Pseudoscalar Goldstone bosons in the color-avor locked phase at moderate densities

Verena Kleinhaus,1 Michael Buballa,1 Dominic Nickel,1 and Michael Oertel2

1 Institut für Kernphysik, Technische Universität Darmstadt, Germany
2 LUTH Obervatoire de Paris, CNRS, Université Paris Diderot, 5 place Jules Janssen, 92195 Meudon, France

(Dated: April 7, 2013)

The properties of the pseudoscalar Goldstone bosons in the color-avor locked phase at moderate densities are studied within a model of the Nambu (Jona-Lasinio type). The Goldstone bosons are constructed explicitly by solving the Bethe-Salpeter equation for quark-quark scattering in random phase approximation. The aim of our investigations is (i) the weak decay constant in the chiral limit, (ii) the masses of the pseudoscalar Goldstone bosons for non-zero but equal quark masses, (iii) their masses and effective chemical potentials for non-equal quark masses, and (iv) the onset of kaon condensation. We compare our results with the predictions of the low-energy effective field theory. The deviations from results obtained in the weak-coupling limit are discussed in detail.

I. INTRODUCTION

Much effort has recently been devoted to the study of strongly interacting matter at nonzero baryon density. In particular, the rich phase structure of color superconducting quark matter has attracted much interest. (For reviews on color superconductivity see, e.g., Refs. [1,8].) In nature, quark matter phases might be realized in compact stars [9,11]. It is therefore natural to ask whether quark pairing has interesting phenomenological consequences for compact star physics. In this context the energetically lowest lying degrees of freedom are relevant for many dynamical properties of quark matter.

At low temperatures and very high densities the preferred state is most probably the color-avor locked (CFL) phase where up, down, and strange quarks are paired in a particularly symmetric way [12,13]. This can be shown from first principles within a weak-coupling expansion [13,15]. Although this expansion is not valid at very moderate" densities which could be reached in compact stars, recent Dyson-Schwinger studies indicate that the CFL phase might be the preferred phase all the way down to the hadronic phase [16].

In the CFL phase, all quark flavors and colors participate in a condensate. As a consequence, all fermionic modes are gapped and do not appear in the low-energy excitation spectrum. The diquark condensates break the original SU(3) flavorsсимmetry of three-avor QCD down to a residual Z2 SU(3)cobra, corresponding to a simultaneous "locked" rotation in color and flavor space.

Due to the breaking of the color symmetry, all eight gluons receive a mass, while the breaking of baryon number and chiral symmetry leads to the emergence of one scalar and eight pseudoscalar Goldstone bosons. In addition, there is a ninth pseudoscalar Goldstone boson related to the spontaneous breaking of UA(1) which is a symmetry of QCD at very high density [17,18]. In the presence of quark masses this symmetry is broken explicitly and the pseudoscalar Goldstone bosons acquire a mass, while the scalar Goldstone boson remains massless. Since, with all quarks being gapped, the Goldstone bosons are the lowest lying excitations, they play an important role for the themodynamic and transport properties of strongly interacting matter, relevant for compact star phenomenology (c.f., e.g., Refs. [19,21]).

The symmetry breaking pattern is the basis for the construction of the low-energy effective theory (LEET) [22,28], which describes the Goldstone boson dynamics and is valid for energies much smaller than the superconducting gap. At very high densities, the interaction is weak and the constants for the LEET can be calculated from QCD using High Density Eective Theory (HDEET) [26,29,31]. For instance, in the weak-coupling limit, pseudoscalar meson masses and decay constants have been investigated [23,30,32,35]. It was also shown that the stress imposed by the strange quark mass on the CFL Cooper pairs acts as an effective strangeness chemical potential, which may eventually lead to kaon condensation [24,26,27].

At intermediate densities, relevant for compact star phenomenology, the interaction becomes nonperturbative and it is difficult to study the Goldstone boson dynamics from first principles. The leading-order predictions, however, are often universal, in the sense that they do not depend on the interaction, but should hold in any model exhibiting the same symmetry pattern. One such model is the Nambu (Jona-Lasinio) (NJL) model [36], often used in the intermediate density regime to study at least qualitatively the main features. (For reviews see, e.g., Refs. [5,37,39].) This model has already been applied to study kaon condensation in the CFL phase at non-zero strange quark masses [40,42]. However, this was done by focusing on the ground state properties, i.e., without explicit construction of the Goldstone bosons. In Refs. [43,44], on the other hand, meson and diquark properties in the CFL phase have been studied explicitly, but this investigation was restricted to the chiral limit. Mesons and diquarks in the 2SC phase have been discussed in Refs. [45,46].

In the present paper we discuss a detailed analysis of
properties of pseudoscalar mesons in the CFL phase in an NJL-type model including the cases of equal and unequal nonzero quark masses. Emphasis is put on a comparison with the weak-coupling results.

The paper is organized as follows. In Sec. II we introduce our model and discuss how to construct the mesonic excitations. Sec. III is devoted to some general results which can be obtained in the limit of equal quark masses based on chiral W and Takahashi identities. In Sec. IV numerical results will be presented. Within that section we investigate the pion decay constant in the chiral limit as well as meson masses for the cases of equal and unequal quark masses. In this context we also discuss the onset of kaon condensation in the CFL phase. Our results are summarized in Sec. V.

II. FORMALISM

A. Model Lagrangian

We consider an NJL-type Lagrangian

\[L = q(\bar{u} \gamma^\mu m_q)q + L_{qq}; \]

where \(q \) is a quark field with three colors and three color degrees of freedom, \(m_q = \text{diag}(m_u, m_d, m_s) \) is the mass matrix, and

\[L_{qq} = H \begin{pmatrix} q_i & A & C q^T \end{pmatrix}(q^T C i 5 A A^c q) \]

\[+ (q A A^c C q^T)(q^T C A A^c q) \]

describes an SU(3)_{color} × U(3)_A × U(3)_R symmetric four-point interaction with a dimensionful coupling constant \(H \). \(C = i 2 \) is the matrix of charge conjugation, and \(A, A^c \) denote Gell-Mann matrices acting in color and flavor space, respectively. In this article, we follow the convention that the indices \(A \) and \(A^c \) are used for the antisymmetric Gell-Mann matrices only, i.e., \(A, A^c \). For simplicity, we restrict ourselves to quark-quark interactions. The exact quark-antiquark interactions, which give rise to normal self-energies and thereby to dynamical quark masses, will be investigated in a future publication.

B. Operators in Nam bu-G orkov space

Introducing Nam bu-G orkov bispinors,

\[\frac{1}{2} \begin{pmatrix} q \ 0 \end{pmatrix} C q^T ; \]

Eq. (2) can be rewritten as

\[L_{qq} = 4H \begin{pmatrix} A & A^c \end{pmatrix} \begin{pmatrix} s_i \ A A^c \ s_i \ A A^c \end{pmatrix} \]

\[+ \begin{pmatrix} p^* \ p^* \end{pmatrix} \begin{pmatrix} p \ A A^c \ p \ A A^c \end{pmatrix} ; \]

with 18 scalar operators

\[s_0 = \begin{pmatrix} 0 & 0 \end{pmatrix} ; \quad s_i = \begin{pmatrix} 0 & 0 \end{pmatrix} \]

and 18 pseudoscalar operators

\[p_0 = \begin{pmatrix} 0 & 0 \end{pmatrix} ; \quad p_i = \begin{pmatrix} 0 & 0 \end{pmatrix} \]

From these expressions we obtain the scattering kernel

\[K_{ij} = iK_{ij} \]

where \(i \) are the 36 operators defined above.

The first term in Eq. (2) corresponds to a scalar quark-quark interaction in the color and flavor channel, just as needed for giving rise to the diquark condensates in the CFL phase (see Eq. (12) below). The second term is the corresponding pseudoscalar interaction and is required by chiral symmetry. This will be the essential element for the pseudoscalar Goldstone excitations we want to study.

C. CFL ground state

Before we construct the mesonic excitations, we have to determine the ground state of the system. For equal quark masses the CFL phase can be characterized by the equality of three scalar diquark condensates in the color and flavor channel,

\[\langle \bar{q} q \rangle = \langle \bar{u} u \rangle = \langle \bar{d} d \rangle ; \]

where

\[s_0 = \begin{pmatrix} 0 & 0 \end{pmatrix} ; \quad s_i = \begin{pmatrix} 0 & 0 \end{pmatrix} \]

1 In this article, we often use the words "mesons" and "diquarks" synonymously, see Sec. II E for more details.
In general, these condensates are accompanied by induced color-avor sextet condensates. These are, however, small and can be neglected. If the SU(3)-avor symmetry is explicitly broken by unequal quark masses, Eq. (11) does no longer hold exactly, but the three condensates may differ from each other.

