Gravitational waves from inspiralling compact binaries: hexagonal template placement and its efficiency in detecting physical signals.

T. Cokelaer

1School of Physics and Astronomy, Cardiff University, Cardiff CF24 3YB, UK

Matched filtering is used to search for gravitational waves emitted by inspiralling compact binaries in data from the ground-based interferometers. One of the key aspects of the detection process is the design of a template bank that covers the astrophysically pertinent parameter space. In an earlier work, we described a template bank that is based on a square lattice. Although robust, we showed that the square placement is over-efficient, with the implication that it is computationally more demanding than required. In this paper, we present a template bank based on a hexagonal lattice, which size is reduced by 40% with respect to the proposed square placement. We describe the practical aspects of the hexagonal template bank in planentation, its size, and computational cost. We have also performed exhaustive simulations to characterise its efficiency and safeness. We show that the bank is adequate to search for a wide variety of binary systems (primordial black holes, neutron stars and stellar mass black holes) and in data from both current detectors (initial LIGO, Virgo and GEO 600) as well as future detectors (advanced LIGO and EG0). Remarkably, although our template bank placement uses a metric arising from a particular template family, namely stationary phase approximation, we show that it can be successfully used with other template families (e.g., Pade resummation and effective one-body approximation). This quality of being effective for different template families makes the proposed bank suitable for a search that would use several of them in parallel (e.g., in a binary black hole search). The hexagonal template bank described in this paper is currently used to search for non-spinning inspiralling compact binaries in data from the Laser Interferometer Gravitational-wave Observatory (LIGO).

PACS numbers: 02.70.-c, 07.05.Kf, 95.75.-z, 95.85.Sz, 97.80.+d

I. INTRODUCTION

Ground-based laser interferometer detectors such as Laser Interferometer Gravitational-wave Observatory (LIGO) [1] or Virgo [2] are expected to detect gravitational wave (GW) signals in data that have been, or will soon be, collected. The most promising and well-understood astrophysical sources of gravitational waves are inspiralling compact binaries (ICB) in close orbits [3], which consist of two compact objects such as primordial black holes, neutron stars and/or stellar mass black holes.

Potentiality of a detection verges towards one event per year. However, the detection rate strongly depends on the ICB coalescence rate [4,5,6] and the volume of universe that detectors can probe. While we cannot in principle know the coalescence rates, we can increase the volume or distance at which a signal can be detected, which highly depends on (i) the design of the detectors and their sensitivities, and (ii) the detection technique that is used. Detector sensitivity can be increased most certainly but once data have been recorded, only the deployment of an optimally efficient method of detection can ensure the highest detection probability, and that is a passport, not only to probe the largest volume of universe possible, but also to detect a GW signal directly for the first time. Fortunately enough, although the two-body problem cannot be solved exactly in general relativity, post-Newtonian (hereafter PN) approximation have been used to obtain accurate models of the late-time dynamics of ICB [4]. Therefore, we can deploy a matched filtering technique, which is an optimal method of detection when the signal buried in Gaussian and stationary noise is known exactly. The models that we used for detection are also called template families.

The shape of the incoming GW signals depends on various parameters, which are not known a priori (e.g., the masses of the two component stars in the case of a search for non-spinning binaries). Thus, we have no choice but to filter the data through a set of templates, which is also called a template bank and must cover the parameter space that is astrophysically relevant. Since we cannot filter the data through an in literally large number of templates the bank is essentially discrete. Consequently, the match between any signal and the nearest template in the discrete template bank will cause reduction in the signal-to-noise ratio (SNR). Spacing between template must be chosen so as to render acceptable this SNR reduction as well as the computational demand required by the cross correlation of the data with the entire discrete template bank. As we shall see, the spacing between template is set by specifying a minimum match between any signal and the template bank. In practice, template families are approximation of the true gravitational wave signal, and no true signal will perfectly match any of the template family. However, in this paper we shall consider that template and simulated signal belong to the same template family.

The template bank placement is one of the key aspects of the detection process. Nonetheless, its design is not unique. There are essentially two types of template bank placements. The first one does not assume any knowl-
edge on the signalm anifi; the second does. The rst type of plam ent com utes m atches between surrounding tem plates until two tem plates have a match close to the requested m ini al match, and com utes matches repeatedly over the entire param eter space until it is fully populated. Using geo m etrical cons iderations, an e cient instance of this technique has been developed. A second approach, described in various papers, utilizes a metric that is de ned on the signal manifold. It uses both the mean theorem to place tem plates at proper distances over the param eter space. We developed a tem plate bank plam ent in that was im im ent and fully tested within the LIGO algorithm library. This tem plate bank was used in the analysis of data from different LIGO science runs. We also shown that although robust with respect to the requirem ent (matches should be above the m ini al match), it is over-e cient. This result was expected because we used a square lattice to place tem plates over the param eter space.

In this paper, we fully describe and validate a hexagonal tem plate bank plam ent that is currently used by the LIGO scienti c collaboration so as to analyze the most recent sci ence runs. In Section II, we recapitulate some fundam ental enetical techniques and notions that are needed to describe the bank plam ent, and previous results on the square tem plate bank plam ent. We also provide a fram ework to validate a tem plate bank. In Section III, we describe the algorithm that places tem plates on a hexagonal lattice. In Section IV, we summarize the result of the sim ulations performed to test the hexagonal bank. We envisage various param eter spaces that allow s to search for binary neutron star (BNS), primordial black hole (PBH), black hole-neutron star (BHNS) and, or, binary black hole (BBH) signals. We also consider design sensitivity curves for the current and advanced generation of ground-based detectors. In Section IVB, we show that the proposed hexagonal tem plate bank has the required speci cations.

