UV LUMINOSITY FUNCTIONS AT Z=4,5, AND 6 FROM THE HUDF AND OTHER DEEP HST ACS FIELDS: EVOLUTION AND STAR FORMATION HISTORY

Rychard J. Bouwens2, Garth D. Illingworth2, Marijn Franx3, Holland Ford4

1 Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program # 9425, 9575, 9797, 9803, 9978, 10189, 10339, 10340, and 10632.
2 Astronomical Department, University of California, Santa Cruz, CA 95064
3 Leiden Observatory, Postbus 9513, 2300 RA Leiden, Netherlands
4 Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218

Draft version April 7, 2013

ABSTRACT

We use the ACS BVIZ data from the HUDF and all other deep HST ACS fields (including the GOODS fields) to nd large samples of star-forming galaxies at z = 4 and z = 5 and to extend our previous z = 6 sample. These samples contain 4671, 1416, and 627 B, V, and I dropout, respectively, and reach extremely low luminosities (0.01 0.04 L\textsubscript{z=3} or M\textsubscript{UV} 16 to 17), allowing us to determine the rest-frame U V luminosity function (LF) and faint-end slope at z = 4 to 6 with high accuracy. We nd faint-end slopes of 1.73 \pm 0.05 at z = 4, 1.66 \pm 0.09 at z = 5, and 1.74 \pm 0.16 at z = 6 suggesting that the faint-end slope is very steep and shows little evolution with cosmic time. We nd that M\textsubscript{UV} brightens considerably in the 0.7 Gyr from z = 6 to z = 4 (by 0.7 mag from M\textsubscript{UV} = 20.24 \pm 0.19 to M\textsubscript{UV} = 20.98 \pm 0.10). The observed increase in the characteristic luminosity over this range is about equal to that expected for the halo mass function suggesting that the observed evolution is likely due to the hierarchical coalescence and merging of galaxies. The evolution in the UV luminosity density at z > 6 is modestly lower (0.45 0.9) than that at z = 4 (integrated to 175 AB mag) though a larger change is seen in the dust-corrected star-formation rate density. We thoroughly examine published LF results and assess the reasons for their wide dispersion. We argue that the results reported here are the most robust available. The extremely steep faint-end slopes found here suggest that lower luminosity galaxies play a signi cant role in reionizing the universe. Finally, recent search results for galaxies at z > 7 are used to extend our estimates of the evolution of M\textsubscript{UV} from z = 7 to z = 4.

Subject headings: galaxies: evolution | galaxies: high-redshift

1. INTRODUCTION

The luminosity function represents a key observable in astronomy. It tells us how many galaxies are at some epoch and in light of a given luminosity. Comparisons of the luminosity function with other quantities like the halo mass function provide critical insights into galaxy formation by establishing the efficiency of star formation at different mass scales (van den Bosch et al. 2004; Vale & Ostriker 2004). At ultraviolet (U V) wavelengths, this luminosity function has been of keen interest because of its close relationship with the star formation rate. With the exception of galaxies with the largest star formation rates and therefore likely significant dust extinction (e.g., Wang & Heckman 1996; Dekel & Steidel 1999; Martin et al. 2005), the UV light has been shown to be a very good tracer of this star formation rate. Studies of the evolution of this LF can help us understand the physical processes that govern star formation. Among these processes are likely gas accretion and hierarchical build-up at early times, SNe and AGN feedback to regulate this star formation, and gravitational instability physics.

Over the past few years, there has been substantial progress in understanding the evolution of the rest-frame UV LF across cosmic time, building signi cantly upon the early work done on these LFs at z = 3 from Lyα emitters (e.g., Steidel et al. 1999) and work in the nearby universe (z < 0.1: e.g., Sullivan et al. 2000). At lower redshift, progress has come through deep far-UV data from the Galaxy Evolution Explorer (GALEX: Martin et al. 2005a) which have allowed us to select large samples of LBGs at z = 2.5 (Amouts et al. 2005; Shimasaku et al. 2005) and thus derive the LF at the same rest-frame wavelength (1600 Å) as higher redshift samples. At the same time, there has been an increasing amount of very deep, wide-area optical data available from ground and space to select large dropout sampl es at z = 4 to 6 (e.g., Giallongo et al. 2004b; Bunker et al. 2004; Dickinson et al. 2004; Yan & Wirth 2004; Ouchi et al. 2004; Bouwens et al. 2005; hereafter, Bouwens et al. 2006). This has enabled us to determine the UV LF across the entire range z = 0 to 6 and attempt to understand its evolution across cosmic time (Shimasaku et al. 2005; B06; Yoshida et al. 2006; Tresse et al. 2006).

Although there has been an increasing consensus on the evolution of the LF at z < 2 (Amouts et al. 2005; Gabasch et al. 2004; Dahlen et al. 2006; Tresse et al. 2006), it is fair to say that the evolution at z = 3 is still contentious, with some groups claiming that the evolution occurs primarily at the bright-end (Shimasaku et al. 2005; B06; Yoshida et al. 2006), others claiming it occurs at the faint-end (Ilbert et al. 2003; Sawicki et al. 2006; Ilbert et al. 2007), and still other teams suggesting the evolution occurs in a luminosity-independent manner (Beckwith et al. 2006). Perhaps, the most physically rea-
sensible of these scenarios and the one with the broadest observational support (Dickinson et al. 2004; Shimasaku et al. 2005; Bouwens & Illingworth 2006; Yoshida et al. 2006) is the scenario where evolution happens primarily at the bright-end of the LF. In this picture, fainter galaxies are established first and then the brighter galaxies develop later through hierarchical buildup. Observationally, this buildup is seen as an increase in the characteristic luminosity as a function of cosmic time (Dickinson et al. 2004; Bouwens et al. 2005) Less evolution is apparent in the normalization and faint-end slope (Bouwens et al. 2006).

Despite much observational work at the bright end of the LF at high redshift, the observations have not provided us with strong constraints on what happens at the faint end of the luminosity function. Most large-scale surveys for galaxies at $z \geq 3$ have only extended to 27 AB mag (e.g., Yoshida et al. 2006; Giavalisco et al. 2004b; Ouchi et al. 2004; Sawicki & Thompsen 2005), which is equivalent to $0.5 \text{L}_*_{z=3}$ at $z = 4.5$. This is unfortunate since galaxies beyond these limits may be quite important in the overall picture of galaxy evolution, particularly if the faint-end slope is steep. For faint-end slopes of 1.5, lower luminosity galaxies ($0.5 \text{L}_*_{z=3}$) contribute nearly 50% of the total luminosity density, and this fraction will be even higher if the faint-end slope is steeper yet. Since these galaxies will dominate certainly play a more significant role in the luminosity densities and star formation rates at very early times, clearly it is helpful to establish how the LF is evolving at lower luminosities. This topic has been of particular interest recently due to speculation that lower luminosity galaxies may reionize the universe (Benson & Lehner 2003; Yan & Windhorst 2004a; Bouwens et al. 2004a; Thompsen et al. 2005) and the two HUDF05 selections (23 arcmin2; Oesch et al. 2007).

With the availability of deep optical data over the Hubble Ultra Deep Field (HUDF; Beckwith et al. 2006), we have the opportunity to extend current luminosity functions (LFS) to very low luminosities. The HUDF data are deep enough to allow us to select dropout sam plies to 29.5 AB mag which corresponds to an absolute magnitude of 16.5 AB mag at $z = 4$, or 0.01 L$_*$ which is 5 mag below L$. This is almost 2 mag fainter than has been possible with any other data set and provides us with unique leverage on a detail the faint-end slope. Previously, we have used an i-dropout selection over the HUDF to determine the LF at $z = 6$ to very low luminosities (175 AB mag), finding a steep faint-end slope 1.73 ± 0.21 and a characteristic luminosity 2025 that was 0.5 mag fainter than at $z = 3$ (Bouwens et al. 2006; see also work by Yan & Windhorst 2004; Bouwens et al. 2004; Malhotra et al. 2005). Beckwith et al. (2006) also considered a selection of dropouts over the HUDF and used them in conjunction with a selection of dropouts of the wide-area GOODS observations: Origins Deep Survey (GOODS) esds (Giavalisco et al. 2004a) to examine the evolution of the LF at high-redshift. Beckwith et al. (2006) found that the LFs at $z = 4$ 6 could be characterized by a constant M_{204}, steep faint-end slope 1.5, and evolving normalization. Beckwith et al. (2004) and Yan & Windhorst (2004) also examine the evolution of the LF from $z = 6$ to $z = 3$, interpreting the evolution in terms of a changing normalization and faint-end slope, respectively.