To obtain the ground state we must minimize the thermodynamic potential (per volume V),

\[
(T; f_g) = \frac{T}{V} \ln Z (T; f_g); \tag{13}
\]

where \(Z (T; f_g) \) is the grand partition function at temperature \(T \) and a given set of chemical potentials \(f_g \). For equilibrated matter, these can be expressed in terms of the quark number chemical potential \(\rho \), the electric charge chemical potential \(\rho_e \), and two color chemical potentials \(\rho_u \) and \(\rho_d \) [47].

For the CFL phase in mean-field approximation, is given by

\[
(T; f_g) = \frac{T}{V} \ln Z (T; f_g) + \frac{1}{4H} \sum_{\rho_u, \rho_d} X \left[A^2 \rho_u + \rho_d \right] \tag{14}
\]

where the gap parameters \(A \) are related to the diquark condensates,

\[
A = 2H \s_{AA}; \tag{15}
\]

The inverse dressed propagator reads

\[
S^{-1}(p) = \frac{1}{4H} \left[A^2 \rho_u + \rho_d \right] \tag{16}
\]

Here \(^{\dagger} \) denotes the diagonal matrix in color andavor space which is given by the set of chemical potentials \(f_g \).

In order to determine the ground state, \(\s \) must be minimized with respect to the gap parameters \(A \), leading to three gap equations

\[
\frac{\partial }{\partial A} = 0; \quad A = 2; 3; 7. \tag{17}
\]

Furthermore, we require the solutions to be color and electrically neutral in the presence of leptons. In general, this leads to three additional equations,

\[
\frac{\partial }{\partial \n} = 0; \quad \n = 5; 3; 8. \tag{18}
\]

where \(\n_{\text{tot}} \) is the sum of the quark part, Eq. (14), and the contribution of the leptons. Thus, altogether we have a set of six coupled equations for \(A \) and \(\n \) which must be solved simultaneously. This has been done many times before, and we can refer to the literature for technical details, e.g., Refs. [47,50]. In the present article, we restrict ourselves to the (fully gapped) CFL phase at zero temperature. In this case, color neutral quark matter is electrically neutral without leptons [51] and \(\n = 0. \) Moreover, we consider isospin symmetry, \(m_u = m_d, \) so that \(\n \) vanishes as well.

The gap equations (17) can be derived from the Dyson equation for the dressed quark propagator, too (diagrammatically shown in Fig. 1. This is well known, but some details are useful in our later discussion. Therefore, we present this derivation in Appendix A.

D. Axial transformations

In the chiral limit, \(m_u = m_d = m_s = 0, \) the Lagrangian, Eq. (1), is invariant under SU(3) color U(3), and SU(3) \(R \) transformations. In the CFL phase, this symmetry is spontaneously broken to the diagonal vector subgroup, SU(3) color \(v \). This is reflected by nonzero values for the condensates, Eq. (11). Axial transformation,

\[
q^0 = \exp(i a \delta t a); \tag{19}
\]

then connect a continuous set of degenerate ground states for the CFL phase. Here \(t a = \frac{1}{N} a = 0; : \cdots : ; 8 \) denotes the eight Gell-Mann matrices in aavor space, as before, and \(\delta = \frac{2}{3} \). These transformations can be parametrized by nine pseudoscalar Goldstone bosons. In order to identify the operators corresponding to Goldstone boson excitations, we inspect the effect of an axial transformation with specified quantum numbers on the condensates, Eq. (11). In a model, this can be described as follows

\[
\delta h_i h_i^* = \exp(i a \delta t a) h_i; \tag{20}
\]

for \(i = a ^* \) and \(a \). Considering infinitesimal transformations, we nd

\[
0 = \delta h_i = i + \delta a \delta m; \tag{21}
\]

with

\[
\delta m = (s \delta h) g i; \tag{22}
\]

where \(A \delta B \) denotes the anticomutator.
TABLE I: Pseudoscalar Goldstone modes, corresponding a-
vor operators t_i, and Nambu-Gorkov operators s^i, contributing
to the quark-meson vertex. The j are obtained by eval-
uating Eq. (22) for $t_i = t_j$ and all possible $i = s^A_A$ or s^A_A.

\[\begin{array}{ccc}
\text{m eson}^* & t_j & j \\
\hline
\text{K} & \frac{1}{4} \bar{q} & \bar{q} \\
\text{K}^* & \frac{1}{4} \bar{q} & \bar{q} \\
\text{K} & \frac{1}{4} \bar{q} & \bar{q} \\
\text{K}^* & \frac{1}{4} \bar{q} & \bar{q} \\
\end{array} \]

\[J_{ij} = J_{ij}; \quad (25) \]

One nds

\[T = K + K J T; \quad (26) \]

with the solution

\[J_{ij}(q) = \frac{Z}{(2)^3} \frac{d^4k}{(2)^3} \int \frac{T}{Z} \frac{T}{n} \frac{d^3k}{(2)^3}; \quad (27) \]

where the last equality follows from Eq. (9). The polarization ma-
rix, corresponding to the loop in Fig. 2, is given by

\[J_{ij}(q) = \frac{Z}{(2)^3} \frac{d^4k}{(2)^3} \int \frac{T}{Z} \frac{T}{n} \frac{d^3k}{(2)^3}; \quad (28) \]

Here we have introduced a \textit{vacuum-like} notation for brevity. In m-
edium we should replace

\[\text{vacuum}, \text{tem} \]

and de ning

\[T(q) = \frac{1}{(2)^3} \int \frac{T}{Z} \frac{T}{n} \frac{d^3k}{(2)^3}; \quad (29) \]

with bosonic Matsu bara frequencies \[\text{vacuum} \], and fermionic \nMatsu bara frequencies \[\text{tem} \]. In the end, the result should be
analytical continued to real external energies. We will use this notation throughout this paper. For our nu-
merical results, we will introduce a 3-m om ent cut-off
to regularize the divergent integrals.

The matrices T and J are 36 36 m atrices in operator-
space, corresponding to the 36 operators de ned in Eq.

\[\text{vacuum}, \text{tem} \]

and de ning

\[T(q) = \frac{1}{(2)^3} \int \frac{T}{Z} \frac{T}{n} \frac{d^3k}{(2)^3}; \quad (29) \]

with bosonic Matsu bara frequencies \[\text{vacuum} \], and fermionic \nMatsu bara frequencies \[\text{tem} \]. In the end, the result should be
analytical continued to real external energies. We will use this notation throughout this paper. For our nu-
merical results, we will introduce a 3-m om ent cut-off
to regularize the divergent integrals.

The matrices T and J are 36 36 m atrices in operator-
space, corresponding to the 36 operators de ned in Eq.

\[\text{vacuum}, \text{tem} \]

and de ning

\[T(q) = \frac{1}{(2)^3} \int \frac{T}{Z} \frac{T}{n} \frac{d^3k}{(2)^3}; \quad (29) \]

with bosonic Matsu bara frequencies \[\text{vacuum} \], and fermionic \nMatsu bara frequencies \[\text{tem} \]. In the end, the result should be
analytical continued to real external energies. We will use this notation throughout this paper. For our nu-
merical results, we will introduce a 3-m om ent cut-off
to regularize the divergent integrals.

The matrices T and J are 36 36 m atrices in operator-
space, corresponding to the 36 operators de ned in Eq.

\[\text{vacuum}, \text{tem} \]
FIG. 3: Coupling the T-matrix (double line) to an external meson source (wavy line).

\[
I_{ij}(q) = \frac{Z}{2} \frac{d^4k}{(2\pi)^4} \frac{1}{2} \text{Tr} S(k+q) \left(n_z(q) \right) S(k),
\]

where \(n_z \) denotes the vertex of the external source to the quark. It is given by \(n_z = t_j \) for scalar sources and \(n_z = i\tilde{t}_j \) for pseudoscalar sources. Here \(t_j \) is one of the generators in aor space listed in Table I, and \(\left(n_z \right)_{n_G} \) is the generalization of this vertex to Nambu-Gorkov space, as defined in Eq. (10).