Finally, in addition to the case of a tem plate family based on the stationary phase approximation, we also investigate in Section IVC the possibility to use the same hexagonal tem plate bank with other tem plate family including Pade resum ation and e ective one-body approxim ation. We show that there is no need to construct a tem plate bank for each tem plate family; the proposed bank can be used for the di erent family that we looked at in this paper.

II. FORMALISM AND TEM PLATE BANK VALIDATION

Matched tem plating and tem plate bank plam ent use from algorithms that are summarized in this Section. We also review the main result of the square tem plate plam ent, and recapitalize the fram ework introduced in that allows us to validate a tem plate bank.

A. Signal and Metric

The matched tem plating technique is an optim um method to detect a known signal, s(t), that is buried in a stationary and Gaussian noise, n(t) [20]. The method performs a correlation of the data x(t) = n(t) + s(t) with a tem plate h(t). In this paper, we shall assume that s(t) and h(t) are generated with the same model so that a tem plate can be an exact copy of the signal. Matched tem plating of the data x(t) with a tem plate h(t) can be expressed via the inner product weighted by the noise power spectral sensitivity (PSD), S_b(f), and is given by

$$\hat{h} = \frac{\int_0^1 x(f)h(f) + h(f)}{S_b(f)}$$

Note that for simplicity, we will ignore the tim e t with in the inner product expressions. A tem plate and a signal can be nor malized according to

$$\tilde{x} = \frac{x}{\|x\|}$$

The SNR after tem plating by h(t) is

$$\text{SNR} = \frac{\tilde{x}^T \tilde{h}}{\|\tilde{x}\|^2}$$

The simulations that we will perform assume that tem plate and signal are nor malized, that is (\tilde{h}; \tilde{x}) = 1, and (\tilde{s}; \tilde{x}) = 1. In this paper, we are interested in the fraction of the optimal SNR obtained by tem plating the signal x(t) with a set of tem plate h(t), therefore, we can ignore the noise n(t), and (\tilde{x}; h) becom es (\tilde{s}; \tilde{h}). Strictly speaking, (\tilde{s}; \tilde{h}) does not refer to a SNR anymore, but to the tem plating function, which is by de nition always less than or equal to unity if the two waveforms are nor malized. In the following, we shall use the notion of tem plating introduced in [10]; the tem plate between two tem plates is the inner product between two tem plates that is max imized over the tim e (using the inverse Fourier transform) and the initial orbital phase (using a quadratic m atched tem plating).

The incoming signal has unknown param eters and one needs to tem plate the data through a set of tem plates, i.e., a tem plate bank. The tem plates are characterized by a set of param eter # ; # = 0;1;:::p 1. The tem plates in the bank are copies of the signal corresponding to a set of values # ; i = 0;1;:::N, where N is the total num ber of tem plates. A tem plate bank is optim ally designed if N is in m al and if for any signal there always exists at least one tem plate in the bank such that

$$m_{\text{in m al}}(\hat{s}(\#_i) ; \tilde{h}(\#_i)) \geq M$$

where M is the in m al match mentioned earlier. Usually, in searches for EB, the value of the in m al match is set by the user to 95% or 97%, which corresponds
to a decrease in detection rate of 15% and 9%, respectively. Nevertheless, the \(m_{\text{in r st h st o r h}} \) has a much smaller value for the \(m_{\text{st h h l o c h}} \) stage of a hierarchical search (e.g., 60%), or for a one-stage search of periodic signals (e.g., 70% or lower).

The distance between two in nesimally separated normalized tem plates on the signal manifold is given by \([12,13]\)
\[
j_h(\# + d\#) = j_h(\#)j_h = j_h d\# j_h = (h \cdot j_h) d\# d\#
\]
\[
g d\# d\#; \quad (2.5)
\]
where \(h \) is the partial derivative of the signal \(h \) with respect to the parameter \(\# \). So, the quadratic form
\[
g = (h \cdot j_h) \quad (2.6)
\]
de nes the \(m \)-metric induced on the signal manifold. The \(m \)-metric is used to place tem plates at equal distance in the parameter space. The distance \(dx_i \) between tem plates in each dimension is given by
\[
\text{dx}_i = \frac{1}{\sqrt{\text{MM}}} \quad (2.7)
\]
In practice, using such \(dx_i \) leaves a fraction of the parameter space uncovered, and overlap between tem plates is required (e.g., in the square placement, spacing is actually set to \(dx_i = \sqrt{2} \)).

Since we restrict ourself to the case of non-spinning waveform \(s \), \(h(t) \) depends on 4 parameters only: the two component masses, \(m_1 \) and \(m_2 \) which may vary from sub-solar mass to tens of solar mass system, the initial orbital phase \(\psi \), and the time of coalescence \(t_c \). We can maximize over \(t_c \) and \(\psi \) analytically, therefore the parameter space that we need to cover with our tem plate bank is a 2-dimensional space only. For conciseness, we can represent the GW waveform with a simple expression given by
\[
h(t) = \frac{4A}{D} M \left[M f(t)^{2-3} \cos(t) \right]; \quad (2.8)
\]
where \(f(t) \) is the (invariant) instantaneous frequency of the signal measured by a remote observer, the phase of the signal \('c \) is equal to zero when the binary coalesces at \(t_c = t_c \), and \(A \) is a normalizing constant representing the amplitude \([23]\). The asymmetric mass ratio is \(= m_1 m_2 = m_0 \), where \(m = m_1 + m_2 \) is the total mass of the system. There exist amplitudes for each \(\pm 2, 2.5 \text{PN} \) \([8]\), the importance of which for detection and estimation is shown in \([23]\). However, in this work, we limit ourselves to the Newtonian models only and limit the PN expansion of the phase to 2PN order. Moreover, in the tem plate bank placement, namely for the \(m \)-metric computation, we consider the stationary phase approximation (SPA) \([23]\), for which the \(m \)-metric can be derived analytically \([13]\). Nevertheless, other tem plate families can be used both for injection and timing (see Section IV A).