It is surprising to see that even with such high-quality selections as are possible with the HUDF, there is still a wide dispersion of results regarding the evolution of the UV LF at high redshift. This emphasizes how in small both uncertainties and systematics can be for the determination of the LF at these redshifts. These include data-dependent uncertainties like large-scale structure and small number statistics to model-dependent uncertainties (or systematics) like the model redshift distribution, selection volume, and k-corrections. In light of these challenges, it makes sense for us to (i) to rederive the L_6 at $z = 6$ in a uniform way using the most prehensive set of HST data available while (ii) considering the widest variety of approaches and assumptions.

To this end, we will make use of a comprehensive set of ultracolour (B Viz) HST data to derive the rest-frame UV LFs at $z = 4, 5, 6$ and (6) to very low luminosities. These data include the exceptionally deep HUDF data, the two wide-area GOODS esds, and four extremely deep ACS pointings which reach to within 1 mag of 0.5 mag of the HUDF. These data include two deep ACS pointings (20 arcmin2) to the UDF NICMOS esd (HUDF-Ps; Bouwens et al. 2004a; Thompsen et al. 2005) and the two HUDF05 esds (23 arcmin2; Oesch et al. 2007). Though these data have not been widely used in previous LF determinations at $z = 4$, they provide significant statistical confidence and of the GOODS probe, provide essential controls for large-scale structure, and serve as an important bridge in linking ultra-deep HUDF selections to similar selections made over the much shallower GOODS esds. By deriving the LFs at $z = 4, 5, 6$, we will fill in the redshift gap left by our previous study (Bouwens et al. 2006) between $z = 6$ and $z = 3$. We will also take advantage of the additional HST data now available (i.e., the two HUDF05 esds) to re-run our previous determination of the LF at $z = 6$ (Bouwens et al. 2006). In doing so, we will obtain an essentially self-consistent determination of the UV LF at $z = 4, 5, 6, 7$.

This will allow us to re-determine the parameters of the evolution of the UV LF from $z = 6$ to $z = 3$ and to determine if we are able to make a more direct assessment of the evolution of the UV LF at $z = 4, 5, 6$ when compared with the UV LF at $z = 3$ from Steidel et al. (1999). It also places us in a position to evaluate the wide variety of different conclusions drawn by different teams in analyzing the evolution of the UV LF at high redshift (Bunker et al. 2004; Yan & Windhorst 2004; Iwata et al. 2003; Beckwith et al. 2006; Yoshida et al. 2006; Iwata et al. 2007). While deriving these LFs, we will consider the wide variety of different approaches and assumptions to ensure that the results we obtain are as robust and broadly applicable as possible.

We begin this paper by describing our procedures for selecting our B, V, and i-dropout samples (x1). We then derive detailed completeness, u, c, and contamination corrections to model our shallower HUDF05, HUDF-Ps, and GOODS selections in a similar fashion to the way we model the HUDF data. We then move onto a determination of the rest-frame UV LFs at $z = 4, 5, 6$, and A_3. In x4, we assess the robustness of the current LF determination (comparing the present results with those in the literature and trying to understand the wide dispersion of previous LF results). Finally, we discuss the implications of our results (x5) and then include a summary (x6). If there are necessary, we assume $e_0 = 0.7, H_0 = 70 \text{ km/s/Mpc}$. Although these parameters...
eters are slightly different from those determined from the WMAP three-year results (Spergel et al. 2006), they allow for convenient comparison with other recent results expressed in a similar manner. Throughout, we shall use $L_{\text{\small 2.3}}$ to denote the characteristic luminosity at $z = 3$ (Steidel et al. 1999). All magnitudes are expressed in the AB system (Oke & Gunn 1983).

2. SAMPLE SELECTION

2.1. Observational Data

A detailed summary of any of the ACS HDF, HDF-Ps, and GOODS data we use for our dropout selections is provided in our previous work (B06). Nevertheless, a brief description of the data is included here. The ACS HDF data we use are the v1.0 reductions of Beckwith et al. (2006) and extend to 5 point-source limits of 29.00 in the B435, V606, B775, and Z850 bands. The HDF-Ps reductions we use are from B06 and take advantage of the deep (6.72 orbit) BV in ACS data els taken in parallel with the HDF N MDM program (Thomson et al. 2005). Together the parallel data from this program sum to create two very deep ACS els that we can use for dropout searches. While of some interest, the central portions of these els (12-20 arcmin2) reach some 0.05 mag deeper than the data in the original GOODS program (Giallico et al. 2004). Finally, for the ACS GOODS reductions, we use an updated version of those generated for our previous z = 6 study (B06). These reductions not only take advantage of all the original data taken with ACS GOODS program, but also include all the ACS data associated with the SNe search (A.R. Hess et al. 2007, in preparation), GEMS (Rix et al. 2004), HDF N MDM program (Thomson et al. 2005), and HDF05 (Oesch et al. 2007) program s. These latter data (particularly the SNe search data) increase the depth of the B775 and Z850 band in ages by 0.02 and 0.05 mags over that available in the GOODS v1.0 reductions (Giallico et al. 2004).

Finally, we also take advantage of two exceptionally deep ACS els taken over the N MDM parallels to the HDF (called the HDF05 els: Oesch et al. 2007). Each el contains 10 orbits of ACS V606-band data, 23 orbits of ACS B775-band data, and 71 orbits of ACS Z850-band data. As such, these els are second only to the HDF in their total Z850-band exposure time. Though these data were taken to search for galaxies at $z > 6.5$ (e.g., Bouwens & Illingworth 2006), they provide us with additional data for the UV LF determinations at $z = 5-6$. These data were not available to us in our previous study on the LF at $z = 6$ (B06). The ACS data over these els were reduced using the ACS GTO pipeline lapsis" (Ballew et al. 2003). Lapsis handles in image alignment, cosmic rays rejection, and the drizzling process. To maximize the quality of our reductions, we median stacked the basic post-calibration data after asking out the sources and then subtracted these medians from the individual exposures before drizzling them together to make the final images. The reduced els reach to 29.04 mags at 5.0 in the V606, B775, and Z850 bands using 0.20-diam eters apertures. This is only 0.45 mags shallower than the HDF in the Z850 band. A detailed summary of the properties of each of our els is contained in Table 1.

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>Observational Data.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band</td>
<td>Detection Lim a</td>
</tr>
<tr>
<td>B435</td>
<td>29.8</td>
</tr>
<tr>
<td>V606</td>
<td>30.2</td>
</tr>
<tr>
<td>i775</td>
<td>30.1</td>
</tr>
<tr>
<td>Z850</td>
<td>29.3</td>
</tr>
<tr>
<td>J110</td>
<td>27.3</td>
</tr>
<tr>
<td>H160</td>
<td>27.1</td>
</tr>
</tbody>
</table>

a0.20-diam eter aperture for the ACS data, 0.80-diam eter aperture for N MDM data, and 0.80-diam eter for ISAC data. In contrast to the detection limit quoted in our previous work, here our detection limit has been corrected for the nominal light outside these apertures (assuming a point source). The detection limit is 3σ without this correction. These are typically 0.3 mag fainter.

bOnly the highest S/N regions from the HDF-Ps and HDF05 els were used in the searches to obtain a consistently deep probe of the LF over these regions.

2.2. Catalog Construction and Photom etry

Our procedure for doing object detection and photometry on the HDF, HDF-Ps, HDF05, and GOODS els is very similar to that used previously (Bouwens et al. 2003b; B06). Briefly, we perform object detection for B, V, and i-dropout selections by constructing 2 mag images (Szalay et al. 1999) from the V606, B775, and Z850-band data, B775 and Z850-band data, and Z850-band data, respectively. In ages are constructed by adding together the relevant images in quadrature, weighting each by $1 - z$, where z is the R-band noise on the image. Sextractor (Bertin & Arnouts 1996) was then run in double-im age mode using the square root of the 2^2 image as the detection image and the other images to do photometry. Colors were measured using Kron-style (1980) photometry (MAG_AUTO) in small scalapable apertures (Kron factor 1.2, with a minimum aperture of 1.7 semi-major axis lengths). These colors were then corrected up to total magnitudes using the excess light contained within large scalapable apertures (Kron factor 2.5, with a minimum aperture of 3.5 semi-major axis lengths). We measured these corrections on the square root of the 2^2 image to improve the S/N. Figure 5 of Coe et al. (2006) provides a graphic description of a similar procedure. The median diameter of these apertures was 0.50 for the faintest sources in our sample. An additional correction was made to account for light
outside of our apertures and on the wings of the ACS Wide Field Camera (WFC) PSF (Sirianni et al. 2005). Typical corrections were $0.1 \pm 0.2 \text{mag}$.