The blocks can be diagonalized by unitary transformations,

\[
J^0 = W J W^{-1},
\]

with \(W \) being an (in general 4-m cm entum dependent) unitary matrix and

\[
J_{ij}^0 = J^{(i)}_{ij},
\]

Defining new operators

\[
J_{ij}^0 = i W J W^{-1},
\]

\[J^0\] can be rewritten as

\[
J_{ij}^0(q) = \frac{Z}{2} \frac{d^4k}{(2\pi)^4} \frac{1}{2} \text{Tr} \left(n_z(q) \right) S(k),
\]

since the scattering kernel remains diagonal in this new basis,

\[
K = 4H_0, \quad H_0 = 4H_0^0, \quad \text{and} \quad H_0^0 = 0.
\]

The T-matrix becomes diagonal as well

\[
T^0 = T^{(i)}_0 = 0,
\]

with

\[
T^{(i)}_0(q) = \frac{1}{i\beta} J^{(i)}(q).
\]

In the vicinity of a pole, we can parametrize these modes like a free boson with mass \(m, \) in the presence of a chemical potential \(\mu, \) corresponding to this particular boson,

\[
T^{(i)}(q) = \frac{g_i^2}{(p_0 + \mu)^2 - \mu^2} m_i.
\]

Here \(g_i \) can be interpreted as a coupling constant of the boson to an external quark, and \(c_i \) denotes the in-medium group velocity. In this article we restrict ourselves to \(q = 0 \) in order to keep artifacts of the 3-m cm entum cutoff as small as possible.

The various modes \(T^{(i)} \) describe bosonic excitations of the CFL ground state. Because of the form of quark-antiquark structure of the polarization loops, we will call these excitations "n mesons." However, it should be kept in mind that the propagators and vertices entering the polarization loops live in Nambu-Gorkov space and therefore in principle describe quark-antiquark as well as diquark and antiquark (or diholo) excitations. In vacuum or in a normal conducting medium, these are independent modes, protected by the conserved baryon number. In the CFL phase, however, baryon number is broken, and quark-antiquark, diquark, and antiquark states can mix. As our model Lagrangian does not contain quark-antiquark interactions, our "n mesons" are in fact superpositions of diquarks and antiquarks or, more in portant, diholos.

In vacuum we have nine scalar and nine pseudoscalar diquarks and nine scalar and nine pseudoscalar antiquarks. Since the total num ber of states does not change when the states are mixed, there must be 36 meson states in the CFL phase, 18 scalars and 18 pseudoscalars. (If we included quark-antiquark interactions in our model, we would obtain 27 scalars and 27 pseudoscalars.) As we will see below, nine pseudoscalars are massless in the chiral limit, while the others stay heavy. This has been found in Ref. [44], too, within a similar model.

F. Pseudoscalar meson decay constants

As in vacuum, the pseudoscalar mesons can decay weakly. The decay amplitudes are related to the loop integrals

\[
F_{ij}^0(q) = \frac{Z}{2} \frac{d^4k}{(2\pi)^4} \frac{1}{2} \text{Tr} S(k+q) \left(n_z \right)_{n_G} S(k),
\]

(40)

describing the coupling of the \(m \) meson \(i \) (i.e., the one which corresponds to the operator \(\frac{1}{i\beta} \)) to an external axial-current \(A_{ij}^0. \) In the following, we are mostly interested in aor mesons, which are the main focus of our studies. Each aor meson \(i \) couples to only one \(t_j, \) as listed in Table I. For simplicity, we denote the \(i \) aor operator which tc to the \(m \) meson \(i \) by \(t_j. \)

3 Strictly speaking, Eq. (40) describes the time-reversed process, i.e., the production of a meson by an incoming axialcurrent. This choice was made for later convenience in Sec. III B. There we apply chiral \(W \) and \(\beta \) identities, which are formulated for incoming axial currents, see Eq. (52).

4 Note that the opposite is not true; since we have 18 pseudoscalars, there are in general two meson states \(i \) which couple to a given aor operator \(t_j. \)
The meson decay constants are related to the on-shell values of these amplitudes,

\[f_{i \bar{q}} = \bar{q}_F \frac{0}{m} (q) \text{ on shell} ; \]

with no summation over the index on the r.h.s. The coupling constant \(g \) has been defined implicitly in Eq. (39).

In general, there are different values for the time-like (\(= 0 \)) and the space-like (\(= 1;2;3 \)) decay constants, which differ by the group velocity of the Goldstone modes. However, since we only consider mesons with vanishing 3-m on entry in this article, we are restricted to the time-like decay constants.

III. EQUAL QUARK MASSES

It is rather instructive to investigate the simple case of equal quark masses, \(m_u = m_d = m \). In this case, we have only one gap parameter \(g = 2 = 5 = 7 \) and one common chiral condensate in both electric and color-neutral CFL matter. Moreover, the set of the 18 pseudoscalar meson states consists of two SU(3) octets and two singlets, with all mesons in the same multiplet being degenerate. Finally, there is no stress caused by quark mass or chiral potential differences, which could act as an effective meson condensate and act as a source for the meson condensate as well. Hence, for vanishing 3-m on entry, the pole approximation for the T-matrix, Eq. (39), becomes

\[T^{(1)}(p) = \frac{g^2}{q^0} \text{ on shell} ; \]

This yields for the decay constants

\[f_{i \bar{q}} = \bar{q}_F \frac{0}{m} (q) \text{ on shell} ; \]

We will often refer to the states of the lowest pseudoscalar octet as pions and denote their meson couplings, and decay constants by \(m, g, \) and \(f \), respectively.

A. Dressed vertex functions

Attaching an external axial current to both sides of the Dyson equation for the dressed quark propagator (see upper line of Fig. 4), we obtain a self-consistency equation for the dressed axial vertex,

\[s_{ij} (p) = \left(i S(k + q) \right) \frac{\bar{q}_F}{q^0} \frac{0}{m} \right) \]

which could be rewritten as

\[s_{ij} (p) = \left(i S(k + q) \right) \frac{\bar{q}_F}{q^0} \frac{0}{m} \right) \]

Thus, approaching the pole, we find

\[s_{ij} (p) \sim \frac{g^2 T^{(1)}}{q^0} \]

with

\[T^{(1)} = T^{(0)} \left(g_0^2 - m^2 \right) ; \]

Fig. 4: Vertex function for an external axial current (wavy line) coupled to a quark. The shaded circles (black dots) indicate dressed (bare) vertices. The open circles correspond to quark-quark vertices and the double line to the T-matrix, as in Fig. 2.

The first term on the r.h.s. corresponds to the bare vertex, while the second term contains the dressed vertex again. Thus, iterating the equation, the dressed vertex can be written as a Borel series of quark-antiquark loops (second line of Fig. 4), with the bare vertex attached to the last loop. Employing the quark-antiquark T-matrix, this could be rewritten (last line of Fig. 4) as

\[s_{ij} (p) = \left(i S(k + q) \right) \frac{\bar{q}_F}{q^0} \frac{0}{m} \right) \]

where \(F^{(0)}_{ij} \) as defined in Eq. (40). We have already seen earlier that a given quark operator \(t_j \) couples to only two meson modes i in this channel. We may call these modes \(i \) and \(j \). Then, for \(q = 0 \) and \(q \) approaching \(m \), we obtain

\[s_{ij} (p) = \left(i S(k + q) \right) \frac{\bar{q}_F}{q^0} \frac{0}{m} \right) \]

Similarly, we have an equation for the dressed pseudoscalar vertex

\[s_{ij} (p) = \left(i S(k + q) \right) \frac{\bar{q}_F}{q^0} \frac{0}{m} \right) \]

with

\[T_{ij}^{(1)} = \left(i S(k + q) \right) \frac{\bar{q}_F}{q^0} \frac{0}{m} \right) \]

Thus, approaching the pole, we find

\[s_{ij} (p) \sim \frac{g^2 T^{(1)}}{q^0} \]

with

\[T^{(1)} = T^{(0)} \left(g_0^2 - m^2 \right) ; \]

The degeneracy in the octets is due to the residual SU(3)$_{SU(3)}$ symmetry of the CFL phase. Thus, even though we start from an SU(3) invariant Lagrangian in our model, there is no unbroken symmetry which relates the singlet states to the octets.
B. Chiral Ward-Takahashi identity

It can be shown on general grounds that the exact vertex functions and inverse propagators must satisfy the following axial Ward-Takahashi identity:

\[q \quad 5_{j}(p\gamma_{j}) + 2m \quad 5_{j}(p\gamma_{j}) = S^{-1}(p + q)(\quad 5_{j}h_{G} + (\quad 5_{j}h_{G}) S^{-1}(p): \quad (52) \]

In Appendix B we show by using the gap equation that the vertex functions defined above and the inverse propagator (16) are consistent with this relation.