B. Example: the Square Tem plate Bank

The tem plate that we have proposed in \([12]\) uses the m etric based on the SPA model, and the spacing \(dx_i \) as deduced in Eq. (2.7). Since the model explicitly depends on the two mass parameters \(m_1 \) and \(m_2 \), the preference of chirp times, denoted 0 and 3 (see appendix B), Eqs. (2.1) as coordinates on the signal manifold is indeed meaningful because these variables are almost Cartesian \([23,24]\).

Although not perfectly constant for PN-order larger than 1PN, we shall assume that the \(m \)-metric is essentially constant in the local vicinity of every point on the manifold. We could use any combinations of chirp times, but using the pair 0, 3, there exists analytical inversion with the pair \(m \) (see \([25,22]\)).

The parameter space to be covered is defined by the minimum and maximum component masses of the system considered \((m_{\text{min}} \) and \(m_{\text{max}}) \), and the minimum and maximum total masses \((M_{\text{min}} \) and \(M_{\text{max}}) \) as shown in Fig. 1. The lower cut-off frequency \(f_{\text{c}} \), at which the tem plate starts in frequency, sets the length of the tem plates and therefore directly influences the \(m \)-metric and the tem plate space, and the number of tem plates \(N_0 \). In \([12]\), we showed how the size of the tem plate bank changes with \(f_c \). We also investigated the loss of match due to the choice of \(f_c \). We generally set \(f_c \) so that the loss of match is of the order of a percent.

We first remind how the proposed tem plate bank works. First, tem plates are placed along the \(m_1 = m_2 \) or \(0.25 \) line starting from the \(m_{\text{min}} \) in the space of total mass \(M_{\text{max}} \). Then, additional tem plates are placed so as to cover the remaining part of the tem plate space, in row \(s \) starting at \(0.25 \) along lines of constant 3 until a tem plate lies outside the parameter space. The spacing between lines is set adequately. Distances between tem plates are based on a square lattice. An example of such a tem plate is shown in Fig. 2. One of the limitations of the tem plate is that tem plates are not placed along the eigenvectors of the \(m \)-metric but along the standard basis vectors that describe the \(\psi \) through the orientation of the ellipses varies significantly (i.e., at high mass regime). The square tem plate is also over-critical as compared to a hexagonal tem plate (see Fig. 3).

C. Bank Efficiencies

Independently of the tem plate bank placement, the tem plate bank must be validated to check whether it fulfils the requirements (e.g., from Eq. (2.3)). First, we perform Monte-Carlo simulations so as to compute the

\[E(\sigma; h) = \max_j \delta(\#_j^\sigma; \#_j^h) \quad (2.9) \]

where \(N_b \) is the number of tem plates in the bank, \(N_s \) the number of injections.

The vectors \(\#^\sigma \) and \(\#^h \) correspond to the parameters of the simulated signals and the tem plates, \(\sigma \) and \(h \) are the models used in the generation of the signal and tem plate, respectively. In all the simulations, we set \(\#^h = f_m m_2 c/2 g \). Further, one, we can analytically maximize over the unknown orbital phase \(c \) and, therefore, \(\#^h = f_m m_2 g \).

The efficiency vector \(E \) and the signal parameter vector \(\#^\sigma \) are useful to derive several rules of \(\#^\sigma \). The cumulative distribution of \(E \) (Fig. 3, bottom panel) indicates how quickly \(m \) matches drop as the \(m_{\text{init}} \) match is reached. Nevertheless, the cumulative distribution function of \(E \) hides the dependency of the \(m \) matches upon \(m \) masses. Therefore, we also need to look at the distribution of \(E \) versus total \(m \) mass (eq., Fig. 4, top panel), or versus \(c \) or chip \(m \), (see appendix for an exact definition). Usually, we look at \(E \) only. Indeed, in most cases, the dynamical range \(r \) is small (from 0.1875 to 0.25 in the BNS case). Finally, we can quantify the efficiency of a tem plate bank with a unique value, that is the safeness, \(S_R \), given by

\[S_R (\sigma; h) = \min E(\sigma; h); \quad (2.10) \]

Ideally, we should have a tem plate bank such that \(S_R \) is a generalization of the left hand side of Eq. (2.10) on \(N_s \) injections. The higher \(N_s \) is, the more confident we are with the value of the safeness. Ideally, the number \(N_s \) should be several times the size of the tem plate bank that is \(N_s \), \(N_b \), so that statistically we have at least one injection per tem plate. The sub-index \(R \) of the safeness is the ratio between \(N_s \) and \(N_b \) and indicates the relevance of the simulations. The safeness provides also a way of characterizing the tem plate bank: if \(S_R \) is less than the expected \(m_{\text{init}} \) match \(m \), then...
the bank is under-e cient. Conversely, a template bank can be over-e cient like in Fig. 3.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{template_placement.png}
\caption{E ciencies of the square template bank. For convenience we remind the reader of some results of the square template bank provided in [4]. In the simulations, we used stationary phase approximate models for both injections and template. Injections consist of binary neutron stars. We used 4 design sensitivity curves (LIGO, advanced LIGO, VIRGO, and GEO), and for each of them we perform 10,000 injections. In the top panel, we show all the results together; all injections are recovered with a match higher than 95%, as requested. In the bottom panel, we decompose the 4 simulations and show that all of them behave similarly. Actually, we can see that most of the injections are recovered with even higher matches (above 97%) showing the over-e ciency of the placement.