To assess the quality of our total magnitude measurements, we compared our measurements (which are based on global backgrounds) with those obtained using local backgrounds and found that our total magnitude measurements were 0.04mag brighter in the mean. Comparisons with similar x-m measurements made available from the GOODS and HUDF teams (Giallico et al. 2004a; Beckwith et al. 2006) also showed good agreement (0.2mag scatter), though our total magnitude measurements were typically 0.08mag brighter. We believe this offset is the result of the 0.1mag correction we make for light on the PSF wings (Sirianni et al. 2005).

While constructing our dropout catalogs, one minor challenge was in the deblending of individual sources. The issue was that SEXtractor frequently split many of the more asymmetric, multi-component dropout galaxies into more than one distinct source. This would have the effect of transforming many luminous sources in our selection into multiple, lower luminosity sources and thus bias our LF determinations. To cope with this issue, we experimented with a number of different procedures for blending sources together based upon their colors. In the end, we settled on a procedure whereby dropouts were blended with nearby sources if (1) they lay within 4 K kpc radii and (2) their colors did not differ at more than 2 times the standard errors. Since SEXtractor does not allow for the use of color information in the blending of individual sources, it was necessary for us to implement this algorithm outside of the SEXtractor package. We found that our procedure nearly always produced results which were in close agreement with the choices we would make after careful inspection.

2.3. Selection Criteria

We adopted selection criteria for our B, V, and i dropout samples which are very similar to those used in previous works. Our criteria are:

\[(B_{435} - V_{606} > 12.1) \land (B_{435} - V_{606} > (V_{606} - z_{650}) + 12) \land (V_{606} - z_{650} < 1.5)\]

for our B -dropout sample and

\[[(V_{606} - i_{775} > 0.9(z_{650} - i_{775}) - (V_{606} - i_{775} > 2))] \land (V_{606} - i_{775} > 1.2) \land (i_{775} - z_{650} < 1.3)\]

for our V -dropout sample and

\[(i_{775} - z_{650} > 1.3) \land (V_{606} - i_{775} > 2) \land (S < N(V_{606} < 2))\]

for our i -dropout sample, where \land and \lor represent the logical AND and OR symbols, respectively, and S/N represents the signal to noise. Our V -dropout and i -dropout selection criteria are identical to that described in Giallico et al. (2004b) and B06, respectively. Meanwhile, our B -dropout criteria, while slightly different from that used by Giallico et al. (2004b), are now routinely used by the team (e.g., Beckwith et al. 2006).

We also required sources to be clearly extended (SEXtractor star indices less than 0.8) to eliminate faint, extended sources and AGNs. Since the SEXtractor star index rapidly becomes unreliable near the magnitude limit of each of our samples (see, e.g., the discussion in Appendix D.4.3 of B06), we do not require point sources fainter than the limit $i_{775} > 27.5$ (GOODS), $i_{775} > 27.3$ (HUDF-Ps/HUDF05), and $i_{775} > 28$ (HUDF) for our B -dropout sample and $z_{650} > 26.5$ (GOODS), $z_{650} > 27.3$ (HUDF-Ps/HUDF05), and $z_{650} > 28$ (HUDF) for our V and i -dropout samples.

Instead, contamination from stars is treated on a statistical basis. Since only a small fraction of galaxies fainter than the limit appear to be stars ($\lesssim 1%$ of the dropout candidates brighter than 27 for unresolved in our GOODS selections and $\lesssim 1%$ of the dropout candidates brighter than 28 for unresolved in our HUDF selections), these corrections are small and should not be a significant source of error. Sources which were not 45 detections in the selection band (0.5 magnitude interval) were also removed to clean our catalogs of a few spurious sources associated with an imperfectly attuned background. Finally, each dropout in our catalogs was carefully inspected to remove artifacts (e.g., di rect spikes or low-surface brightness features around bright foreground galaxies) that occasionally satisfy our selection criteria.

In total, we found 711 B -dropouts, 232 V -dropouts, and 132 i -dropouts over the HUDF and 3822 B -dropouts, 888 V -dropouts, and 365 i -dropouts over the two GOODS fields. This is similar to (albeit slightly larger than) the numbers reported by Beckwith et al. (2006) over these fields. We also found 283 B -dropouts over the HUDF-Ps (12 arcmin^2) and 332 V -dropouts and 160 i -dropouts over the HUDF-Ps and HUDF05 fields (32 arcmin^2). In total, our catalogs contain 4671, 1416, and 627 unique B, V, and i -dropouts (151, 36, and 30 of the above B, V, i -dropouts occur in more than one of these catalogs). Table 2 provides a convenient summary of the properties of our B, V, and i -dropout samples. Figure 1 compares the surface density of dropouts found in our compilation with those obtained in the literature (Giallico et al. 2004b; Beckwith et al. 2006). With a few notable exceptions (see, e.g., Figure 12), we are in good agreement with the literature.

2.4. Flux/Completeness Corrections

The above samples provide us with an unprecedented data set for determining the LFs at high-redshift over an extremely wide range in luminosity. However, before we use these samples to determine the LFs at $z = 4\text{--}6$, we need to understand in detail how object selection and photometry affect what we observe. These issues can have a significant effect on the properties of our di erent selections, as one can see in Figure 1 by comparing the surface density of dropouts observed in the HUDF, HUDF-Ps, GOODS els, where clear di erences are observed at faint magnitudes due to obvious di erences in the com pletion of these sam ples at such magnitudes.

To accomplish these aims, we will use a very similar strategy to what we employed in previous exam inations of the rest-frame UV LF at $z = 6$ (B06). Our strategy will be to derive transformation actions which correct the dropout surface densities from what we would derive for a noise -free (in the S/N) data to that recoverable at the depths of our various els. These transformation actions will be made using a set of two-dimensional matrices,
TABLE 2

<table>
<thead>
<tr>
<th>Sample</th>
<th>Area (arcmin²)</th>
<th># B-drops</th>
<th>V L<sub>28</sub> b</th>
<th># V-drops</th>
<th>L L<sub>28</sub> b</th>
<th># I-drops</th>
<th>L L<sub>28</sub> b</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDFS GOODS</td>
<td>172</td>
<td>2105</td>
<td>1280</td>
<td>447</td>
<td>280</td>
<td>412</td>
<td>280</td>
</tr>
<tr>
<td>CDFS GOODS-1</td>
<td>196</td>
<td>1723</td>
<td>280</td>
<td>441</td>
<td>280</td>
<td>128</td>
<td>280</td>
</tr>
<tr>
<td>HUDF GOODS</td>
<td>152</td>
<td>283</td>
<td>290</td>
<td>88</td>
<td>285</td>
<td>12</td>
<td>285</td>
</tr>
<tr>
<td>HUDF-PS</td>
<td>177</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HUDF05</td>
<td>20</td>
<td></td>
<td></td>
<td>244</td>
<td>290</td>
<td>96</td>
<td>290</td>
</tr>
<tr>
<td>HUDF</td>
<td>11</td>
<td>11</td>
<td>320</td>
<td>147</td>
<td>295</td>
<td>132</td>
<td>295</td>
</tr>
</tbody>
</table>

1 Due to our inclusion of the ACS parallel to the UDF NEMOS ed in our reductions of the CDF South GOODS ed (x2,3), the total area available there for B and V dropout searches exceeded that available in the HDF-North GOODS ed.

2 Because our idropout selections do not require deep B-band data, we can take advantage of some additional area around the CDFS GOODS and HUDF-PS eds to expand our selection beyond what is available to our B and V dropout selections.

3 The magnitude lim it is the 5 detection lim it for objects in a 0.26-diameter aperture.

4 Magnitude lim it in units of L₂₈ (Steidel et al. 1999).

called transfer functions. These functions are com puted for each dropout selection and ed under consideration here (HUDF, HUDF05, HUDF-PS, and GOODS). We describe the derivation of these transfer functions in detail in Appendix A.1. A summary of the properties of these functions is also provided in this section.

