2} \int_{z_j} \frac{1}{4} f(x) \frac{1}{4} dS$$

(5.122)

and the "free term" or scaling factor

$$t_k = \text{res}_k (z d)$$

(5.123)

Recall once more, that an essential difference with the case of vanishing times is that for $t_k \neq 0$, the exponent $\exp ()$ acquires an essential singularity at the points P_k, and the constraints (5.115), (5.119) cannot be resolved algebraically. The form of the expansion (5.121) ensures that variation of the generating differential at constant z w.r.t. moduli of the curve (5.99)

$$(dS) = (dz) =$$

$$= \sum_{j=1}^{N+1} \frac{1}{2} \int_{z_j} \frac{1}{4} f(x) \frac{1}{4} dS + :::: \text{holomorphic}$$

(5.125)

is indeed holomorphic.

The Lagrange multipliers

$$a_i^D = \frac{\partial F}{\partial a_i}$$

(5.126)
can be computed by a standard trick. Consider equation (5.98) for \(i \leq j \) and \(x \) there \(x \)-variables to be at the ends of corresponding cuts. Then

\[
a_i^D\, a_j^D = \text{Re} \int_{\Sigma_i^D} \frac{I}{2} \, dS
\]

or

\[
\frac{\partial F}{\partial a_i} = \frac{1}{2} \int_{\Sigma_i} dS; \quad i = 1; \ldots; N
\]

(5.128)

For the time-derivatives of prepotential one can write

\[
\frac{\partial^2 F}{\partial a_i \partial a_j} = \text{Re} \int_{\Sigma_i} z^k dS = \frac{1}{2(k+1)} \text{Re} \int \, z^{k+1} d
\]

(5.129)

6 Quasiclassical hierarchy and explicit results

From the expansion (5.101) in the case of \(U(N) \) extended theory it still follows that the 1-st derivatives of quasiclassical tau-function \(F \) are given by (3.64) and (4.75), while for the second derivatives one gets (4.76), or

\[
\frac{\partial^2 F}{\partial a_i \partial a_j} = \frac{1}{2} \text{Re} \int_{\Sigma_i} (z^n d^n) = \frac{1}{2} \text{Re} \int_{\Sigma_i} \log E(z) W(P;P^0)
\]

(6.130)

where we have introduced the bi-di erential \(W(P;P^0) = d_0 d_0 \cdot \log E(P;P^0) \), with \(E(P;P^0) \) being the prime form, see [21] for the definitions. In the inverse co-ordinates \(z = z(P) \) and \(z^0 = z(P^0) \) near the point \(P^0 \) with \(z(P^0) = 1 \) it has expansion

\[
W(z; z^0) = \int \left(\frac{dz z^0}{z^0} \right) + \cdots \int \frac{dz}{z^k} \left(z^0 \right)^{k+1} \quad (6.131)
\]

The bi-di erential \(W(P;P^0) \) can be related with the Szego kernel of

\[
S_e(P;P^0)S_e(P;P^0) = W(P;P^0) + d_1 d_1 (P) d_1 (P) \frac{\partial}{\partial \Sigma_{ij}} \log z(P)
\]

(6.132)

which, for an even characteristic \(e \), has an explicit expression on hyperelliptic curve (5.99)

\[
S_e(z; z^0) = \frac{U_e(z) + U_e(z^0)}{2} \left(\frac{\partial}{\partial \Sigma_{ij}} \right) \frac{dz}{dz^0} \quad (6.133)
\]

with

\[
U_e(z) = \frac{\prod_{j=1}^{X} \frac{z - x_{e,j}}{z^0 - x_{e,j}}}{U(z)}
\]

(6.134)