III. HEXAGONAL PLACEMENT BASED ON THE METRIC

In the 0; 3 basis vectors, both amplitude and orientation of the eigenvectors change, which may imply a laborious placement. In this Section, we describe the hexagonal placement that is conceptually di erent from the square placement and takes into account the eigenvectors change throughout the parameter space.

A. Algorithm

Although the hexagonal placement algorithm is independent of any genetic or evolutionary algorithm, it can be compared to biological processes, and we will use this analogy to explain the placement. First, let us introduce a cell that contains a template position (e.g., 0 3), the metric components de ned at this position, and a unique identi cation number that we refer to as an ID. A cell covers an area de ned by an ellipse with semi-axes equal to dx = 2. The goal of a cell is to populate the parameter space with an o spring of at most 6 cells (hexagonal placement). A cell can be characterized by the following principles:

1- Initialization A cell is created at a given position in 0 3 plane, not necessarily at a physical place (i.e., can be less than 1/4). The initialization requires that metric components at (0 3) are calculated, a unique ID number is assigned,

6 connectors are created and set to zero.

Finally, if the cell area intersects with the parameter space, then it has the ability to survive in its environment: it is fertile. Conversely, a cell whose coverage is entirely outside the parameter space is sterile.

2- Reproduction A fertile cell can reproduce into 6 positions that are the corner of a hexagon inscribed in the ellipse whose semi-axes are derived from the metric components dx’s. A cell that has reproduced is a mother cell and its o spring is composed of 6 daughter cells. Once a daughter cell is initialized, it cannot reproduce in place of its mother. This is taken into account via the connection principle.

3- Connection Following the reproduction process, a mother cell sets the connections with its daughter cells by sharing their IDs. Therefore, a mother cell knows the IDs of its daughter cells and vice versa. Moreover, when a mother cell reproductes, it also sets up the connections between two adjacent daughters so that they both know their IDs. These connections prevent cells from reproducing in a direction that is already populated.

4- Sterility A cell becomes sterile (cannot reproduce anymore) when both reproduction and connection principles have been applied. A cell that is outside the parameter space is also sterile (checked during the initialization).
5-Exclusivity The reproduction process is exclusive: only one cell at a time can reproduce. It is exclusive because a cell cannot start to reproduce while another cell is still reproducing.

The cell population evolves by the reproduction of their individuals over as many generations as needed to cover the entire parameter space. The first generation is composed of one cell only. The position of this first cell corresponds to \(m_1 = m_{\text{min}}, m_2 = m_{\text{max}} \). We could start at any place in the parameter space. However, local atness is an approximation and the author thinks it is better NOT to start at \(m_1 = m_{\text{max}}, m_2 = m_{\text{max}} \) where the metric evolves quicker (highest mass). The first cell is initialized (first principle). Then, the cell reproduces into 6 directions (second principle). Once the reproduction is over, the connections between the other cell and its daughters are set (third principle), and finally, the cell becomes sterile (fourth principle). This loop over the first cell has created a new generation of 6 cells, and each cell will now follow the four principles again. However, the new generation of cells will not be able to reproduce in 6 directions. Indeed, connections between the first mother cell and its daughters have been set, and therefore the new generation cannot propagate towards the other direction. Furthermore, the 6 new cells have already 2 other adjacent cells. Therefore, each cell of the second generation can reproduce 3 times only. Moreover, some of the cells might be outside the parameter space and are sterile by definition. Once a new generation has been created, the previous generation must contain sterile cells only. The algorithm loops over the new generation while there exists fertile cells. The first generation is a particular case since it contains only one cell. However, the following generations are not necessarily made of a unique cell, and the reproduction warrants a careful procedure: the reproduction takes place cell after cell starting from
the smallest ID. Moreover, in agreement with the fifth principle, the cells of the next generation wait until all the cells of the previous generation have reproduced. The reproduction over generations stops once no more fertile cells are present within the population. Since the parent generation has finite, the reproduction will automatically stop. Figure 4 illustrates how the rest 3 generations populate the parent parameter space.

Once the reproduction is over, some cells might be outside the physical parameter space, or outside the mass range requested. An optional final step consists in “pushing back” the corresponding cells inside the parent parameter space. First, we can push back the non-physical cells only, that is the cells that are below the = 1 = 4 line towards the relevant eigen-vector directions onto the = 1 = 4 line. Second, there are other cells for which mass parameter sets correspond to physical mass but that are outside the parameter space of interest. Nothing prevents us from pushing these cells back into the parent parameter space as well. This procedure is especially important in regions where the masses of the component objects are large. Indeed, keeping mass plates of mass larger than a certain value causes problems owing to the fact that the search pipeline uses a fixed lower cut-off frequency and the waveforms of mass greater than this value cannot be generated. In the simulations presented in this paper, we move the cells that are below the = 1 = 4 boundary, and keep the cells that are outside the parameter space but with > 1 = 4. Useful equations that characterize the boundaries of the parameter space are presented in appendix B. A flow chart of the algorithm is also presented in appendix B.

An example of the proposed hexagonal placement is shown in Figure 4. In this example, the minimum and maximum individual mass component are 3 M and 30 M, and the lower cut-off frequency is of 40 Hz. We can see that none of the mass plates are placed below the equal mass line whereas some are placed outside the parameter space. Figure 4 gives another placement example.