2.5. Contamination Corrections

Dropout sam ple also contain a small number of cont am inants. We developed cor rections for three types of contamination: (i) intrinsically red, low-redshift interlopers, (ii) objects entering our sam ple due to photo-

metric scatter, and (iii) spurious sources. We esti mated the fraction of intrinsically red objects in our sam ple as a function of magnitude using the deep K_s-band data over the Chandra Deep Field (CDF) South GOODS ed (B. Vandame et al. 2007, in preparation). Contaminants were identified in both B, V, and idropout selections with a (K₇₅ - K₂₅) > 2, (K₂₅ - K₂) > 2, and (K₂₅ - K₂) > 1.5 criterion, respectively. The contamination rate from photometric scatter was esti-

mated by performing selections on the HDF.

Appendix D A2 of B06 provides a description of how we previously calculated this at 6. The contribution of these two contaminations to our sam ple was relatively small, on order 2%, 3%, and 3%, re-

spectively, though this contamination rate is clearly a magnitude dependent and decreases w towards fainter magnitude.

The contamination rate from spurious sources was determined by repeating our selection on the negative in ages (eg., Dickinson et al. 2004; B06) and found to be completely negligible (1%).

2.6. Number Counts

Before closing this section and moving onto a determina-

tion of the UV LF at 4, 6, it is useful to derive the surface-density of B, V, and idropouts by combining the results from each of our sam ple and in-pane ending each of the above corrections. Athough we will make no direct use of these data in the derivation of the rest-frame UV LF, direct tabulation of these surface densities can be helpful for observers who are interested in knowing the approximate source density of high-redshift galaxies on the sky or for theorists who are interested in making more direct comparisons to the observations. We combine the surface densities from various eds using a maximum likelihood procedure. The surface densities are corrected for ed-to-ed vari-

ations using the factors given in Table B3. Both incom-

pleteness and u bias are treated using the transfer functions which take our selections from HDF depths to shallower depths. Our nal results are presented in Table 3.

3. Determination of the U V LF at z 4 6

The large B, V, and idropout sam ples we have com-

pleted permit us to deter mine the rest-frame UV LFs at 4, 5, and 6 to very faint UV luminosities (AB mag 16, 17, and 175, respectively), with signi cant statistics over a wide range in magnitudes. This provides us with both the leverage and statistics to obtain an unprecedented measure of the overall shape of the LF for galaxies at 4, 5, and 6. To maximize the robustness of our results, we will consider a wide variety of direct approaches to deter-

mining the LF at 4, 5, and 6. We begin by invoking two standard techniques for deter mining the LF in the presence of large-scale structure (both modified for use with apparent magnitudes). The rst technique is the Sandage, Tammann, & Yahil (1979: STY 79) approach and the second is the stepwise max imum like-

lihood (SW ML) method (Efstathiou et al. 1988). With these approaches, we will determine the LF both in step-

wise form and using a Schechter parametrization. We then expand our discussion to consider a wide variety of direct approaches for determining the LF at 4, 5, and 6 to ensure that the Schechter paramet ers are not overly sensitive to our approach and various assu-

mptions we make about the form of the SED of galaxies at 4 & 6. These tests are developed in Appendices B and C. We will then update our STY 79 LF de-

terminations to correct for the e ect of evolution across our sam ples (Appendix B 8; Table 7). In x3A, we examine the robustness of the conclusions that we derive regarding the faint-end slope and then nally we compute the
current determination of the surface densities of fainter AGN at bright magnitudes. Notable exceptions include the surface densities of the fainter i-dropouts in the HUDF and GOODS data. We need a much larger number of faint i-dropouts over the GOODS fields than are found in the original GOODS v1.0 reductions of Giavalisco et al. (2004a) because we take advantage of the considerable blank search data taken over these fields which increase the depths by 0.4 mag (W1; B06). For a discussion of the differences in the HUDF i-dropout counts, we refer the reader to §4.3 and Figure 12.

3.1. STY 79 Method

We will begin by estimating the rest-frame UV LF from our B, V, i-dropout samples using a Schechter parameterization

$$\ln(10)=2.5 \times 10^{0.4(M-M_{*})} e^{10^{0.4(M-M_{*})}}$$

and the maximum likelihood procedure of STY 79. The parameter is the normalization, M is the characteristic luminosity, and α is the faint-end slope in the Schechter parameterization. The STY 79 procedure has long been the technique of choice for computing the LF over multiple fields because it is insensitive to the presence of large-scale structure. The central idea behind this technique is to consider the likelihood of reproducing the relative distribution of dropouts in magnitude space given a LF. Because only the distribution of sources is considered in this measure and not the absolute surface densities, this approach is only sensitive to the shape of the LF and not its overall normalization. This makes this approach immune to the effects of large-scale structure and our LF results very robust.

It is worthwhile to note however that for our particular application of this approach, our results will not be completely insensitive to large-scale structure. This is because lacking exact redshifts for individual sources in our sample we will need to consider the apparent magnitude and intensity of individual galaxies when computing the likelihood and not the absolute magnitudes. This will make our results slightly sensitive to large-scale structure along the line of sight due to the redshift of the faint-end slope.

To use this approach to evaluate the likelihood of
TABLE 3
Corrected surface densities of B, V, and i-dropouts from all fields.

<table>
<thead>
<tr>
<th>Magnitude</th>
<th>Surface Density (arom in 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-dropouts (z = 4)</td>
<td></td>
</tr>
<tr>
<td>23.50 < m_{B} < 23.75</td>
<td>0.006 0.005</td>
</tr>
<tr>
<td>23.75 < m_{B} < 24.00</td>
<td>0.019 0.008</td>
</tr>
<tr>
<td>24.00 < m_{B} < 24.50</td>
<td>0.073 0.022</td>
</tr>
<tr>
<td>24.50 < m_{B} < 25.00</td>
<td>0.142 0.035</td>
</tr>
<tr>
<td>25.00 < m_{B} < 25.50</td>
<td>1.053 0.057</td>
</tr>
<tr>
<td>25.50 < m_{B} < 26.00</td>
<td>1.885 0.071</td>
</tr>
<tr>
<td>26.00 < m_{B} < 26.50</td>
<td>2.703 0.097</td>
</tr>
<tr>
<td>26.50 < m_{B} < 27.00</td>
<td>4.208 0.134</td>
</tr>
<tr>
<td>27.00 < m_{B} < 27.50</td>
<td>7.680 0.256</td>
</tr>
<tr>
<td>27.50 < m_{B} < 28.00</td>
<td>8.263 0.301</td>
</tr>
<tr>
<td>28.00 < m_{B} < 28.50</td>
<td>12.228 0.320</td>
</tr>
<tr>
<td>28.50 < m_{B} < 29.00</td>
<td>11.401 0.1082</td>
</tr>
<tr>
<td>29.00 < m_{B} < 29.50</td>
<td>16.167 1.288</td>
</tr>
<tr>
<td>29.50 < m_{B} < 30.00</td>
<td>7.668 0.087</td>
</tr>
<tr>
<td>V-dropouts (z = 5)</td>
<td></td>
</tr>
<tr>
<td>23.50 < m_{V} < 24.00</td>
<td>0.005 0.003</td>
</tr>
<tr>
<td>24.00 < m_{V} < 24.50</td>
<td>0.008 0.004</td>
</tr>
<tr>
<td>24.50 < m_{V} < 25.00</td>
<td>0.048 0.010</td>
</tr>
<tr>
<td>25.00 < m_{V} < 25.50</td>
<td>0.636 0.021</td>
</tr>
<tr>
<td>25.50 < m_{V} < 26.00</td>
<td>0.632 0.035</td>
</tr>
<tr>
<td>26.00 < m_{V} < 26.50</td>
<td>0.842 0.053</td>
</tr>
<tr>
<td>26.50 < m_{V} < 27.00</td>
<td>1.513 0.084</td>
</tr>
<tr>
<td>27.00 < m_{V} < 27.50</td>
<td>2.314 0.244</td>
</tr>
<tr>
<td>27.50 < m_{V} < 28.00</td>
<td>2.540 0.257</td>
</tr>
<tr>
<td>28.00 < m_{V} < 28.50</td>
<td>5.403 0.529</td>
</tr>
<tr>
<td>28.50 < m_{V} < 29.00</td>
<td>5.811 0.815</td>
</tr>
<tr>
<td>i-dropouts (z = 6)</td>
<td></td>
</tr>
<tr>
<td>24.50 < m_{i} < 25.00</td>
<td>0.003 0.003</td>
</tr>
<tr>
<td>25.00 < m_{i} < 25.50</td>
<td>0.023 0.008</td>
</tr>
<tr>
<td>25.50 < m_{i} < 26.00</td>
<td>0.072 0.018</td>
</tr>
<tr>
<td>26.00 < m_{i} < 26.50</td>
<td>0.230 0.039</td>
</tr>
<tr>
<td>26.50 < m_{i} < 27.00</td>
<td>0.501 0.075</td>
</tr>
<tr>
<td>27.00 < m_{i} < 27.50</td>
<td>1.350 0.208</td>
</tr>
<tr>
<td>27.50 < m_{i} < 28.00</td>
<td>1.791 0.261</td>
</tr>
<tr>
<td>28.00 < m_{i} < 28.50</td>
<td>2.818 0.404</td>
</tr>
<tr>
<td>28.50 < m_{i} < 29.00</td>
<td>4.277 0.625</td>
</tr>
<tr>
<td>29.00 < m_{i} < 29.50</td>
<td>0.738 0.260</td>
</tr>
</tbody>
</table>

*The surface densities of dropouts quoted here have been corrected to the same community levels as our HUDF selections. They will therefore be essentially complete to m_{B}^{75} m_{B}^{50} m_{i}^{50} m_{i}^{5} for our B, V, and i-dropout selections, respectively.