Here \(x_{e,j} \) is partition of the ramification points of (5.99) into two sets, corresponding to a characteristic \(e \). For example, on a small phase space, when (5.99) turns into the Seiberg-Witten curve (5.105), there is a distinguished partition \(e = E \), corresponding to an even characteristic with

\[
U_E(z) = \frac{P(z) - 2}{P(z) + 2} \quad (6.135)
\]
Substituting (6.132), (6.133) into (6.130) gives

\[
\frac{\partial^2 F}{\partial t_1 \partial t_m} = \frac{1}{4} \text{res}, \quad \frac{\partial}{\partial t_1} \log e^{(0,T)}
\]

where for the "contact polynomials" one gets from (6.133)

\[
P_{nm}^{(e)}(x_j) = \frac{1}{4} \text{res}, \quad \frac{\partial^2 F}{\partial x_j \partial t_1} \frac{\partial^2 F}{\partial x_j \partial t_m} \frac{\partial}{\partial t_1} \log e^{(0,T)}
\]

If calculated in the vicinity of the small phase space and for the particular choice of characteristic (6.135), residues (6.137) vanish for \(n,m < N\), and one gets exactly the conjectured in [19] formula

\[
\frac{\partial^2 F}{\partial t_1 \partial t_m} = \frac{1}{2 \text{res}}, \quad \frac{\partial}{\partial t_1} \log e^{(0,T)}; \quad n,m < N
\]

with

\[
u_n = 2 \frac{\partial F}{\partial t_1} = \frac{1}{n} \text{res}, \quad \frac{z^k z^{2n}}{z_0^n} \left(1 + \frac{U(z)}{2U(z)} + \frac{U(z^2)}{2U(z)} \right) dzdz_0
\]

Equation (6.138) is a particular case of the generalized dispersionless Hirota relations for the Toda lattice, derived in [18].

Let us point out, that this derivation of the renormalization group equation (6.138) in [1] is almost identical to developed previously in [22] for another version of extended Seiberg-Witten theory, which can be deduced by generating differential

\[
dS = \sum_{k>0} T_k d^{-k} = \sum_{k>0} T_k P (z)^{k-N} \frac{dw}{w}
\]

directly on the Seiberg-Witten curve (5.105) (whose form remained intact by higher order terms, in contrast to the quasiclassical hierarchy, determined by (5.118)), and all derivatives were taken at constant \(w\). For example, if \(N = 1\) and only \(T_0, T_1\) do not vanish with \(d^{-1} = d = (z) \frac{dw}{w}\), one gets

\[
\frac{\partial}{\partial T_1} (z) \frac{dw}{w} = \frac{\partial}{\partial T_1} w + \frac{1}{w}
\]

and

\[
\frac{\partial dS}{\partial T_1} = d^{-1} + T_1 \frac{\partial}{\partial T_1} w + \frac{1}{w} \frac{dw}{w} = 1 + T_1 \frac{\partial}{\partial T_1} d^{-1}
\]

which means, in particular, that the scale factor \(T_1\) linearly depends on the first time, in contrast to the exponential dependence in formula (4.84). Indeed, taking derivatives of (4.71) at constant \(z\), instead of (6.141) one gets

\[
\frac{\partial v}{\partial t_1} + \frac{\partial}{\partial t_1} (1 + 2a \log w \frac{1}{w} + 2 \log w) = 0
\]

and therefore

\[
\frac{\partial S}{\partial t_1} = \frac{\partial}{\partial t_1} (1 + 2a \log w \frac{1}{w} + 2 \log w \frac{1}{w} + 2a \frac{1}{w}) + \frac{\partial}{\partial t_1} (1 + 2 \log w \frac{1}{w} + 2a \frac{1}{w})
\]
i.e. formulas (4.72), (4.77) are provided directly by (4.84).

The choice of extension (6.140) in [22] was motivated rather by technical reasons: preserving the form of the Seiberg-Witten curve (5.105) with deforming only the generating differential, moreover that the latter remained single-valued even in the deformed theory. We see, however, that the old choice is not consistent with the microscopic instanton theory (2.17), (2.18), (2.20), basically since the appropriate co-ordinate for the quasiclassical hierarchy is \(z \), coming from the scalar field of the vector multiplet of \(N = 2 \) supersymmetric gauge theory. However, the corresponding quasiclassical hierarchy is defined even more implicitly, due to the highly transcendental ingredient \(d^4 \mathbb{I} \) for the second kind (not for the third kind) Abelian differential, and one needs to apply special or tricks to extract explicit results.