B. Size, Gain and Computational Cost

The ratio of a circle’s surface to the area of a square inscribed within it is 1.27, whereas the circle’s radius. The ratio of the same circle’s surface to an inscribed hexagon equals 1.21. The ratio of the square surface to the hexagon is therefore about 29%, which means that about 29% less mass plates are needed to cover a given surface when a hexagonal lattice is used instead of a square lattice; computational cost could be reduced by the same amount. Tables I and II summarize the sizes of the proposed square and hexagonal template parent placements. The hexagonal template bank reduces the number of templates by about 40% (see Table III). This gain is larger than the expected 29%, and is related to the fact that we take into account the evolution of the metric (orientation of cells/ellipses) on the parameter space.

Computational time required to generate a hexagonal bank appears to be smaller than the square bank. In Table IV, we record the approximate time needed to generate each template bank, which is of the order of a few seconds even for template banks as large as 100,000 templates. It is also interesting to note that most of the computational time is spent in the construction of the parameter sets (used by the metric space) rather than in the placement algorithm.

The template bank size depends on various parameters such as the minimum mass and lower cut-off frequency that strongly influence the template bank size. Other parameters such as the functional frequency at which mass elements are computed, or the sampling frequency may also influence the bank size. There are also parameters that can be made on the placement itself. Two main issues arise from our study. First, the hexagonal placement populates the entire parameter space. Yet, parameter space is not a square but rather a triangular shape. It is not needed anymore to single template overlaps with two boundary lines. In this case, hexagonal placement can be switched to a bi-section placement that places template at equal distances from the two boundary lines. A secondary issue is that the hexagonal placement is aligned along an eigenvector direction. Nothing prevents us to place template along the other eigenvector direction. It seems that this choice affects neither the efficiencies nor the template bank size significantly.

<table>
<thead>
<tr>
<th>Bank size</th>
<th>EGO</th>
<th>GEO 600</th>
<th>LIGO -I</th>
<th>LIGO -A</th>
<th>Virgo</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBH</td>
<td>3582</td>
<td>1229</td>
<td>744</td>
<td>2238</td>
<td>4413</td>
</tr>
<tr>
<td>BHNS</td>
<td>94651</td>
<td>16409</td>
<td>9964</td>
<td>35869</td>
<td>74276</td>
</tr>
<tr>
<td>BNS</td>
<td>22413</td>
<td>5317</td>
<td>3452</td>
<td>9743</td>
<td>17764</td>
</tr>
<tr>
<td>PBH</td>
<td>30116</td>
<td>62608</td>
<td>39118</td>
<td>122995</td>
<td>242509</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bank size</th>
<th>EGO</th>
<th>GEO 600</th>
<th>LIGO -I</th>
<th>LIGO -A</th>
<th>Virgo</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBH</td>
<td>4109</td>
<td>838</td>
<td>532</td>
<td>1712</td>
<td>3283</td>
</tr>
<tr>
<td>BHNS</td>
<td>71478</td>
<td>12382</td>
<td>7838</td>
<td>27511</td>
<td>57557</td>
</tr>
<tr>
<td>BNS</td>
<td>16036</td>
<td>3576</td>
<td>2319</td>
<td>6969</td>
<td>12958</td>
</tr>
<tr>
<td>PBH</td>
<td>205439</td>
<td>41354</td>
<td>26732</td>
<td>84154</td>
<td>167725</td>
</tr>
</tbody>
</table>
TABLE III: Size reduction between the square and hexagonal template plate banks. We summarize the template bank size ratio (in percentage) between the hexagonal and square placements. The ratios are calculated with the numbers provided in Tables III and IV. For various PSDs and parameter spaces, we can see that on average the gain is about 40%.

<table>
<thead>
<tr>
<th></th>
<th>EGO</th>
<th>GEO</th>
<th>LIGO</th>
<th>LIGO</th>
<th>V irgo</th>
<th>average</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBH</td>
<td>36</td>
<td>47</td>
<td>40</td>
<td>31</td>
<td>34</td>
<td>37.8</td>
</tr>
<tr>
<td>BNS</td>
<td>32</td>
<td>33</td>
<td>27</td>
<td>30</td>
<td>29</td>
<td>30.2</td>
</tr>
<tr>
<td>PBH</td>
<td>40</td>
<td>49</td>
<td>49</td>
<td>40</td>
<td>37</td>
<td>43.0</td>
</tr>
<tr>
<td>average</td>
<td>39</td>
<td>45</td>
<td>40.5</td>
<td>36.75</td>
<td>36.25</td>
<td>39.5</td>
</tr>
</tbody>
</table>

TABLE IV: Computation cost for different template plate banks. We assume M = 95%, Vingo-like PSD with f_c = 30 Hz, a segment duration of 256 s, and a sampling of 4 kHz. M cost of the computation time is spent in the computation of the m coments, that depend on the duration of the segment. Using short duration vector of a couple of seconds, the computation time decreases by about 6 seconds showing that the time spent in the placement itself is negligible even for large template plate banks.