We need to compute the surface density of dropouts as a function of magnitude m from the model LFs, so we can compare these numbers against the observations. We use a two stage approach for these computations, so we can take advantage of the transfer functions we derived in Appendix A 1. These functions provide us with a very natural way of incorporating the effects of incompleteness and photometric scatter into our comparisons with the observations, so we will want to make use of them. In order to do this, we need to calculate the surface density of dropouts appropriate for our deepest selection (the HUDF). Then, we will correct this surface density to that appropriate for our shallower eLi using the transfer functions. The nominal surface densities in our HUDF calculations are computed from the model LFs as

$$N(m) = \int_{m}^{M} P(m, z) dV/dz dz = N(m)$$

(2)

where dV/dz is the comological volume element, $P(m, z)$ is the probability of selecting star-forming galaxies at a magnitude m and redshift z in the HUDF, M is the absolute magnitude at 1600 A, and m is the apparent magnitude in the i_{75}, z_{50}, or z_{50} band depending upon whether we are dealing with a B, V, or i-dropout selection. Note that the i_{75} and z_{50} bands closely correspond to rest-frame 1600 A at the mean redshift of our B and V dropout sam ples (z = 3.5 and z = 5.5, respectively), whereas for our z 6 i-dropout selection, the z_{50} band corresponds to rest-frame 1350 A.

With the ability to compute the surface density of dropouts in our different redshifts for various model LFs, we proceed to determine the LF which maximizes the likelihood of reproducing the observed counts with model LFs at z = 4, 5, and 6. The formulas we use for computing these likelihoods are given in Appendix A 2, along with the equations we use to evaluate the integral in Eq. 2 and implement the transfer functions from Appendix A 1. We compute the selection efficiencies $P(m, z)$ through extensive Monte Carlo simulations, where we take real B-dropouts from the HUDF, artificially redshift them across the redshift window of our samples, add them to our data, and then reselect them using the same procedure we use on the real data. A lengthy description of these simulations is provided in Appendix A 3, but the following are some essential points: (1) The HUDF B-dropout galaxy profiles used in our effective volume simulations for each of our dropout sam ples are projected to higher redshifts assuming a (1 + z)^{1.1} size scaling (independent of luminosity) to match the size evolution observed at z = 6 (B06). (2) The distribution of V-continuum slopes in our z 4 B-dropout effective volume simulations is taken to have a mean of 1.5 and 1 scatter of 0.6 for UV-luminous L star-forming galaxies. For our higher redshift sam ples and at lower UV luminosities, the mean UV-continuum slope is taken to be 2. In all cases, these slopes were chosen to match that found in the observations (Muzzin et al. 1999; Stanway et al. 2006; B06; P.J. Bouwens et al., 2007, in preparation). (3) To treat absorption from neutral hydrogen clouds, we have implemented an updated version of the Madau (1995) prescription so that it is one recent age 5 Lyrm an forest observations (e.g., Songaila 2004) and includes line-of-sight variations (e.g., as performed in Bershady et al. 1999). In calculating the equivalent absolute magnitude M for an apparent magnitude m at z = 6, we use an effective volume element V_{eff} to correct for the redshift-dependent absorption from the Lyman forest on the observed z_{50} band uaxes (Appendix A 2). For our z = 4 LF, we restrict our analysis to galaxies brighter than m_{B}^{75} = 29.0 since we found that our t results were moderate sensitive to the colour distribution we used to calculate the selection volumes (Figure A 2; Appendix B A). The best-t Schechter parameters are $M = 21.06$ 0.03 and $z = 1.76$ 0.05 at z = 4 for our B-dropout sample, $M = 20.69$ 0.03 and $z = 1.69$ 0.09 at z = 5 for our V-dropout sample, and $M = 20.29$ 0.09 and $z = 1.77$ 0.06 at z = 6 for our i-dropout sample. Since z = 6 galaxies appear to be very blue (2: Stanway et al. 2005; B06), we expect M_{1600} at z = 6 to be almost identical (0.2 m ag) to the value of M_{1350} at 5. To determine the equivalent monentization for our derived values of
and M, we compute the expected number of dropouts over all of our redshift distributions for our HUDF redshifts. Following this procedure, we have used 0.0011 + 0.0002 Mpc$^{-3}$ for our B-dropout sample, 0.0007$^{+0.0003}_{-0.0002}$ Mpc$^{-3}$ for our V-dropout sample, and 0.0012$^{+0.0004}_{-0.0005}$ Mpc$^{-3}$ for our i-dropout sample. We present these LF values in Table 5. The clearest evolution here is in the characteristic luminosity M which brightens significantly across this redshift range: from $z = 3.8$ at 20.3 to 21.1 at $z = 4$. In contrast, both the faintest slope and normalization of the LF remain relatively constant, with 1.74 and 0.001 Mpc$^{-3}$. For context, we have computed the redshift distributions for our HUDF B, V, and i-dropout selections using these best-fit LFs and presented them in Figure 2.

We plot the likelihood contours for different combinations of n_0 and M in Figure 4. These contours were used in our error estimates on n_0 and M. For our estimates of the uncertainties on the normalization, we have calculated the eth-to-eth variations expected over an ACS GOODS eth (150 arcmin2). Assuming that our B, V, and i-dropout selections span a redshift window of $dz = 0.7$, $dz = 0.7$, and $dz = 0.6$, respectively, have a bias of 3.9, 3.4, and 4.1, respectively (Lee et al. 2006; Oezverli et al. 2006), and using a pencil beam geometry for our calculations, we derive eth-to-eth variations of 22% RMS, 18% RMS, and 22% RMS, respectively. These values are similar to those estimated to other studies (Somerville et al. 2004; B06; Beckwith et al. 2006; cf. Stark et al. 2007c). With these estimates, we were then able to derive likelihood contours in n_0 and M, using the relationship between the other Schechter parameters and M and n_0 that have 1 uncertainty equal to the RMS values given above divided by 2 (to account for the fact that each GOODS eth provides us an independent measure of the volume density of galaxies).

3.2. SWML

As a second approach, we parameterize our derived LF in a stepwise fashion, with 0.5 mag intervals. This approach is commonly known as the Stepwise Maximum Likelihood (SWML) method (Estathiou et al. 1988) and allows us to look at the evolution of the LF in a more model-independent way than would be possible if we considered Schechter parameterizations alone. As with our STY 79 determinations, we maximize the likelihood of reproducing the observed surface densities of dropouts in our i-dropout sample given a LF. Similar to that technique, this approach is robust to the presence of large-scale structure. In order to match the magnitude interval used in our stepwise LF, we bin the number counts N_m and the surface densities from the model LFs in each step as for the STY 79 approach, using Eq. A4 from Appendix A.2. The likelihoods are computed using Eq. A5. Errors on each of the parameters are derived using the second derivatives of the likelihood L. We normalize our stepwise LFs (M) by requiring them to match the total number of dropouts over all of our search fields. Our stepwise determinations are tabulated in Table 4 and also included in the bottom panel of Figure 3. All LFs are
It seems legitimate to ask how robust the Schechter parameter eters are that we derived in x3.1 using the STY 79 method. There are a num ber of di erent approaches to treating large-scale structure uncertainties, for exam ple, and we could have easily adopted a di erent approach (i.e., matching the counts from each of our surveys and then deriving the LF’s through a direct approach as we did in B06). By the same token, we also could have chosen to derive the LF’s using a di erent set of SED tem plates, di erent assumptions regarding the Ly equivalent widths, di erent opacity models for absorption from neutral hydrogen clouds, or even di erent dropout criteria. To ensure that our LF detem inations were not unreasonably a ected by these choices, we repeated the present detem inations of the LF at z 4, z 5, and z 6 adopting a wide variety of di erent approaches. A detailed description of each of these detem inations is provided in Appendix B. The corresponding Schechter parameter eters are sum marized in Table 6. In general, these other detem inations in reasonable agreement with our ducial STY 79 detem inations, though it is clear that there are a few variables that can have a small (20%) e ect on the derived parameter eters.

