ABSTRACT

We report on the discovery of Very High Energy (VHE) -ray emission from the BL Lacertae object 1ES 1011+496. The observation was triggered by an optical outburst in March 2007 and the source was observed with the MAGIC telescope from March to May 2007. Observing for \(18.7\) hr, we find 1ES 1011+496. The observation was triggered by an optical outburst in March 2007 and the source was related to the optical emission state. We have also detected the redshift of 1ES 1011+496 based on an optical spectrum that reveals the absorption lines of the host galaxy. The redshift of \(z = 0.212\) m akes 1ES 1011+496 the most distant source observed to emit VHE -rays to date.

Subject headings: gamma rays; observations, quasars: individual (1ES 1011+496)

1. INTRODUCTION

Known Very High Energy (VHE de ned as > 100 GeV) -ray emitting Active Galactic Nuclei (AGN) show variable flux in all wave bands. The relationship between the variability in different wave bands appears rather complex. The MAGIC collaboration is performing Target of Opportunity (ToO) observations whenever alerted that sources are in a high flux state in the optical and/or X-ray bands. Previously, optically triggered observations resulted in the discovery of VHE -ray emission from Markarian 180 (Abramowski et al. 2003). Here we report the discovery of VHE -rays from 1ES 1011+496 triggered by an optical outburst in March 2007. Previous observations of the source with the MAGIC telescope did not show a clear signal (Abramowski et al. 2007).

1ES 1011+496 is a high frequency peaked BL Lac (HBL) object for which we now detected a redshift of \(z = 0.212\) and \(0.002\) (Fig. 1). Previously, this was uncertain since it was based on an assumed association with the cluster Abell 950 (Smits et al. 1998). The redshift determined here makes 1ES 1011+496 the most distant VHE source yet detected with the possible exception of PG 1553+113 (Abramowski et al. 2006a; Aalberts et al. 2007) (for which the redshift is \(0.09 < z < 0.42\) Shvartz et al. 2006 Aalberts et al. 2007). The spectral energy distribution (SED) of BL Lac...
...objects normally show a two-bump structure. The lower frequency peak is due to synchrotron radiation. Various models have been proposed for the origin of the high-frequency peak; the most popular invoke inverse Compton scattering of ambient soft photons. There have been several suggestions for the origin of the low-frequency seed photons that are up scattered to -ray energies: the soft photons may be produced within the jet itself by synchrotron self-Compton (SSC, Maraschi et al. [1993]) or come from outside the jet, perhaps from the accretion disk (EC, Dermer & Schlickeiser [1993]). The high-energy peak may, instead, also have a hadronic origin (e.g., Mannheim et al. [1991]).

When the synchrotron emission peak is located in the low energy range from the sub-milliJy to optical, the objects are called low-frequency-peaked BL Lac objects. HBLs, on the other hand, have the peak synchrotron emission in the UV to X-ray energy range. The peak of the second bump is often not observable because of the low sensitivity above a few hundred MeV of satellite-borne detectors or a too high energy threshold of ground-based -ray detectors. With the exception of M 87 (Aharonian et al. [2003, 2006]) and BL Lac (Albert et al. [2007]), all known blazar sources detected at TeV energies with Cherenkov telescopes show a synchrotron peak in the UV to X-ray energy range, suggesting that the intensity of the TeV emission is related to a synchrotron component extending to high frequencies.

2. Observations and Data Analysis

The MAGIC telescope is located on the Canary Island La Palma (2200 m above sea level, 28°45’N, 17°54’W). The accessible energy range spans from 50-60 GeV (trigger threshold at an zenith angles) up to tens of TeV (Albert et al. [2007]).

The MAGIC observation was triggered by an observed high optical state of IES 1011+496 on 2007 March 12 (see light curve Fig. 2). The source has been monitored for more than 4 years in the optical with the KVA [2] and Tuorla 1m telescopes as a part of the Tuorla blazar monitoring program [2]. In March 2007 the u x reached the highest level ever observed during the monitoring. The core u x, which is the host-galaxy-subtracted u x (the host galaxy u x is taken from Nibgen et al. [2007] and is 0.49 ± 0.02 mJy), increased more than 50% from the local minimum of the light curve. The high optical state with increasing u x was continuing throughout the MAGIC observations, despite an observation gap of 2 weeks due to bad weather.

IES 1011+496 is monitored by RXTE ASM and Swift BAT, but the X-ray u x of the source is below the sensitivity of these instruments and the light curves show no indication of arcing. The source was also observed at Metsähovi Radio Observatory in May 2007. The source was not detected at 37 GHz, which indicates that it was not in a high state at mJy or lower wavelengths (A. Lahteenmaki 2007, private communication).

After the alert, MAGIC observed IES 1011+496 in March/May 2007. The total observation time was 26.2 hours, and the observation was performed at zenith angles ranging from 20° to 37°. The observation was done in the so-called Wobble mode (Baum et al. [1997]). After removing runs with unusual trigger rates, most likely caused by bad weather conditions, the effective observational time amounted to 18.7 hours.