<table>
<thead>
<tr>
<th>m sat</th>
<th>m max</th>
<th>N square</th>
<th>Time (s)</th>
<th>N hexa</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>3</td>
<td>182136</td>
<td>25.8</td>
<td>124652</td>
<td>9.5</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>10187</td>
<td>7.5</td>
<td>7251</td>
<td>6.3</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>34095</td>
<td>9</td>
<td>24501</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2422</td>
<td>6.3</td>
<td>1764</td>
<td>6.1</td>
</tr>
</tbody>
</table>

IV. SIMULATIONS

The proposed square and hexagonal template plate bank placement units are used to search for various objects in the LIGO and GEO 600 GW data. They are used to search for primordial black holes, binary neutron stars, binary black holes and a mixture of neutron stars and black holes. In the past, the parameter space was split into sub-spaces that encompass different astrophysical binary systems such as PBH, BNS, BBH, and/or BHNS. We can infer the data through a unique template bank that covers the different types of binaries; however, we split the parameter space into the same 4 sub-spaces that have been used to validate the square template plate bank placement so that we can combine results together. We use the same mass range as in our companion paper, that is PBH binaries with companion masses in the range [0.3, 1] M, BNS [1, 3], BBH [3, 30], and BHNS with one neutron star with companion mass in the range [1, 3] M and a black hole with companion mass in the range [3, 60] M, in which case the template plate bank must cover [4, 63] M. We also use the same PSD by incorporating the design sensitivities of current detectors (EGO, VIRGO, and LIGO-I) and advanced detectors (advanced LIGO (or LIGO-A), and EGO). Each of the PSDs has a design sensitivity curve, provided in Appendix A. The lower cut-off frequencies are the same as in [14] and are summarized in the appendix as well. In the case of the EGO PSD, which we have not used previously, we set the lower cut-off frequency f_c = 20 Hz. Actually, this value can be decreased to about 10 Hz for the BBH case, increasing the template bank sizes.

In all the simulations, we tend to use common parameters so as to simplify the interpretation. We use a sampling frequency of 4096 Hz over all simulations because the last stable orbit \(f_{L1} = 1 - (6^{2/3} - 2) M \) is less than the Nyquist frequency of 2048 Hz for most of the BBH, BNSs, and BHNS signals. The computational time is strongly related to the size of the vectors, whose length depends on the time duration of the template signal in our simulations. In order to optimize the computational cost, in each search, we extract the longest template duration that we round up to the next power of 2.

The vector duration is then multiplied by 2 for safety. We set the minima match to 95%. We considered 5 types of template families that are described later. We can estimate the number of simulations. For instance, using \(N_s \) injections, with 5 different PSDs and 4 searches (BNS, BBH, ...), and 5template families, we have a total of \(N_s \times 5 \times 4 \times 5 = 100 \) simulations, which need to be iterated through \(N_b \) template blocks. If we approximate \(N_b \) to be 10,000 and \(N_s \) to be 10,000 as well, it is clear that the computational cost is huge. In order to speed up the simulations, we chose not to iterate signals with all the available template blocks, but only a relevant fraction of them around the injected signal; this selection is trivial since template plate and signal are based on the same mode.

A. Description of the Physical Models

Theoretical calculations using post-Newtonian approximation of General Relativity give waveform s as expansions in the orbital velocity \(\nu \), where \(\nu = (2 M f(t))^{1/3} \). The PN expansions are known up to order \(\nu^5 \) in amplitude and \(\nu \) in phase. However, we limit this study to restricted post-Newtonian, that is all amplitude corrections are discarded. Moreover, we expand the \(u(x) \) only to 2PN order. The energy function \(E(v) \) and the \(u(x) \) are given by

\[
E(v) = E_N + \sum_k E_k \nu^{2k} ; F(v) = F_N + \sum_j F_j \nu^j ; \quad (4.1)
\]

We can obtain the phase starting from the kinematic equations \(dt = (\nu dt) \frac{dE}{d\nu} d\nu \) and \(d = dt = 2 f(t) \) which is the change of binding energy \(F = -dE = dt \) giving a phasing formula of the form [25].

\[
t(v) = t_{ref} + \sum_{\nu_{ref}} \frac{Z_{\nu_{ref}} E_0^0(v)}{F(v)} dv ;
\]

\[
(\nu) = \sum_{\nu_{ref}} + 2 \sum_{\nu_{ref}} \frac{Z_{\nu_{ref}} E_0^0(v)}{F(v)} dv ; \quad (4.2)
\]

There are different ways in which the above equations can be solved. For convenience, we introduce labels so...
as to refer to different physical template families that are used within the gravitational wave community and in our simulations.

TaylorT1 If we integrate the equations \(E = T \) numerically, we obtain the so-called TaylorT1 model. In fact, we use the Padé approximant for the energy and flux functions \([21,26]\), then one generates the Padé T1 model.

TaylorT2 We can also expand \(E(v) = T(v) \) in a Taylor expansion in which case the integrals can be solved analytically to obtain the phase in terms of polynomial expressions as a function of \(v \), which corresponds to TaylorT2 model \([24]\). This model is not used in this paper but results are very similar to the TaylorT3 model.

TaylorT3 From TaylorT2, \(T(v) \) can be inverted and the polynomial expression of \(v \) used within the expression for \(T(v) \) to obtain an explicit time-domain phasing formula in terms of \(t \). This corresponds to the TaylorT3 model.

EOB The non-adiabatic models directly integrate the equations of motion (as opposed to using the energy balance equation) and there is no explicit conservation of energy used in the orbital dynamics approach \([21,27,28,29]\). The EOB maps the real two-body conservative dynamics onto an effective one-body problem wherein a test mass moves in an effective background metric.

TaylorF2 The phasing formula is expressed in the Fourier domain, and is equivalent to the SPA case already mentioned.