The following are our most signi cant ndings: (1) We found less evolution in the value of M from z 6 to z 4 when making the measurement at a bluer restframe wavelength (i.e., 1350 A) than we did when making this measurement at 1600 A. This is likely the result of the fact that L galaxies at z 4 (Ouchi et al. 2004) are much redder than they are at z 5 6 (Lehnert & Brem er 2003; Stanway et al. 2005; B06). The inclusion of Ly emission lines in the SED of the m odel star-forming galaxies (assuming that 33% of the sources have rest-frame equivalent widths of 50 A; see Appendix B.5) has a modest e ect on the selection volumes computed for our three dropout samples and results in a modest decrease in z 4 (by 10%), but increase in z 5 and z 6 (by 10%). (2) At z 4, we found that our LF results could be somewhat sensitive to the distribution of UV colours used (depending upon the faint-end line we adopted in our analysis). As a result, we restricted ourselves to galaxies brighter than 29 A mag in our z 4 LF to above to probe the overall robustness of the t results. (4) We found that the Schechter parameter eters for our high-redshift LF’s show only a slight (10%) dependence upon the m odel we adopted for the opacity coming from neutral hydrogen clouds. (5) If we allow for evolution in M * across the redshift win dow of each sample (by 0.35 mag per redshift stage as we nd in our ducial STY 79 detem inations), we recovered a slightly fainter value of M * (by 0.06 mag), a higher value of (by 10%), and a shallower faint-end slope (by 0.02) for our LF. (6) In each and every analysis we considered, we found a signi cant (0.5 mag to 0.9 mag) brightening of M from z 6 to z 4, suggesting that this evolutionary nding is really robust. We also consistently recovered a very steep (0.8) faint-end slope. We would consider both of these conclusions to be quite solid.

Of all the issues considered in this section, the on ly issue which would clearly bias our LF detem inations and for which we can accurately make a correction is the issue of evolution across the redshift selection windows of

<table>
<thead>
<tr>
<th>Dropout Sample</th>
<th>z</th>
<th>M_{UV}</th>
<th>M_{PC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>3.8</td>
<td>21:56</td>
<td>0:10</td>
</tr>
<tr>
<td>V</td>
<td>5.0</td>
<td>5:09</td>
<td>0:13</td>
</tr>
<tr>
<td>F</td>
<td>5.9</td>
<td>20:29</td>
<td>0:19</td>
</tr>
</tbody>
</table>

Values of M_{UV} are at 1600 A for our B and V-dropout samples and at 1350 A for our i-dropout sample. Since z 6 galaxies are blue (2: Stanway et al. 2005; B06), we expect the value of M at z 6 to be very similar (0.1 m mag) at 1600 A to the value of M at 1350 A.

<table>
<thead>
<tr>
<th>Sample</th>
<th>z</th>
<th>M_{UV}</th>
<th>M_{PC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>3.8</td>
<td>21:56</td>
<td>0:10</td>
</tr>
<tr>
<td>V</td>
<td>5.0</td>
<td>5:09</td>
<td>0:13</td>
</tr>
<tr>
<td>F</td>
<td>5.9</td>
<td>20:29</td>
<td>0:19</td>
</tr>
</tbody>
</table>

Values of M_{UV} are at 1600 A for our B and V-dropout samples and at 1350 A for our i-dropout sample. Since z 6 galaxies are blue (2: Stanway et al. 2005; B06), we expect the value of M at z 6 to be very similar (0.1 m mag) at 1600 A to the value of M at 1350 A.

Schechter-like in overall shape, as one can see by comparing the step-like detem inations with the independently derived Schechter (dashed lines).

33. Robustness of Schechter Parameter Determinations
Fig. 4. Best- t Schechter parameters and likelihood contours for the z 4 (blue contours), z 5 (green contours), and z 6 (red contours) UV (1600 Å) luminosity functions using the STY 79 method (see x3.1). Shown are the 68% and 95% likelihood contours for different Schechter parameter combinations. Though our z 6 LF nominally requires a k-correction to transform z from 1350 Å to 1600 Å, the correction is negligible. Our best- t parameters (and likelihood contours) for the z 6 LF are similar to those in B06.

3A. Faint-end Slope

It is worthwhile to spend a little time here emphasizing how robust the current determination of a steep faint-end slope really is and how readily this result can be derived from the data. In fact, we could have determined the faint-end slope at z 4 simply from our HUDF B-dropout selection alone. At a rudimentary level, this can be seen from the number counts, which in our HUDF B-dropout sample increases from surface densities of 3 sources arcmin 2 at I75AB 25.5 to 30 sources arcmin 2 at I75AB 29, for a faint-end slope of 0.3 dex/mag 0.7 (red line in Figure 5). Since the selection volume is largely independent of magnitude over this range, one can essentially read o "the faint-end slope from the number counts and nd that it is steep 1.7. Use of our LF methodology on our HUDF selections perm its a more rigorous determination and yields 1.76 0.07 at z 4. We should emphasize that these results are robust and are not likely to be sensitive to concerns about large-scale structure (the counts are drawn from a single eld), small number statistics (the HUDF contains 670 B-dropout sources), or contamination (all known contaminants have shallower faint-end slopes). Even the model selection volumes are not a concern for our conclusion that the faint-end slope is steep since we can derive this conclusion from simple ts to the number counts (i.e., the red line in Figure 5) as argued above and the inclusion of realistic selection volumes (which decrease toward fainter magnitudes) would only cause the inferred faint-end slope to be steeper. Similarly steep slopes are obtained from independent ts to the B-dropouts in our other elds (HUDF-Ps and both GOODS elds) and our other dropout selections, suggesting that a steep 1.7 faint-end slope is really a generic feature of high-redshift luminosity functions (see also Beekwilder et al. 2006; Yoshida et al. 2006; Oesch et al. 2007).
TABLE 6
Determinations of the Schechter parameters for the rest-frame UV LFs at z = 4, 5, and z = 6.

<table>
<thead>
<tr>
<th>M method</th>
<th>M_{UV} (M_{B})</th>
<th>B-dropouts (z = 4)</th>
<th>V-dropouts (z = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>STY 79</td>
<td>2106 0:10</td>
<td>1d 0:2</td>
<td>176 0:05</td>
</tr>
<tr>
<td>2</td>
<td>2107 0:10</td>
<td>1d 0:2</td>
<td>2069 0:13</td>
</tr>
<tr>
<td>3</td>
<td>2104 0:10</td>
<td>1d 0:2</td>
<td>2062 0:13</td>
</tr>
<tr>
<td>STY 79</td>
<td>2084 0:10</td>
<td>1d 0:2</td>
<td>2073 0:26</td>
</tr>
<tr>
<td>STY 79 (m = 1d)</td>
<td>2122 0:04</td>
<td>1d 0:2</td>
<td>2056 0:23</td>
</tr>
<tr>
<td>STY 79 (m = 2d)</td>
<td>2141 0:10</td>
<td>0d 0:2</td>
<td>2065 0:21</td>
</tr>
<tr>
<td>STY 79 (Ly)</td>
<td>2105 0:10</td>
<td>1d 0:2</td>
<td>2070 0:23</td>
</tr>
<tr>
<td>STY 79 (M adau)</td>
<td>2107 0:10</td>
<td>1d 0:2</td>
<td>2066 0:23</td>
</tr>
</tbody>
</table>

\[L_{UV} = \text{const} \times \frac{\text{SFR}}{M_{yr}^{-1} \text{ergs}^{-1} \text{Hz}^{-1}} \]

\[^{a}V_{M} = 1600A\text{ for our } B\text{ and } V\text{-dropout samples. Since } z = 6\text{ galaxies are}
\[^{b}n_{\text{only}}\text{ galaxies brighter than } 28\text{ A mag are used in the results (see Appendix B.4)}
\[^{c}\text{A adopted determination of the Schechter parameters see Table 7)}\]
In previous work. At upon several estimates of the dust extinction obtained in previous work. At z, we will use the dust corrections of Schiminovich et al. (2005) and at z 6 we will use a dust correction of 0.18 dex (factor of 1.5), which we derived from the errors observed for z 6 i-dropouts (Stanway et al. 2005; Yan et al. 2005; B06) and the IRX - relationship (M. euer et al. 1999). The IRX - relationship provides a fairly good description of the dust extinction at z 0 (e.g., M. euer et al. 1999) and z 2 (Reddy & Steidel 2004, 2006). At redshifts of z 4 5, we will interpolate between the dust extinctions estimated at z 2 3 and those at z 6. The results of these calculations are shown in Figure 7 for the dust extinction along the continuum of any star-forming galaxies at z 5 6 (e.g., Yan et al. 2005; Eyles et al. 2005; Veer et al. 2007), although there has been some discussion about whether the latter assumption would cause us to systematically underestimate the SFR density of the universe at very early times (Veer et al. 2007).