The data were analyzed using the standard analysis and calibration programs for the MAGIC telescope (Albert et al. [2007]). The analysis is based on in-geometric parameters (Hillas [1985]), the Random Forest (Brent et al. [2001], Bock et al. [2004]), and the DISP (Domingo-Santamar a et al. [2005]). After cuts for hadron separation, the distribution of the ratio r, which is the angular distance between the source position in the sky and the reconstructed shower origin, is used to determine the signal in the ON-source region. Three background (OFF) regions of the same size are chosen symmetrically to the ON-source region with respect to the camera center. The ncut 2 = 0.02 deg 2 to determine the signal (Fig. 3) was optimized on nearly cont same background data to determine the signal of the source, allowing for signal extraction down to 100 GeV. The data were also analyzed with an independent analysis. With the statistical errors the same signal, the u x, and differential spectrum were obtained.

3. Results

The distribution of the r-values, after all cuts, is shown in Fig. 3. The signal of 297 events over 1591 normalized background events corresponds to an excess with signal of 6.2 σ using equation (17) of Li & Ma [1983].

To search for time variability the same pulse was divided into 14 subsamples, one for each observing night. Fig. 4 shows the integral u x for each night calculated for a photon u x above 200 GeV. The energy threshold has been chosen to reduce systematic effects arising from a rapidly decreasing effective area for -rays for lower energies. The u x is statistically constant at an emission level.
Even after the correction, the slope of the spectrum is still lower than the theoretical limits (Aharonyan et al. 2006c; Mazin & Raid 2007). With recent data, the last spectral point at 500 GeV is 1.5 above the t and thus not significant. The Crab Nebula spectrum (green dashed line, A. Istic et al. 2007)) is shown for comparison.

4. DISCUSSION

We report the discovery of VHE gamma-ray emission from BL Lac object 1ES 1011+496, with the redshift of z = 0.212. It is the most distant source detected to emit VHE gamma-rays to date. The observed spectral properties (soft and hard significant excess above 800 GeV) are consistent with the state-of-the-art EBL models (Kneiske et al. 2003; Primack et al. 2005; Stecker et al. 2008) and confirm recently derived EBL limits (Aharonian et al. 2006c; Mazin & Raid 2007).

In Fig. 5 we show the SED of 1ES 1011+496 using historical data (open circles; Costamante & Ghisellini 2002 and references therein) and our nearly simultaneous optical R-band data (triangle), together with the MAGIC spectrum corrected for attenuation (solid circles). We also display (square) the EGRET flux of the source 5EG J1009+4855, which has been suggested to be associated with 1ES 1011+496 (Hartman et al. 1993), but see also Sowards-Emme et al. 2003 whose analysis disfavors the association.

We model the SED by using a one-zone synchrotron-SSC model (see Tavecchio et al. 2001 for a description). In brief, a spherical emission region is assumed with radius R, embedded in a magnetic field of mean intensity B. The relativistic electrons follow a broken-power-law energy distribution specified by the limits of m and v_max and the break at v. Relativistic effects are taken into account by the Doppler factor.

As discussed in Tavecchio et al. (1998), if the position and the luminosity of the synchrotron and SSC peaks are known and an estimate of the minimum variability time scale is available, it is possible to uniquely constrain the model parameters. Unfortunately, we do not have all the required information to accomplish this. In particular, we have not the synchrotron peak by requiring that it reproduces the observed flux and the historical X-ray spectrum and we assume the SSC peak to be close to the MAGIC threshold. These choices minimize the required intensity in excess, since a low SSC peak frequency would require a higher SSC luminosity.

We present two models. The first (solid line), assum-
Fig. 6.1 Spectral energy distribution of 1ES 1011+496. The two different fits are done by varying the minimum electron energy \(n_{\text{min}} \) (see text). The other fits are done as: \(K \) (heliocentric distance to source) = 10.6 Mpc, \(E_{\gamma} = 10^{19} \) eV, (opposition factor) = 0.2, (break energy) = 10^9 eV, (slope of the electron distribution) = 2 and \(n_0 \) = 2.5 before and after the break energy, respectively, as well as \(n_{\text{max}} \) (maximum electron Lorentz factor) = 20. The fit is indicated by the solid line, and the reported EGRET flux is shown by the dashed line. The fit is consistent with the reported EGRET flux. It is evident that simultaneous GLAST-MAGIC observations of this source will provide important constraints on the model parameters.

In both cases, the energy output of the SSC component, reaching observed values of \(L \) \(10^{46} \) erg/s, dominates over the synchrotron luminosity, implying a relatively low magnetic field, \(B = 0.15 \) G. In this case the source would be electron-dominated since the magnetic energy density would be several orders of magnitude below that of the relativistic electrons. A larger synchrotron flux (limited by the non-detection by BAT and ASM) could alleviate the problem. Slight unobservable X-ray and VHE observations are mandatory to further investigate this issue. We also note that the Doppler factor \((\gamma = 20) \) is rather high and should be verified by very long baseline interferometry.

REFERENCES

Aharonian, F. et al. (HEGRA), 2003, A&A, 403, 1
Aharonian, F. et al. (HESS), 2006a, A&A, 448, 19
Aharonian, F. et al. (HESS), 2006b, Science, 314, 1424
Aharonian, F. et al. (HEGRA), 2005, Nature, 440, 1018
Brem, L. D., 2001, M. achine Learning, 45, 5
Dremin, A. et al. (HEGRA), 1997, A St ropt Art Phys., 8, 1.
Dominguin-Santamaría, a.a., E. et al. (MAGIC), 2005, Proc. 29th Int. Com.i ray Conf. (Pune), 5, 363
Hillas, A. M., 1985, Proc. of the 19th ECR (La Jolla), 3, 445