We now evaluate this equation for \(q = 0 \) and \(q \neq m \). In the chiral limit, \(m = 0 \), only the axial vertex contributes, and we find from Eq. (46) that the l.h.s. is given by

\[q \quad 5_{j} = i \frac{q^2}{m^2} q \quad f \quad 0_j + \text{non-singular terms:} \quad (53) \]

In general this has a singularity at \(q = m \). On the other hand, one can easily see that the r.h.s. of Eq. (52) remains finite. We thus conclude that the singularity on the l.h.s. must be suppressed, i.e., either \(m = 0 \) or \(q = 0 \). In fact, from the symmetry breaking pattern we expect nine pseudoscalar Goldstone bosons. Therefore, both scenarios should be realized, i.e., nine pseudoscalar mesons (one octet and one singlet) are massless and the others are massive.

For the massless solution, we can now evaluate Eq. (52) directly at \(q = 0 \). This yields

\[ig \quad f \quad 0_{j} = (\quad 5_{j}h_{G}; S^{-1}(p)): \quad (54) \]

Inserting Eq. (16) for the inverse propagator with \(m = 0 \) and taking the freedom to choose the gap parameter to be real, we find the solution

\[g \quad f = \quad (55) \]

with the assignment (cf. Eq. (22))

\[0_{j} = \sum_{A = 2p\rho}^{X} n (\quad 5_{j}h_{G} + (\quad 5_{j}h_{G}) S^{-1}(p)): \quad (56) \]

Eq. (55) may be viewed as a generalization of the well-known Goldberg-Treiman relation in vacuum [32].

Explicit evaluation of Eq. (56) yields

\[0_0 = \quad \frac{1}{2} p^5 57 \quad p^* 75 \quad p^\# 57 ; \quad 0_{0_p} = \quad \frac{1}{2} p^5 75 \quad p^* 57 ; \quad (57) \]

for the observed mesons, and

\[0_0 = \quad \frac{1}{2} p^5 57 \quad p^* 75 \quad p^\# 57 ; \quad 0_{0_p} = \quad \frac{1}{2} p^5 75 \quad p^* 57 ; \quad (58) \]

for the mesons with hidden flavor. Thus, antiparticle modes are related to each other as

\[0_{0} = 0_{0}(q) ; \quad (59) \]

(with 0, 0 and 0 being their own antiparticles) as it should be.

The results above are consistent with the operators identified in Ref. [32] following a similar reasoning. Except for an arbitrary phase, Eqs. (57) and (58) also agree with the result of diagonalizing the meson polarization function \(J_{ij} \) for vanishing quark masses (see Sect. II E). We should keep in mind, however, that we have evaluated the meson vertices at the pole only. In general, the diagonalization of the T-matrix leads to 4-m antem dependent vertex functions with 4-mem dependent weights for the contributing operators. For instance, the + vertex can be written as

\[i \quad \sin \quad q \quad p_{57}^* \quad \cos \quad q \quad p_{75}^\# ; \quad (60) \]

with some function \(\sin \quad q \quad p_{57}^* \) and an arbitrary overall phase which we have chosen to be purely in agreement to comply with Eq. (57). For equal quark masses, \(\epsilon^{(0)}(0) = \frac{1}{3} \) and we recover \(0_{0} = 0_{0}(q) \), Eq. (57).

Next, we evaluate Eq. (52) for non-vanishing (but still equal) quark masses. In this case the pseudoscalar vertex contributes a pole at \(q = 0 \) and \(q \neq m \), which is present for any choice of m (see Eq. (50)). Since the r.h.s. of Eq. (52) remains non-singular, this pole must be cancelled by the pole in the axial part (unless \(q^2 \) vanishes). This means that the formal massless mesons receive a mass which is determined by the requirement that the residues of the axial and pseudo scalar pole cancel each other. One finds

\[m^2 q^2 = 2m \quad 0 \quad f \quad (\quad) \quad (61) \]

This is an exact relation, valid for arbitrary values of m.

We can now perform a chiral expansion of this equation to leading order. This amounts to replace \(f \) by and to evaluate

\[\frac{Z}{2} \quad (q) S(k + q) (\quad 5_{j}h_{G} S(k) \quad q_{0} = m \quad (62) \]
to leading nontrivial order in the quark mass. It turns out that \(I^{(1)} \) vanishes in the chiral limit and the leading order is linear in \(m^2 \). Note that, in principle, \(I^{(1)} \) depends explicitly (via the quark propagators) and implicitly (via \(m \)) on \(m \). One can show, however, that the implicit contributions vanish in leading order. It is therefore consistent to evaluate the integral at \(q_0 = 0 \), and we obtain

\[
m^2 f^2 = 8 A m^2 + \text{higher orders}; \quad (63)
\]

with

\[
A = \frac{1}{2} \frac{1}{Z} \frac{d_3 k}{(2 \pi)^3} \int \frac{1}{dm \, \text{Tr}} \left(\frac{0}{0} \right) S(k) \frac{1}{(i \delta t) h \circ S(k)} \frac{1}{m = 0} \quad (64)
\]

and \(\frac{0}{0} \) as given in Eq. (57). This expression can be evaluated exactly. The result is given in Eq. (E1) in the appendix. Expanding this formula in \(w \), we nd

\[
A = \frac{2}{8} \ln y^2 + 2 + \frac{4}{3} \ln 2 + \ln (\pi^2) + \cdots; \quad (65)
\]

where we have introduced the abbreviations

\[
x = \cdots; \quad y = \cdots; \quad (66)
\]

with being the 3-momentum cuto. This should be compared with the weak-coupling result [23],

\[
A_w = \frac{3}{4} \frac{2}{2}; \quad (67)
\]

An important difference is the logarithmic term in Eq. (65), which does not exist in Eq. (67). In fact, in the beginning, there was a controversy about the correct weak-coupling limit, and similar logarithmic terms have also been discussed in the literature [26, 30, 32, 34, 52]. To be precise, it was found that the leading contribution to \(A \) in weak coupling is given by [30]

\[
A = \frac{2}{8} \ln y^2; \quad (68)
\]

where \(\Delta \) is the antiparticle gap. In the NJL model, the gap function is energy independent and, hence, \(\Delta = 0 \). Therefore, our result, Eq. (65), is consistent with Eq. (68). Moreover, if we introduce particle and antiparticle gaps by hand as independent constants in the quark propagator, we recover Eq. (68) in leading order.

\[\text{FIG. 5: Pion decay constant} f \text{ in the chiral limit as a function of the gap parameter: numerical results (points) in comparison with the semi-analytical formula Eq. (70), neglecting (thin lines) and including (thick lines) the } \ln \text{ dependence of the vertex function. Asterisks and solid lines: } = 600 \text{ MeV; crosses and dashed lines: } = 700 \text{ MeV; dotted line: weak-coupling \(m \), Eq. (69).}\]

\[\text{O} \text{n the other hand, as argued in the erratum of Ref. [23] and confirmed in Ref. [53], in a gauge invariant treatment of QCD at weak coupling, the antiparticle gap contributions are cancelled by other terms, and the logarithmic term drops out. This nally leads to Eq. (67). Of course, gauge invariance is not an issue in the NJL model. Nevertheless, the logarithmic behavior at very weak coupling should be viewed as a model artifact.}\]

\[\text{IV. NUMERICAL RESULTS}\]

In the following we present our results for \(T = 0 \) and a fixed quark chemical potential \(= 500 \text{ MeV} \).

\[\text{A. Pion decay constant in the chiral limit}\]

We begin with a discussion of the pion decay constant in the chiral limit, i.e., for vanishing quark masses. In Fig. 5 our results are displayed as functions of the gap parameter for two different values of the cut.

\[\text{The points correspond to the numerical results for: } = 600 \text{ MeV (asterisks) and } = 700 \text{ MeV (crosses). To be precise, these calculations have been performed with } m_u = m_d = m_s = 0 \text{ MeV for technical reasons.}\]

\[\text{The weak-coupling \(m \), } \Delta \text{, of } f' \text{ has been derived in Ref. [23] from an effective theory involving only fermionic modes in the vicinity of the Fermi surface. The result,}\]

\[f'^2 = \frac{21}{18} \frac{8 \ln 2}{2^2}; \quad (69)\]

\[\text{If we had taken into account dynamical quark masses it would be linear in the constituent quark mass } M \text{. The leading term on the r.h.s. of Eq. (63) would then read } 8 A m M \text{.}\]
is universal and should hold in any model exhibiting the same symmetry pattern. Indeed, our results converge to this limit for $\phi \to 0$. In the general case we find, however, deviations from Eq. (69), e.g., about 10% for $\rho = 600$ MeV and 80 MeV. Moreover, these deviations depend rather strongly on the cut-off.