To calculate the total SFR density at early times, we must of course make a correction for the dust obscuration. Correcting for dust obscuration is a difficult endeavor and can require a wide variety of observational techniques to obtain an accurate view of the total energy output by young stars. We will not attempt to improve upon previous work here and will simply rely upon several estimates of the dust extinction obtained in previous work. At z 3, we will use the dust corrections of Schiminovich et al. (2005) and at z 6 we will use a dust correction of 0.18 dex (factor of 1.5), which we derived from the errors observed for z 6 i-dropouts (Stanway et al. 2005; Yan et al. 2005; B06) and the IRX - relationship (M. euer et al. 1999). The IRX - relationship provides a fairly good description of the dust extinction at z 0 (e.g., M. euer et al. 1999) and z 2 (Reddy & Steidel 2004, 2006). At redshifts of z 4 5, we will interpolate between the dust extinctions estimated at z 2 3 and those at z 6. The results of these calculations are shown in Figure 7 for the dust extinction along the continuum of any star-forming galaxies at z 5 6 (e.g., Yan et al. 2005; Eyles et al. 2005; Veer et al. 2007), although there has been some discussion about whether the latter assumption would cause us to systematically underestimate the SFR density of the universe at very early times (Veer et al. 2007).

To calculate the total SFR density at early times, we must of course make a correction for the dust obscuration. Correcting for dust obscuration is a difficult endeavor and can require a wide variety of observational techniques to obtain an accurate view of the total energy output by young stars. We will not attempt to improve upon previous work here and will simply rely upon several estimates of the dust extinction obtained in previous work. At z 3, we will use the dust corrections of Schiminovich et al. (2005) and at z 6 we will use a dust correction of 0.18 dex (factor of 1.5), which we derived from the errors observed for z 6 i-dropouts (Stanway et al. 2005; Yan et al. 2005; B06) and the IRX - relationship (M. euer et al. 1999). The IRX - relationship provides a fairly good description of the dust extinction at z 0 (e.g., M. euer et al. 1999) and z 2 (Reddy & Steidel 2004, 2006). At redshifts of z 4 5, we will interpolate between the dust extinctions estimated at z 2 3 and those at z 6. The results of these calculations are shown in Figure 7 for the dust extinction along the continuum of any star-forming galaxies at z 5 6 (e.g., Yan et al. 2005; Eyles et al. 2005; Veer et al. 2007), although there has been some discussion about whether the latter assumption would cause us to systematically underestimate the SFR density of the universe at very early times (Veer et al. 2007).

To calculate the total SFR density at early times, we must of course make a correction for the dust obscuration. Correcting for dust obscuration is a difficult endeavor and can require a wide variety of observational techniques to obtain an accurate view of the total energy output by young stars. We will not attempt to improve upon previous work here and will simply rely upon several estimates of the dust extinction obtained in previous work. At z 3, we will use the dust corrections of Schiminovich et al. (2005) and at z 6 we will use a dust correction of 0.18 dex (factor of 1.5), which we derived from the errors observed for z 6 i-dropouts (Stanway et al. 2005; Yan et al. 2005; B06) and the IRX - relationship (M. euer et al. 1999). The IRX - relationship provides a fairly good description of the dust extinction at z 0 (e.g., M. euer et al. 1999) and z 2 (Reddy & Steidel 2004, 2006). At redshifts of z 4 5, we will interpolate between the dust extinctions estimated at z 2 3 and those at z 6. The results of these calculations are shown in Figure 7 for the dust extinction along the continuum of any star-forming galaxies at z 5 6 (e.g., Yan et al. 2005; Eyles et al. 2005; Veer et al. 2007), although there has been some discussion about whether the latter assumption would cause us to systematically underestimate the SFR density of the universe at very early times (Veer et al. 2007).
1. Mag and are intermediate between the high and low estimates of Schiminovich et al. (2005: 1.8 mag and 1.0 mag, respectively). At z = 3, the dust corrections are < 0.5 mag as determined from the steep UV-continuum slopes (B06). At z = 4, 5, and 6, the dust corrections are interpolated between the z = 3 and z = 6 values.

In the previous section, we used our very deep and wide-area B, V, and i dropout selections to determine the UV-continuum LF at z = 4, 5, and 6 to 3 m mag below L. This is fainter than all previous probes not including the HUDF data. Since these determinations reach such luminosities with significant statistics and over multiple epochs, they have the promise to provide us with a powerful measure of how galaxies are evolving at early times. However, given the considerable spread in LF results to date and significant differences in interpretation, it is important to discuss the robustness of the current LF results. We devote some effort to this issue because the wide dispersion in observational results is really limiting their value.

4.1. Completeness of Current Census

In this work, our goals are to derive rest-frame uV LF s that was representative of the star-forming galaxy population at z = 3-5. However, since our LFs were based upon simple colour selections, it seems legitimate to ask how complete these selections are, and whether our selection might miss a fraction of the high-redshift galaxy population. Such concerns have become particularly salient recently given claims from spectroscopic work that LBG selections may miss a significant fraction of the high-redshift galaxy population that are UV bright at z > 3 (e.g., Le Fèvre et al. 2005; Pallottini et al. 2006). We refer our readers to Franx et al. (2003), Reddy et al. (2005), and van Dokkum et al. (2006) for an excellent discussion of these issues at slightly lower redshifts (z = 2-3).

Figure 8 shows a colour-colour diagram illustrating our z = 4 B-dropout and z = 5 V-dropout selections. The expected colours of galaxies with different UV continuum slopes plotted as a function of redshift to show how our selection depends upon the UV colour. To illustrate how the observed distribution of dropout colours compare with these selections, a small sample of bright dropouts are overlaid on these diagrams. We elected to only include the bright dropouts on this diagram because it is only at bright magnitudes that we can efficiently select dropouts over a wide range of UV-continuum slopes. Since all high-redshift galaxies will become quite red in their Lyman-break colours (B V for z = 4 galaxies and V i for z = 5 galaxies), it seems clear that the only way galaxies will miss our selection is if they are too red in their UV-continuum slopes. As is evident in the figure, the majority of the dropouts in our B- and V-dropout selections are significantly bluer than our selection limit in (V606 2450)AB and (i75 2450)AB, respectively. Unless it is a distinct population of star-forming galaxies which are much redder than these limits (i.e., the UV colour distribution is bimodal), we can conclude that our selection must be largely complete at bright magnitudes.

A more general way of seeing this is to compare the distribution of observed UV-continuum slopes (calculated from the i75 2450 colours) for bright (i75AB < 24.5) B-dropouts from our sample with the selection limit (insert on Figure 8), and it is again apparent that the bulk of our sample is significantly bluer and of the selection limit.

Independent evidence for the z = 4 galaxy population having very blue UV-continuum slopes is reported by Brammer & van Dokkum (2007). By applying a Balmer-break selection to the Faint Infrared Extragalactic Survey (FRES) data (Labbe et al. 2003; Forster Schreiber et al. 2006), Brammer & van Dokkum (2007) attempt to isolate a sample of z = 4 galaxies with sizeable breaks. Since almost all (& 90%) of the galaxies in their z = 4 sample have measured UV-continuum slopes bluer than 0.5 (and none having UV-continuum slopes redder than 1.0), this again argues that the z = 4 galaxy population is very blue in general. The key point to note in the

Table 9

Inferred Star Formation Rate Densities.