Instanton expansion in the extended theory

The instanton expansion \(F = \sum_k F_k \) in the non-Abelian theory starts with the perturbative prepotential

\[
F_0 = \sum_{j=1}^N t(a_j) + \sum_{i \neq j} F(a_i a_j)
\]

(6.145)
de ned entirely in terms of the functions (2.17) and (3.51). It is totally characterized by degenerate differential (5.116)

\[
d_0 = t_{\infty}(z)dz - 2dP_N(z) = \sum_{j=1}^N dz \quad \frac{X_j}{z} v_j
\]

(6.146)

(which does not depend on higher times), and the coefficients of the polynomial \(P_N(z) \) in (5.105), (6.146) coincide with the perturbative values of the Seiberg-Witten periods

\[
a_i = \frac{1}{v_i}, \quad \text{with} \quad v_i = v_i
\]

(6.147)
The perturbative generating differential \(dS_0 = \sum dz \), with

\[
d_0 = t_{\infty}(z) 2 \sum_{j=1}^N \log(z) v_j
\]

(6.148)

and satisfies

\[
\frac{\partial dS_0}{\partial a_j} = 2 \frac{dz}{z v_j} \quad \text{for} \quad j = 1, \ldots, N
\]

\[
\frac{\partial dS_0}{\partial t_k} = k z^{k-1} dz, \quad k > 0
\]

(6.149)

what gives rise to

\[
S_0(z) = t_{\infty}(z) 2 \sum_{j=1}^N (\log(z) v_j) 1
\]

(6.150)

Equations

\[
a_j = \frac{\partial F_0}{\partial a_j} = 2S_0(a_j)
\]

(6.151)

completely determine (6.145), since on this stage one makes no difference between \(v_j \) and \(a_j \).
Moreover, vanishing of the B-periods (5.119) of the differential (6.146)

\[Z x_i \]

\[x_i^* d_{0} = 0 \] \hspace{1cm} (6.152)

where \(x_j = a_j \) are positions of the branching points of the curve (5.99) in the vicinity of perturbative rational curve, immediately gives the deviations

\[S_i \overset{\text{def}}{=} e^{i(a_i)} \prod_{j \neq i} \frac{a_j}{a_i}^2 \]; \hspace{1cm} i = 1; \ldots; N \hspace{1cm} (6.153)

where the numerical coefficient is fixed from comparison with the Seiberg-Witten curve (5.106) on a small phase space. The instantonic expansion, similarly to that of the U (1) theory (4.90), can be developed in terms of the functions (6.153) and their derivatives. For example, in [1] we have checked, that

\[F_1 = \sum_{i=1}^{N} S_i \] \hspace{1cm} (6.154)

for U (2) gauge group and the only nonvanishing \(t_1, t_2 \), using instantonic expansions of the equations (5.99), (5.116) and (5.129).

Elliptic uniformization for the U (2) theory

In the case of U (1) theory the problem was solved explicitly by construction of the function (4.71) due to explicit uniformization of the rational curve (4.69) in terms of 'global' spectral parameter. This is hardly possible for generic non-Abelian theory with the hyperelliptic curve (5.99) of genus \(g = N - 1 \), but in the next to rational case with \(N = 2 \)

\[y^2 = Y (z \prod_{i=1}^{2} x_i^*)^2 \] \hspace{1cm} (6.155)

it is an elliptic curve, and therefore can be uniformized using, for example, the Weierstrass functions

\[z = z_0 + \frac{R^0(z_0)}{y} = z_0 + \frac{y^2}{y(0)} = z_0 + \frac{y^2}{y(0)} \] \hspace{1cm} (6.156)

where it was convenient to take

\[z_0 = x_4 \]

\[R^0(z_0) = x_{43}x_{42}x_{41} = 4 \] \hspace{1cm} (6.157)

\[R^2(z_0) = 2 (x_{41}x_{42} + x_{42}x_{43} + x_{42}x_{43}) = 24 \] \hspace{1cm} (6.158)