In order to understand this behavior and to correct the weak-coupling limit, we employ the semi-analytical formula derived in App. D,

$$f^2 = f^0 + f^2; \quad (70)$$

f^2 thereby describes the contribution to $f \to f^0$ arising for a constant pion vertex function, i.e., neglecting the energy dependence of the mixing angle ϕ in Eq. (60). This part is given in a closed analytical form in Eq. (D5). f^0, on the other hand, incorporates the exact of the energy dependence of the vertex function and is given in Eq. (D11). It is proportional to the derivative $d' = dq$, which is evaluated numerically.

Expanding f^0 and the analytical factor of f^2 for small values of ϕ

$$f^2 = \frac{1}{2} \sum_{n=0}^{\infty} \frac{2^n}{36} (21 + 8 \ln 2) \, 9y^2 \ln y^2 \, c_2 \, y^2 + \ldots; \quad (71)$$

and

$$f^2 = \frac{1}{2} \sum_{n=0}^{\infty} \frac{2^n}{36} \, 36y^2 \ln y^2 \, d_2 \, y^2 + \ldots \quad (72)$$

where

$$c_2 = \frac{81}{4} \, 18 \ln 2 \, 9 \ln (x^2 + 1) + \frac{45}{\ln 2} \, \frac{27}{(x^2 + 1)^2};$$

$$d_2 = 102 \, 56 \ln 2 \, 36 \ln (x^2 + 1) + \frac{36}{x^2 + 1}; \quad (73)$$

and x and y are defined in Eq. (66).

We see that the weak-coupling limit, Eq. (69), is correctly reproduced by the leading term in f^2, while f^2 does not contribute to this order, provided $d' = dq$, does not diverge as strongly as $(y^2 \ln y^2)^{1/4}$ for $\phi \to 0$. We therefore expect that f^2 gives the main contribution to f. As already mentioned, the weak-coupling limit is universal and therefore must be cut-off independent. In the detailed calculations, this results from the fact that in the limit $\phi \to 0$ the integrand of the 3-momentum integral in Eq. (D3) becomes proportional to functions at the Fermi surface. While the $y^2 \ln y^2$-term in Eq. (71) is cut-off independent as well, the quadratic term is not universal and depends on the variable x. This is also the case for the quadratic term in Eq. (72). Anyway, the situation for f^2 is more complicated because the derivative $d' = dq$ depends on the cut-off as well.

The results of the semi-analytical formula for f^2 are indicated by the thick lines in Fig. 5. The solid line corresponds to $\rho = 600$ MeV and the dashed line to $\rho = 700$ MeV. We have employed the exact formulas, Eqs. (D5) and (D11), for f^0 and f^2, respectively, with $d' = dq$, being computed numerically. Obviously, the results for f^2 are in perfect agreement with the numerical computations.

In order to analyze the influence of the momentum dependence of the vertex function, we display the function f^2, too (thin lines). Since f^0 contains the leading term, Eq. (69), it is not surprising that it is the dominant contribution to f. However, for a correct description of the deviations from the weak-coupling limit, f^2 can be quite important. Where for $\rho = 600$ MeV, we find that f^2 is well reproduced by f^0, this is not the case for $\rho = 700$ MeV. This indicates that the correction due to the contributions arising from the momentum dependence of the vertex function are rather small for $\rho = 600$ MeV and considerably larger for $\rho = 700$ MeV.

This result becomes clear if we look at the derivative $d' = dq$ at $\phi = 0$, which is shown in Fig. 6. For $\rho = 700$ MeV (dashed line) the derivative is nowhere small in the shown region. Therefore, f^2 can never be neglected, in agreement with our findings in Fig. 5. On the other hand, for $\rho = 600$ MeV (solid line) we find that the derivative is rather small for $\Delta \approx 40$ MeV, explaining why f^2 is negligible in this regime. For smaller values of the correction becomes larger, in agreement with the deviations we found in Fig. 5. In fact, for $\phi \to 0$, the derivative even seems to diverge. If it was stronger than $(y^2 \ln y^2)^{1/4}$, the divergence could affect the weak-coupling limit. However, at least numerically, we find that $d' = dq$ grows somewhat slower than $(y^2 \ln y^2)^{1/4}$, and we

7 Strictly speaking, the chemical potential should be replaced by the Fermi momentum p_F, because in general the Fermi velocity can differ from the speed of light.
and 79.1 MeV, respectively. As one can see, the results show an almost perfect linear behavior.

Therefore conclude that the weak-coupling limit is safe.

B. Equal quark masses

Next, we study the effect of explicit chiral symmetry breaking through non-vanishing, but equal quark masses $m_u = m_d = m_s$. For the cut-off, we choose $= 600$ MeV and keep this value fixed in the remainder of this article.

Before turning to our main focus, i.e., the mass of the Goldstone bosons, we briefly investigate the dependence of the pion decay constant and of the gap parameter on m. The results are displayed in Fig. 7. We find that both quantities depend only very weakly on the quark mass. In the plotted range they vary less than 0.2%. This is much weaker than the m dependence off in vacuum or of the constituent quark mass in comparable models. In the following discussion we will therefore neglect the distinction between the dependent gap parameter and its chiral limit and often use m in order to characterize the coupling strength.

From Eq. (63), we expect that, to leading order, the masses m_π of the Goldstone bosons in the octet depend linearly on m,

$$m_\pi = \frac{S\Lambda}{f^2} m$$ \hspace{1cm} (74)

This is confirmed by our numerical calculations. In Fig. 8, the values of m_π are displayed as functions of the quark mass for three different couplings $H^2 = 0.5, 1.0$, and 1.5, corresponding to CFL gaps of 12.5 MeV, 43.2 MeV, and 79.1 MeV, respectively. As one can see, the results show an almost perfect linear behavior.

The slopes of the straight lines are decreasing with decreasing coupling strength H, i.e., with decreasing Λ. This is also expected from the QCD weak-coupling limit, Eq. (67) and Eq. (69) inserted in Eq. (74). However, as discussed in Sect. IIIB, we expect that the dependence of the slopes in the NJL model and in weak-coupling QCD is rather different. To study this aspect in detail, we determine the slopes of the functions $m_\pi (m)$ for different values of Λ and use our (dependent) results for f to obtain $A = \frac{S}{2\alpha} f^2$.

The result, divided by the weak-coupling limit A_{WC} is displayed in Fig. 9 as a function of Λ. The ratios obtained from the Λ to the numerically determined mass are indicated by the crosses. The solid line corresponds to Eq. (E1), i.e., to the exact analytical solution of Eq. (64), the dashed line indicates the approximate formula Eq. (65). The former is again in perfect agreement with the numerical results.

We see that for small values of Λ, it is larger than A_{WC}. This is due to the logarithm term discussed in Sec. IIIB (see Eq. (65) and the subsequent discussion). For large couplings, on the other hand, the NJL model value of A is considerably smaller than A_{WC}, leading to even smaller Goldstone-boson masses than predicted in weak coupling. This has also been found in Ref. [40] within a rather different approach.