B. SPA Model Results

First, we validate the hexagonal template bank with a model based on the SPA (also labelled TaylorF2), used to compute the metric components. We set \(s = 1 = \text{TaylorF2} \), and compute \(E \) and \(S \). We intensively tested this bank by setting \(N_s = 200,000 \) for each PSD and each parameter space considered. Using the template bank size from Table I, the ratio \(R \) between template bank size and number of simulations varies from 1.7 to 375, which is much larger than unity in agreement with discussions that arose in Sec. III C. The results are summarized in Fig. 5 and 6.

In Fig. 5, we notice that the hexagonal bank is efficient over the entire range of PBH binary, BNS, and BBH inspiral compact binaries.
FIG. 6: Efficiencies of the hexagonal template bank. Both template and signal are based on TaylorF2 model. From top left to bottom right (clockwise), injection and template bank cover the PBH binary, BNS, BHNS, and BBH inspiralling compact binaries.

(see Fig.1), we can identify a small over-efficient region in the BHNS case, where the efficiency is always larger than 97% for signals with total mass between [410 M\(_{\odot}\)].

In the BBH case, the bank is also over-efficient for the various PSD with total mass between [640 M\(_{\odot}\]), and similarly to the BHNS case, it is over-efficient (above 97%) for system with total mass between [820 M\(_{\odot}\]). The bank is also under-efficient with matches as low as 93% but for very high mass systems above 40 M\(_{\odot}\). The match below the minimum match are related to the LIGO-IPSD only, for which the lower cut-off frequency is 40 Hz. For high mass and nearly equal mass systems, the waveform tends to be very short and contain only a few cycles; the metric is not a good approximation anymore. It also explains the feature seen at high mass, that shows some oscillations in the matches; a single template matches with many different injected signals. One solution to prevent matches to drop below the minimum match is to re-normalize the grid for high mass range by decreasing the distances (i.e., increasing M/M\(_{\odot}\)) between templates in this part of the parameter space. However, the high mass also correspond to the shortest waveform which lead to a high rate of triggers in real data analysis. Therefore it is advised not to over-populate the high mass region. Overall, the hexagonal placement has the same behavior as in Fig.12, but the bank is not over-efficient anywhere in most cases.

C. Non-SPA Model Results

The square and hexagonal template banks are designed for TaylorF2 model. Yet, models presented in Section IV A do not differ from each other significantly so long as we use, which is the case for PBH, BNS waveforms and most of the BHNS and BBH waveforms. Therefore, we expect the efficiencies of the template banks to be equivalent to the SPA-model results.

The models used in this Section have the same PN-order (i.e., 2PN) as in the TaylorF2 model. The simulation parameters are identical except the number of simulations that is restricted to \(N_s = 10,000\) for computational reasons. Finally, we tested only the BNS, BHNS and BBH searches. The PBH using SPA model being su cient for a detection search.

1. TaylorT1, TaylorT3, PadeT1

The TaylorT1, TaylorT3 and PadeT1 models give very similar results that are summarized in the Fig.11-12 and 13. The safety is greater than the minimum match for the BNS and BHNS searches, for all three waveforms. More precisely, \(S_R > 95\%\) for BNS case, and it is slightly over-efficient for BHNS case for total mass above 20 M\(_{\odot}\), especially in the case of PadeT1 model. In the BBH case, the bank is over-efficient between [645 M\(_{\odot}\)]. Then, matches drop to 93% for the same reason as in the case of SPA discussion. Therefore, we conclude that the proposed template bank is also over-efficient for TaylorT1, TaylorT3 and PadeT1 models.

2. EOB

We also investigate the efficiency of the hexagonal template bank using EOB templates and signals. The
FIG. 7: Hexagonal template bank ecencies using TaylorT1 model. From left to right, results of the BNS, BH NS, and BBH injections.

FIG. 8: Hexagonal template bank ecencies using TaylorT3 model. From left to right, results of the BNS, BH NS, and BBH injections.

EOB model is intrinsically different from the previous models. The results are summarized in Fig. 10. The safeness is slightly under the requested minimal match ($S_R = 94.5 \% - 95 \%$). The template bank is ecient for BNS, BHNS and BBH cases. There is no over-ecency noticed in any of the mass range considered. We can also notice that the cumulative E_m drops quickly and therefore we think that the proposed bank can be used with EOB model as well.

V. DISCUSSION AND CONCLUSIONS

In this paper, we described a hexagonal template bank placement for the search of non-spinning inspiraling compact binaries in ground-based interferometers such
as LIGO. The placement is based on a metric computed on the signal manifold of a stationary phase approximation model. The proposed hexagonal template bank size is about 40% smaller than the square template placement that was previously used to analyze LIGO science runs (i.e., [13]). Yet, the matches between signal and templates are above the required minimum match. Therefore, the template bank described in this paper is not over-
vector or the other, each of which can be investigated in more detail.

The bank was tested with the aid of any simulations that use design sensitivity curves for advanced and current detectors, and various inspiralling compact binaries with total mass between 0.5-63 M⊙. We used a model based on stationary phase approximation and showed that the template bank is e cient for most of the parameters space considered. The higher end of the mass range was slightly under e cient in the BBH case but this is partly related to the shortness of the signal and template considered.

The proposed template bank can be used for various template families, not only the stationary phase approximation family. In particular, we tested the TaylorT1, TaylorT3, PadeT1, and EO B models at 2P N order, that have been used for simulated injections in the various LIGO science runs. It is interesting to see that the proposed template bank is e cient for most of the models considered in this paper. It is also worth noticing that in some cases the template bank is still over-e cient even though the range is size is already reduced by 40% (e.g., high mass BH NS injections).