The Abelian integral for \(z \) can be now performed in terms of the elliptic functions. Take again for simplicity all \(t_k = 0 \), if \(k > 2 \). Then for the differential (5.116) one has

\[d = \frac{2t_2 z + s_1 z + s_0}{y} \] \hspace{1cm} (6.158)
and, as was promised before, this asymptotic xes the coefficients

\[s_1 = 4 \sum_{i=1}^{x} x_i, \]

\[s_0 = 2a + 2 \sum_{i=1}^{x} x_i^4 \]

and completely determines here the differential \((6.158)\) in terms of the curve \((6.155)\). For the elliptic integral \((5.118)\) one can now write

\[\int_{z_0}^{z} d = 2t_2 (0 + 0) + \log \frac{0}{0 + } + 2 \]

The constants \(t_2\) are easily recovered from comparison of the expansion of

\[\frac{d}{dz} = 2t_2 (0 + 0) + 0 + 0) + 2 \]

at \(0\) with \((6.158)\) upon \((6.156)\). The jumps of a multivalued Abelian integral \((6.160)\) on the elliptic curve \((6.155)\), are further constrained to integers by \((5.115)\) and \((5.119)\), which can be now rewritten in the form of transcendental constraints for the parameters of the \(W\) Eisenstein functions.

7 Conclusion

We have discussed in these notes the main properties of the quasiclassical hierarchy, underlying the Seiberg-Witten theory, which was derived in \([1]\) directly from the microscopic setup and instanton counting. Most of the progress was achieved due to existence of the "oversimplified" example, naively completely trivial, from the point of view of the Seiberg-Witten theory. However, even in this case the partition function of the deform instantonic theory becomes a nontrivial function on the large phase space, being the tau-function of the dispersionless Toda chain, and providing a direct link to the theory of the Gromov-Witten classes. The dual Seiberg-Witten period \((\text{the monopole mass})\) satisfies the long wave limit of the equation of motion of Toda chain, as a function of \(W\)-boson mass and the \((\log \text{ of })\) the scale factor. Much less transparent non-Abelian quasiclassical solution is nevertheless constructed using standard machinery on higher genus Riemann surfaces. It is also essential, that switching on higher time deforms the Seiberg-Witten curve.

The main issue now is what is going beyond the quasiclassical limit. Could at least the \("simple\" \(U(1)\) problem be solved exactly in all orders of string coupling in more or less explicit form? It is also necessary to stress, that the free fermion (or boson) matrix elements up to now were considered as formal series in the higher time \(t_2\), except for \(t_1\log\). Their knowledge as exact functions at least of \(t_2\) could provide us with an interesting information about physically different \("phases\") of the model. Another interesting and yet unsolved problem for the extended theory is switching on the matter by extrapolating the higher \(N_f\) to \(t_2 \propto -\frac{1}{N_f} \sum_{A=1}^{m} \sum_{\alpha} k\), what corresponds hypothetically to the theory with \(N_f\) fundamental hypermultiplets with corresponding masses. We hope to return to these problems elsewhere.

Acknowledgments

I am grateful to A. Alexandrov, H. Braden, B. Dubrovin, I. Krichever, A. Losev, V. Losyakov, A. Mironov, A. Morozov and, especially, to N. Nekrasov and S. Kharchev for the very useful discussions.
The work was partially supported by Federal Nuclear Energy Agency, the RFBR grant 05-02-17451, the grant for support of Scientific Schools 4401.2006.2, INTAS grant 05-100008-7865, the project ANR-05-BLAN-0029-01, the NWO-RFBR program 047.017.2004.015, the Russian-Italian RFBR program 06-01-92059-CE, and by the Dynasty foundation.

References