C. Unequal quark masses

Finally, we study the effect of unequal quark masses. In the upper panel of Fig. 10 the pole positions of the averted (pseudo-) Goldstone modes are displayed as functions of the strange quark mass, keeping m_u and m_d fixed. Our numerical results are indicated by the
points. For practical reasons, we have chosen a relatively strong diquark coupling $H^2 = 1/4$ (corresponding to $\approx 79 \pm 1$ MeV) and a relatively large value of 30 MeV for m_u and m_d, in order to have not too small meson masses. As one can see, the poles which are degenerate for equal masses split into three branches, corresponding to different strangeness, i.e., pions ($S = 0$), kaons ($S = +1$), and antikaons ($S = -1$).

On the other hand, since we have chosen $m_u = m_d$, the different isospin states of these modes, i.e., π^0, K^+, and K^0, and \bar{K}^+ and K^0, remain degenerate.

Our results can be analyzed in terms of the parametrization given in Eq. (39). Each mode T_i has two poles, which for $q = 0$ are located at

$$q = m_i \pm i! = 0;$$

We can thus extract the meson masses and chemical potentials as

$$m_i = \frac{1}{2}(!^i); \quad i = \frac{1}{2}(! + i!);$$

The resulting functions are displayed in the two lower panels of Fig. 10. The masses are moderately rising with m_q and exhibit an "inverse ordering" ($m_K < m_s$), as predicted in Ref. [23]. Let note that kaons and antikaons have the same masses. For the meson chemical potentials, on the other hand, we nd $K = K$, as it should be, and $= 0$.

These results can be compared with those derived in Refs. [23] and [26, 27] in an effective field theory (EFT) approach. For $m_u = m_d = m_q$, they read

$$m = \frac{8A}{f^2} m_s m_q; \quad m_K = m_K = \frac{4A}{f^2} (m_q + m_s);$$

FIG. 10: Properties of the avoided Goldstone modes as functions of the strange quark mass for $m_u = m_d = 30$ MeV and $H^2 = 1/4 (\approx 79 \pm 1$ MeV); pole positions of the T-matrix at $q = 0$ (upper panel), meson masses (center), and meson chemical potentials (lower panel). The various points indicate the numerical results: (circles), K^+ and K^0 (triangles), and K^0 (squares). The lines correspond to the predictions from Eqs. (75), (77), and (78).
and
\[m_{s_{\text{crit}}} = \frac{16}{f^2} \frac{A^2}{m_q^4} \frac{m_q^{1+\lambda}}{\lambda^3} \] (80)
which becomes exact in the limit \(m_q \to 0 \). For \(m_q = 0 \), this implies that kaon condensation is favored for arbitrarily small strange quark masses. One might expect that this is also the case in our model, after we found good agreement with the EFT predictions in Fig. 10.

On the other hand, this would contradict an earlier N-JL model study [40], where a nonzero critical strange quark mass was found, even for \(m_q = 0 \). This was concluded without explicit construction of the Goldstone bosons, by studying the stability of the CFL ground state against partially rotating the scalar diquark condensates into pseudoscalar ones. Thus, with our present approach, we can check this result from a different perspective. Since in Ref. [40] indications were found that the deviations from the EFT predictions are due to terms of higher order in the interaction, we perform our analysis using a rather strong diquark coupling, \(H^0 = 1.7 \), corresponding to \(= 1079 \text{ MeV} \).

In Fig. 11, the critical strange quark mass for kaon condensation is displayed as a function of the third root of \(m_s \). The N-JL model results are indicated by the crosses. We also show the solution of Eq. (79) for the EFT masses and chemical potentials Eqs. (77) and (78) (solid line) and the approximate solution Eq. (80) (dashed).

We find that the N-JL points are always above the EFT predictions (solid line), however, while the deviations are small for \(m_q \leq 1 \text{ MeV} \), they become essential for smaller values of \(m_q \). In particular, we confirm that \(m_{s_{\text{crit}}} \) does not vanish at \(m_q = 0 \) but goes to a finite value, which is about 21 MeV in our example.

To understand this behavior, we analyze the poles of the T-matrix in the kaon channel for \(m_q = 0 \) as functions of \(m_s \). In Fig. 12 the N-JL model results (crosses) are compared with the EFT predictions (solid lines). As before, the pole positions (upper panel) can be interpreted in terms of kaon masses (center) and chemical potentials (lower panel). It turns out that the latter are in fair agreement with Eq. (78). On the other hand, while Eq. (77) predicts the kaon masses to be zero for \(m_q = 0 \), we find that \(m_K \) is in general non-zero and rises linearly with \(m_s \). As a consequence, the pole position \(\frac{1}{m_K} \) is not degenerate with \(\frac{1}{m_s} \) (cf. Eq. (75)) and rises with \(m_s \). Hence, kaon condensation does not occur at arbitrarily small values of \(m_s \) but only for \(m_s \geq 21 \text{ MeV} \), as already seen in Fig. 11.

It should be noted, however, that, although the linear rise of \(m_K \) with \(m_s \) is qualitatively different from Eq. (77), the slope is very small on a quantitative scale. In our example, a linear \(m_K = \alpha_m m_s \) yields \(\alpha_m = 0.52 \), which is an order of magnitude smaller than the slope in Eq. (77), \(\frac{d}{dm_s} = 0.347 \). Moreover, by varying the coupling strength, we found numerically that \(\alpha_m \) depends quadratically on \(m_q \). This is consistent with our expectation that the effect corresponds to a higher-order correction in the interaction and only becomes visible when the leading order, Eq. (77), is artificially suppressed by choosing very small values of \(m_q \). In fact, for any realistic value of \(m_q \) and \(m_{s_{\text{crit}}} \) the correction is quite irrelevant.

Also note that our results are somewhat contrary to Ref. [52], where corrections to the effective kaon chemical potential have been discussed. However, it was found there that these corrections are of the order of \(m_s^2 \), which is completely negligible in all of our
We may finally combine Eq. (77) with our numerical results for $m_q = 0$ by parameterizing

$$s = \frac{4A}{f^2}m_q(m_q + m_s) + a^2m_s^2.$$

Equating this with the kaon chemical potential, Eq. (78), we obtain the dotted line in Fig. 11 for the critical strange quark mass. It is obviously in good agreement with our numerical results. The tiny deviations for small values of m_q can be explained by the fact that the kaon chemical potential in Fig. 12 is slightly overestimated by Eq. (78). A similar effect could also play a role at larger m_q, but there might be other terms as well.

V. SUMMARY AND CONCLUSIONS

We have studied the properties of pseudoscalar Goldstone bosons excitations in the color-avor-locked phase within an NNL-type model. To that end, we solved the Bethe-Salpeter equation in RPA. So far we have only included quark-quark interactions such that our Goldstone boson states are in fact superpositions of diquark and dihole states.

Our results are consistent with the model independent predictions of the low-energy effective theory, i.e., with those predictions which only depend on the symmetry breaking pattern. We found, however, deviations from the values for the constants appearing in the LEET, as for instance the pion decay constant f, obtained in the weak-coupling limit. In fact, it was the main motivation of this paper to locate such deviations and to understand their origins. In several cases this could even be done analytically. Although these model results are in general not universal, they may give in pertinent hints about to what extent the weak-coupling results can be trusted in the intermediate-density regime and where to expect major deviations.

The weak-coupling limit for f [23] is correctly reproduced in the chiral limit in zeroth order in the gap parameter. This must be the case since this result is universal, i.e., independent of the specific choice of the interaction. For not being small we found deviations, typically of the order of a few percent. We have shown that this is an effect of higher order in the gap parameter. In this context, the momentum dependence of the dressed vertex function plays an interesting role.

Next, we discussed the masses of the Goldstone bosons in the limit of equal quark masses. In agreement with the LEET prediction, we found that the meson masses behave linearly in the quark masses. However, the corresponding coefficient A does not agree with the weak-coupling result obtained in HD ET [23]. In the limit $m_s \to 0$, this should be viewed as an artifact of the NNL model. Probably more relevant are the deviations at large
values of where we found the m eson m masses to be considerably smaller than predicted by the weak-coupling formula.

Finally, we have studied the case of unequal quark m masses. In general, we found a very good agreement with the LEET prediction for the m eson m masses and effective chemical potentials, Eqs. (77) and (78). In particular, we found m K < m , i.e., an inverse m eson m mass ordering as predicted in Ref. [23]. We also confirmed that the strange quark m mass acts as an effective strangeness chemical potential, eventually leading to kaon condensation at sufficiently large values of m . Refs. [26, 27]. However, even quantitatively, our model results are in an almost perfect agreement with Eqs. (77) and (78) if the constants A and f entering Eq. (77) are taken from our preceding NJL-model studies in the limit of vanishing quark m masses. Since these values do not agree with the weak-coupling limit, as discussed above, our m eson m masses are in general smaller than those obtained with the weak-coupling coefficients.