The models that have been investigated in this paper are all based on 2P N order, therefore template families based on higher P N-order should be investigated. In the future, we also plan to consider the case of amplitude corrected waveforms. All simulations presented in this paper use the same model for both the template and signal generation. It would be interesting to see how the template bank performs when template are based on one model (say, Pade) and the signals are from another (say, EO B).

This hexagonal template bank is currently used within the LIGO project to search for non-spinning inspiralling compact binaries in the fth science run.

Acknowledgments

This research was supported partly by Particle Physics and Astronomy Research Council, UK, grant PP/B/500731. The author thanks Stas Babak for suggested the test of the bank with various template families, and B.S. Sathyaprakash and Gareth Jones for useful comments, discussions, and corrections to this work. This paper has LIGO Document Number LIGO-P070073-00-2.

References

Finally, the Virgo PSD is based on data provided by J-Y. Vinet and is approximated by

$$S_h(f) = S_0 \left(\frac{4\pi}{fL} \right)^{4\pi} \left(\frac{6}{17} \right)^{1/2} \left(1 + \frac{2}{x^2} \right) ; \quad (A5)$$

where $S_0 = 10.2 \times 10^{-46}$ with $f_0 = 500$ Hz. The lower cut-off frequency is $f_L = 20$ Hz.

Appendix B: Parameter Space Tools

1. Basic Relations

Here is a summary of the relationship between individual masses m_1, m_2, and the two chirp time parameters θ_0 and θ_3, that are given by

$$\theta_0 = \frac{5}{256} \left(\frac{M f_L}{3} \right)^{5/3} ; \quad \theta_3 = \frac{1}{8f_L} \left(\frac{M f_L}{3} \right)^{2/3} ; \quad (B1)$$

where f_L is the lower cut-off frequency of the template/signal, $M = m_1 + m_2$ and $M = m_1 m_2 = M^2$. The inversion is straightforward M and are given by

$$M = \frac{5}{32 \text{f}_L} \frac{3}{3} ; \quad = \frac{1}{8\text{f}_L} \frac{32}{5} \frac{0}{3} \frac{2}{3} ; \quad (B2)$$

It is convenient to introduce the constants A_0 and A_3 given by

$$A_0 = \frac{5}{256} \left(\frac{M f_L}{3} \right)^{5/3} ; \quad A_3 = \frac{1}{8} \left(\frac{f_L}{3} \right)^{2/3} ; \quad (B3)$$

so that Eq. (B1) becomes

$$\theta_0 = \frac{A_0 M^{5/3}}{M} ; \quad \theta_3 = \frac{A_3 M^{2/3}}{M} ; \quad (B4)$$

Finally, the chirp mass, M, is given by

$$M = 3^{5/3} \text{M} \quad (B5)$$

that allow θ_0 to be expressed as a function of chirp mass only:

$$\theta_0 = A_0 M^{5/3} ; \quad (B6)$$

2. Parameter Space Boundaries relations

The parameter space is defined by three boundaries (see Fig. I). On each of these boundaries, we want to express θ_3 as a function of θ_0. Using (3.7), we can eliminate M and express θ_3 as a function of θ_0 and θ_3:

$$\theta_3 = \frac{A_3}{A_0} \theta_0^{2/3} ; \quad (B7)$$
We can also eliminate ω and express ω_3 as a function of ω_0 and M:

$$\omega_3 = \frac{A_3}{A_0} M \quad \text{(B8)}$$

The lower boundary corresponds to $m_1 = m_2$, or $\omega = 1=4$. Using Eq. (B7), we can express ω_3 as a function of ω_0 only:

$$\omega_3 = 4A_3 \frac{\omega_0}{4A_0} = 1=4 \quad \text{(B9)}$$

The second boundary is defined by $m_1 = m_{\text{min}}$ and m_2 in $[m_{\text{min}}, m_{\text{max}}]$. The third boundary is defined by $m_1 = m_{\text{max}}$ and m_2 in $[m_{\text{min}}, m_{\text{max}}]$. On those two boundaries, we can assume that m_1 is set to one of the extremity of the mass range, denoted m_e. Then $m_2 = M = m_e$, and $(M, m_e) = (M, m_e)^2$. Starting from

$$\omega_0 = \frac{A_0}{A_0} (M)^{s-3} \quad \text{(B10)}$$

we replace ω_0 by its expression as a function of M and m_e, and obtain after some algebra a cubic equation of the form

$$x^3 + px + q = 0 \quad \text{(B11)}$$

where $x = M^{1-3}$, $p = A_0(\omega = m_e)$ and $q = m_e = 0$, where m_e is either set to m_{min} or m_{max} depending on which side of the parameter space we are. The solution for x is standard and is given by

$$x = \frac{1}{2} \frac{r \left(\sqrt{r^2 - 4p^3} + 1 \right)}{\sqrt{q^2 + \frac{4p^3}{27}}} \quad + \quad \text{(B12)}$$

We replace, $M = x^3$ in Eq. (B3) to obtain the value of ω_3 on the boundaries when ω_0 is provided.

APPENDIX C: FLOW CHART OF THE HEXAGONAL PLACEMENT ALGORITHM
Input data

START

1. Power Spectral Estimation
2. Moments computation

Initialization: a fertile cell is placed in the parameter space

Cleaning: cells in non-physical positions are pushed back towards the parameter space.

Reproduction i-th cell

YES

Is there at least one fertile cell?

YES

N fertile cells, i=0

From first fertile cell

i=N ?

NO

NO

Reproduction i-th cell

Initialize the new cells

Connection

i=i+1

END

FIG. 11: Flow chart of the hexagonal placement algorithm. See the text for detailed description of the initialization, reproduction, and connection process.