In the limit of vanishing light quark m masses, we found a qualitative difference. The critical strange quark m mass for the onset of kaon condensation does not vanish with the cubic root of light quark m masses but attains a nonzero value. We identified this numerically as a higher order effect on the kaon m mass, adding a 2m dependence at low light quark m masses.

This paper should be seen as the basis for further studies of the Goldstone boson dynamics in cold dense quark m matter at non-asymptotic densities where deviations from the weak-coupling limit become visible. As already mentioned, our simple Lagrangian does not include quark-antiquark interactions, which, although subdominant, can give important corrections to the pseudoscalar m eson m masses. Moreover, we miss instanton effects, which have been shown to be important [28, 34]. The ultimate goal is to include the back reaction of the Goldstone bosons on the phase structure of color superconducting quark m matter [54]. In the intermediate density regime, the ratio of the gap parameter and the Fermi energy is of the order of 0.25, such that the Goldstone boson excitations can have a significant effect on the ground state properties.

Acknowledgements

We thank M. Ruggieri for useful comments. This work has been supported in part by the BM BF under contract 06DA123 and by the Helmholtz-University Young Investigator Grant VH-NG-332.

APPENDIX A: GAP EQUATIONS

The Dyson equation shown in Fig. 1 reads

\[S(p) = S_0(p) + S_0(p) S(p) S_0(p) \]

(A1)

Solving for the self-energy, one obtains

\[^\gamma = S_0^{-1}(p) S^1(p) \]

where

\[S_0^{-1}(p) = \begin{pmatrix} p + m & 0 \\ 0 & p + m \end{pmatrix} \]

(A3)

is the inverse bare quark propagator, while \(S^1 \) is the inverse dressed propagator defined in Eq. (16). Thus,

\[S^1 = \begin{pmatrix} 0 & \alpha = 2m \beta \\ \alpha = 2m \beta & 1 \end{pmatrix} \]

(A4)

On the other hand, \(^\gamma\) can be evaluated diagrammatically. In Hartree approximation, it corresponds to the quark loop in Fig.1 and is given by

\[^\gamma = 4iH \frac{Z}{(2\pi)^2} \text{Tr} iS(k) \]

(A5)

Comparing the two expressions for \(^\gamma\), we can write the following gap equations:

\[\alpha = 4H \frac{Z}{(2\pi)^2} \text{Tr} h_{\alpha\alpha} S(k) \]

(A6)

We also see that the contributions of scalar vertices with \(A 6 A^0 \) and of pseudoscalar vertices should vanish to be consistent. Using the explicit expression for the dressed propagator (see Appendix C), it can be shown that this is indeed the case.

APPENDIX B: CHIRAL WARD-TAKAHASHI IDENTITY

In this appendix, we demonstrate that the dressed vertex functions and the dressed quark propagator are consistent with the chiral Ward-Takahashi Identity (WTI) in the sense that, if the WTI holds, we recover the gap equation. As in Sect. III, we restrict ourselves to the case of equal quark m masses.

From Eqs. (44) and (47) we obtain

\[q^2 S_0(p) + 2m_i S_{ij}(p) q^2 \]

(A7)

\[\begin{pmatrix} q^2 S_0(k) + 2m_i S_{ij}(q) S(k) \end{pmatrix} \]

(B1)
Hence, imposing the WTI, Eq. (52), one gets

$$ S^{-1}(p + q)(s t_j)_{NG} + (s t_j)_{NG} S^{-1}(p): $$

$$ = (eq. 2m) s t_j Z_{NG} h + 4i \hbar \frac{d^4k}{(2\pi)^4} \frac{1}{2} \text{Tr}(s t_j)_{NG} \frac{i}{i} + (s t_j)_{NG} s(k): $$

(B2)

Using Eq. (16) with equal masses and gap parameters, one finds that the diagonal Nambu-Gorkov components are equal to the first term on the r.h.s., and one is left with

$$ 0 \begin{pmatrix} P \begin{pmatrix} (A t_j + t_j A) \lambda \lambda = 2 \beta \gamma \end{pmatrix} 0 \\ P \begin{pmatrix} \lambda \lambda = 2 \beta \gamma \end{pmatrix} \lambda = 2 \beta \gamma \end{pmatrix} = 4i \hbar \frac{d^4k}{(2\pi)^4} \frac{1}{2} \text{Tr}(s t_j)_{NG} \frac{i}{i} + (s t_j)_{NG} s(k): $$

(B3)

Next we compute the sums over \(A \) on the l.h.s. for any of theavor operators \(t_j \). For instance, for \(t_j = t_1 = \frac{i}{2} \), we find that the l.h.s. is equal to

$$ \frac{1}{i} \begin{pmatrix} P \begin{pmatrix} (p^+ + p^\dagger) \lambda \lambda \gamma \end{pmatrix} 0 \\ P \begin{pmatrix} \lambda \lambda \gamma \end{pmatrix} \lambda = \gamma \end{pmatrix} = \frac{1}{i} \begin{pmatrix} 1 \lambda \lambda \gamma \\ \lambda = \gamma \end{pmatrix} $$

Thus by comparison with the l.h.s. we obtain

$$ = 4i \hbar \frac{d^4k}{(2\pi)^4} \frac{1}{2} \text{Tr}(s t_j)_{NG} \frac{i}{i} + (s t_j)_{NG} s(k): $$

(B4)

in agreement with one of the gap equations (A 6) for the case of equal masses. The two other equations can be derived analogously, if we evaluate Eq. (B3) for \(t_j = t_k \), or \(t_j = t_0 \). Morover, the fact that most \(i \) must not contribute to the r.h.s. for a given \(t_j \) can be used to show that scalar operators with \(A = A_0^0 \) and pseudoscalar operators do not contribute to the gap equation.

APPENDIX C: DRESSED QUARK PROPAGATOR

1. General case

The dressed quark propagator \(S(p) \) is the inverse of the inverse quark propagator, defined in Eq. (16). Following standard methods (see, e.g., Refs. [47, 50]), we write

$$ S^{-1}(p) S^{-1}(p^0, p) = 0 \begin{pmatrix} p^0 \lambda \lambda = 0 \end{pmatrix} A(p); $$

(C1)

where \(A(p) \) is a hermitian 72 × 72 matrix, which does not depend on \(p^0 \). Thus \(A \) can always be diagonalized, i.e., we can find a unitary matrix \(U(p) \), so that

$$ A(p) = U^+(p) D(p) U(p); $$

(C2)

with

$$ D(p) = \begin{pmatrix} 0 \\ 0 \\ -\frac{1}{2}\gamma \end{pmatrix}_7 \begin{pmatrix} 0 \\ D_0 \end{pmatrix}_1 \begin{pmatrix} 0 \\ 0 \\ \frac{1}{2}\gamma \end{pmatrix}_7 $$

(C3)

being a diagonal matrix with eigenvalues \(\lambda_1;:::;\lambda_7 \). It can be shown that all eigenvalues are two-fold degenerate, and for each eigenvalue \(\lambda_1 \), there is a counterpart \(\lambda_7 \) in the spectrum. This means, there are basically 18 independent eigenvalues. Moreover, part of the diagonalization is trivial because the matrix \(A \) can be brought into block diagonal form by reordering of lines and columns. The remaining blocks are in general diagonalized numerically.

Combining Eqs. (C1) and (C3), the propagator is normally given by

$$ S(p) = U^+(p) B\begin{pmatrix} d_0(p) \\ d_1(p) \end{pmatrix} U(p) \begin{pmatrix} 0 \\ 0 \\ -\frac{1}{2}\gamma \end{pmatrix}_7 \begin{pmatrix} 0 \\ D_0 \end{pmatrix}_1 \begin{pmatrix} 0 \\ 0 \\ \frac{1}{2}\gamma \end{pmatrix}_7 $$

(C4)

2. Equal quark masses

In the limit of an exact \(SU(3) \) symmetry, we can give a closed expression for the quark propagator. Straightforward inversion of Eq. (16) for \(m_u = m_d = m_s = m \) and \(22 = 55 = 77 = y \) yields

$$ S = S_{11} S_{12} \begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} \frac{p + m}{x} \lambda = 2 \beta \gamma \end{pmatrix}_7 \begin{pmatrix} 0 \\ 0 \end{pmatrix} A S_{11} $$

(C5)

with

$$ S_{21} = \begin{pmatrix} p \pm m \lambda = 2 \beta \gamma \end{pmatrix}_7 \begin{pmatrix} \frac{p + m}{x} \lambda = 2 \beta \gamma \end{pmatrix}_7 $$

(C6)

and

$$ S_{11} = \begin{pmatrix} p \pm m \lambda = 2 \beta \gamma \end{pmatrix}_7 \begin{pmatrix} \frac{p + m}{x} \lambda = 2 \beta \gamma \end{pmatrix}_7 $$

(C7)

where we have introduced the notations

$$ p = p_0; x = p^0 m^2; $$

(C8)

and

$$ S_{12} \text{ and } S_{21} \text{ are obtained from } S_{11} \text{ and } S_{21}, \text{ respectively, under the exchange } \$ \text{ and } \$ $.

The matrices \(S_{ij} \) are 36 × 36 matrices representing the normal (\(i = j \)) and anomalous (\(i 6 \ j \)) Nam Bu-Gorkov components of \(S \). \(S_{11} \) can explicitly be written as

$$ S_{11} = S_{11}^0 + \frac{1}{6} \begin{pmatrix} \gamma \end{pmatrix}_8 \begin{pmatrix} \gamma \end{pmatrix}_8 $$

(C9)

where we have introduced the notations

$$ p = p_0; x = p^0 m^2; $$

(C8)
with
\[S = \frac{x \cdot (p + m) \cdot jj^2 \cdot (p + m)}{(-p_0^2 + E_0^2)(-p_0^2 + E_0^2)}, \quad (C10) \]
corresponding to the eigenvalue of the gap matrix, and
\[T = \frac{x \cdot (p + m) \cdot 4jj^2 \cdot (p + m)}{(-p_0^2 + E_1^2)(-p_0^2 + E_1^2)} \quad (C11) \]
corresponding to the eigenvalue 2 of the gap matrix. The octet and singlet dispersion relations for particles () and antiparticles (+) are given by
\[E_0 = \frac{-p_0^2 + m^2}{-p_0^2 + E_0^2} j^2 + jj^2 \quad (C12) \]
and
\[E_1 = \frac{-p_0^2 + m^2}{-p_0^2 + E_1^2} j^2 + 4jj^2; \quad (C13) \]
respectively.

Appendix D: Pion Decay Constant in the Chiral Limit

In this appendix we derive a semi-analytical expression for the pion decay constant in the chiral limit, which is used in Sect. IV A to discuss the deviations from the weak coupling limit. The 0 decay constant can be obtained in a similar way but we do not discuss this here.

Starting point is Eq. (43) for the (timelike) decay constant in the case of equal quark masses. In the chiral limit, we have to evaluate this formula at \(m = 0 \). Since both sides of this equation vanish in this limit, this means that the decay constant is given by the derivative of the r.h.s. with respect to \(q \). Moreover, we can employ the \(\gamma \) Goldberger-Treiman relation\(^*\), Eq. (55), to eliminate the coupling constant \(g \). We then obtain

\[f_1^2 = f_1^2 + f_2^2; \quad (D2) \]

where
\[f_1^2 = \frac{Z}{2} \frac{d^4k}{2} \frac{1}{2} \text{Tr} \left[\frac{\partial}{\partial q} S (k + q) \right]_{q=0}^{0} 5 t_N G S (k) \]

and
\[f_2^2 = \frac{Z}{2} \frac{d^4k}{2} \frac{1}{2} \text{Tr} \left[\frac{\partial}{\partial q} S (k + q) \right]_{q=0}^{0} 5 t_N G S (k) \]

are the contributions of the vertex function. The evaluation of \(f_1^2 \) is tedious, but straightforward. Inserting \(f_1(0) = \bar{q} q \) from Eqs. (57) or (58), respectively, \(t_N \) from Table I as well as the expressions for the quark propagator given in Appendix C 2 in the chiral limit, the result for the octet mesons (pions) reads

\[f_1^2 = \frac{2}{n} \frac{Z}{2} \frac{1}{y^2} \frac{1}{2} \text{Tr} \left[\frac{\partial}{\partial q} S (k + q) \right]_{q=0}^{0} 5 t_N G S (k) \]

where the 3-mom entum integral has been regularized by a cut-off (as in the numerical calculations) and we have introduced the abbreviations

\[1 = \frac{Z}{2} \frac{d^4k}{2} \frac{1}{2} \text{Tr} \left[\frac{\partial}{\partial q} S (k + q) \right]_{q=0}^{0} 5 t_N G S (k) \]

and

\[1 = \frac{Z}{2} \frac{d^4k}{2} \frac{1}{2} \text{Tr} \left[\frac{\partial}{\partial q} S (k + q) \right]_{q=0}^{0} 5 t_N G S (k) \]

Moreover, \(x = - \) and \(y = - \), as defined in Eq. (66). The evaluation of \(f_2^2 \) is more difficult because we need to know the derivative of the vertex function. For theavored mesons this is encoded in the mixing angle \(\gamma \), cf. Eq. (60). We can therefore write

\[\frac{d}{dq} S (k + q) \]

where
\[\frac{d}{dq} S (k + q) \]

with
\[\frac{d}{dq} S (k + q) \]
is the vertex of the orthogonal state with the same quantum numbers as the meson \(i \) (e.g., \(\frac{q_i}{\gamma} = \frac{p_i^0}{2} \)). Hence

\[
f_i^2 = \frac{d^4k}{(2\pi)^4} \frac{1}{2} \text{Tr} \left[S(k) \left(\frac{q_i}{\gamma} \right) \right] S(k) \frac{d'(q)}{dq}\bigg|_{q=0}.
\]

(E10)

Evaluating this part for the octet mesons, one finally obtains

\[
f_i^2 = \frac{2}{n^108^2}
\begin{align*}
&108y^2 \ln y^2 + 48y^2 \ln 2 \\
&+ 2(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + x + 1) \\
&2(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + x + 1) \\
&+ 4y^2(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) \quad 16y^2(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) \\
&+ 12y^2(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) \quad 2 \ln(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + x + 1) + 2 \ln(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) \\
&\quad + 7 \ln(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + x + 1) + 7 \ln(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) \\
&45y^2 \begin{pmatrix} x^2 + 4x + 2 \\ x^2 + 4x + 2 \end{pmatrix} \\
&90y^4(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) \quad \frac{d'(q)}{dq}\bigg|_{q=0}.
\end{align*}
\]

(E11)

One could also try to derive an analytical expression for the derivative \(\frac{d'(q)}{dq}\bigg|_{q=0} \) from the polarization-loop matrix Eq. (28), but this is beyond the scope of this paper.

Appendix E: Exact Formula for A

The exact result of Eq. (64) is given by

\[
A = \frac{2}{n^184^2}
\begin{align*}
&48 \ln y^2 + 32 \ln 2 + 4(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + x + 1) + 44(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + x + 1) \\
&+ (16 + 3y^2) \ln(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + x + 1) + \ln(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) \\
&+ (32 + 3y^2) \ln(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + x + 1) + \ln(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}) \\
&6y^2 \ln 2 \\
&+ 9y^2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \ln[4(x + 1) + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3x & 13 \\ 13 & 3x \end{pmatrix}] \\
&\ln[4(x + 1) + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3x & 13 \\ 13 & 3x \end{pmatrix}] \\
&+ \ln[4(x + 1) + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3x & 13 \\ 13 & 3x \end{pmatrix}] \\
&\ln[4(x + 1) + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3x & 7 \\ 7 & 3x \end{pmatrix}] \\
&+ \ln[4(x + 1) + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3x & 7 \\ 7 & 3x \end{pmatrix}] \\
&\ln[4(x + 1) + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3x & 13 \\ 13 & 3x \end{pmatrix}] \\
&\ln[4(x + 1) + \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 3x & 7 \\ 7 & 3x \end{pmatrix}]
\end{align*}
\]

(E1)

with \(i \) as defined in Eq. (D6),

\[
2 = \frac{p}{4 + y^2}; \quad 3 = \frac{p}{4 + 9y^2};
\]

(E2)