<table>
<thead>
<tr>
<th>Dropout Sample</th>
<th>Log$_{10}$ SFR density (M sol yr$^{-1}$ kpc$^{-2}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< z > L > 0.5z$_{\odot}$</td>
<td>L > 0.5z$_{\odot}$</td>
</tr>
<tr>
<td>B</td>
<td>3.5</td>
</tr>
<tr>
<td>V</td>
<td>5.5</td>
</tr>
<tr>
<td>i</td>
<td>5.9</td>
</tr>
<tr>
<td>z</td>
<td>7.4</td>
</tr>
</tbody>
</table>

*Based upon LF parameters in Table 7 (see 3.5). At z > 7.4, the luminosity densities are based upon the search results for the Bouwens & Illingworth (2006) conservative selection.

Fig. 7.1 Star formation rate density of the universe integrated down to 0.3 L$_{\odot}$ (top panel) and 0.5 L$_{\odot}$ (bottom panel). This SFR density is shown both with and without a correction for dust extinction (upper and lower set of points, respectively). This is also indicated with the shaded red and blue regions, where the width of the region shows the approximate uncertainties estimated by Schiminovich et al. (2005). Symbols for the data points are the same as for Figure 6. At z = 3, the dust corrections we assume are 1.4 mag and are intermediate between the high and low estimates of Schiminovich et al. (2005: 1.6 mag and 1.0 mag, respectively). At z = 6, the dust corrections are 0.8 mag as determined from the steep UV-continuum slopes (B06). At z = 4, 5, and 6, the dust corrections are interpolated between the z = 3 and z = 6 values.

Fig. 8

Star formation rate density of the universe integrated down to 0.3 L$_{\odot}$ (top panel) and 0.5 L$_{\odot}$ (bottom panel). This SFR density is shown both with and without a correction for dust extinction (upper and lower set of points, respectively). This is also indicated with the shaded red and blue regions, where the width of the region shows the approximate uncertainties estimated by Schiminovich et al. (2005). Symbols for the data points are the same as for Figure 6. At z = 3, the dust corrections we assume are 1.4 mag and are intermediate between the high and low estimates of Schiminovich et al. (2005: 1.6 mag and 1.0 mag, respectively). At z = 6, the dust corrections are 0.8 mag as determined from the steep UV-continuum slopes (B06). At z = 4, 5, and 6, the dust corrections are interpolated between the z = 3 and z = 6 values.
Brammer & van Dokkum (2007) analysis is that in contrast to our LBG selection their Balmer-break selection should not be signiﬁcantly biased against galaxies with very red UV-continuum slopes. Therefore, unless there is a distinct population of UV-bright galaxies with m in-
imal Balmer breaks and very red UV-continuum slopes (which seems unlikely given that galaxies with redder UV colours have more dust, which in turn suggests a more evolved stellar population), it would appear that our census of UV-bright galaxies at z = 4 is largely complete. Apparently, the very red 1 2 population seen at z = 2 (e.g., van Dokkum et al. 2006) has not developed signiﬁcantly by z = 4.

4.2. Cosmic Variance

One generic concern for the detemination of any luminosity function is the presence of large-scale structure. This structure results in variations in the volume density of galaxies as a function of position. For our dropout studies, these variations are mitigated by the large comoving distances surveyed in redshift space (300 Mpc for a z = 0.7) for typical selections (see, e.g., Figure A2). Since these distances cover 40 100 correlation lengths, typical eddy-to-eddy variations of 16% are found in the surface density of dropouts (Somerville et al. 2004; Bunker et al. 2004; Bolster et al. 2006).

Fortunately, these variations should only have a very minor effect on our results, and this effect will largely be on the normalization of our LFs. It should not have a sizeable effect on the shape of our LF determinations, because of our use of the STY97 and SWML techniques (which are only mildly sensitive to these variations in the modiﬁed form used here (see Appendix C). The uncertainty in the normalization of our LFs was derived by taking the expected variations expected over each GOODS eddy (22% RMS, 18% RMS, and 22% RMS for our B, V, and i-dropout selections, respectively: see §3.1) and dividing by z to account for the fact that we have two independent eddies. This implies a 14% RMS uncertainty in the overall normalization. We incorporated this into our results by convolving our likelihood distributions with this smoothing kernel (x3.1).

4.3. Comparison with Previous Determinations at z = 4, 5, and 6

It is helpful to compare LFs with several previous determinations to put the current results in context and provide for their reliability. We will structure this section somewhat in order of depth, beginning with a discussion of all pre-HUDF determinations of the UV LF at z = 4 and at z = 5 before moving onto more recent work involving the HUDF (Beckwith et al. 2006). We postpone a discussion of the UV LF at z = 6 until the end of this section because we had included a fairly comprehensive discussion of previous z = 6 determinations in B06.

4.3.1. Comparison at z = 4

At z = 4, there had already been a number of notable determinations of the UV LF (Steidel et al. 1999; Ouchi et al. 2004; Gabasch et al. 2004; Sawicki & Thomsen 2005; Yoshida et al. 2006; Palanque-Alp et al. 2006; Ilbert et al. 2006; Schreiber et al. 2006; to be published).
Yoshi da et al. (2006) cited earlier determinations at bright magnitudes, but diverge somewhat from the early imaging survey for ACS GOODS fields (Giavalisco 2005; Giavalisco et al. 2004) , a determination based on a G-dropout search over 180 arcmin2 of imaging over the three Keck Deep Fields (Sawiki & Thompson 2006a), an earlier determination based on the two wide-area (316 arcmin2) ACS GOODS elis (Giallisisco 2005; Giallisisco et al. 2004b), a determination based on a B-dropout search over a deeper version of the SDF (Yoshida et al. 2006), and several determinations based on the VVDS spectroscopic sample (Palanini et al. 2006; Tresse et al. 2006). A com parison of these determination is in Figure 9 and Table 10.

We will split our discussions between the bright and faint ends of the z = 4 LF. At bright magnitudes, our LF is in good agreement with most previous determinations. Though there is a fair amount of scatter between the individual LFs, the observed differences seem consistent with originating from small systematic in the photon entry (0.1 mag). Our LF agree as well with the LFs derived from the VVDS spectroscopic sample (Le Fèvre et al. 2005; Palanini et al. 2006), underproducing their volume densities by factors of 3. It is unclear why the VVDS results would be so different from those derived from standard LBG selections, though it has been suggested that this excess may arise from galaxies whose LBGs are quite a bit different from the typical LBG. In x4.1, we investigated whether this excess could result from galaxies with particularly red UV-continuum slopes, but found no evidence for a significant population of such galaxies at z > 4 using the GOODS broadband imaging data, in agreement with the results of Brammer & van Dokkum (2007). Despite this null result, it is possible that spectroscopic surveys have identified a population of bright galaxies at z > 3 whose colours are somewhat different from those typically used to model LBG selections (though there is some skepticism on this front; see, e.g., Reddy et al. 2007).

While such a population would need to be large to match the Palanini et al. (2006) numbers, it is interesting to ask what the effect of such a population would be on our derived UV LFs. To investigate this, we have replaced the bright points in our z = 4 LF with the Palanini et al. (2006) values (from their z = 3 4 LF) and then re-t this LF to a Schechter function. We nd M = -21.88, $S = 0.00057$ Mpc$^{-3}$, and $\alpha = 1.2$. Not surprisingly, the characteristic luminosity M_0 is brighter than measured from our LBG selection, and the faint-end slope a little steeper, but these changes only result in a slight (1%) increase in the overall luminosity density at z > 4 to our faint-end limit (16 AB mag). This being said, the reduced χ^2 = 32 for the t test is poor, so we should perhaps not take these best-t Schechter parameters too seriously.

At fainter magnitudes, differences with respect to other LFs become much more significant. At the one extreme, there is the Ouchi et al. (2004), Giallisisco (2005), and Yoshida et al. (2006) determination which exceed our determination by factors of 1.5, and at the other extreme, this is the determination of Gabasch et al. (2004) and Sawiki & Thompson (2006a), which are a factor of 2-3 lower. For the two most discrepant LFs, the difference in volume densities is nearly a factor of 4. What could be the source of such a significant disagreement? Though it is difficult to be sure, there are a number of factors which could contribute to this large dispersion (e.g., the assumed Ly equivalent width distribution, the assumed SED template set, the assumed
distribution, large-scale structure errors (see Appendix B). Perhaps, the most problematic, however, are the incompleteness, contamination, and flux biases present near the detection limit of these probes. Since these effects can be quite challenging to model, and may result in modest signifi cant errors (factors of 15 to 20 in the volume density), it is quite possible that some systematic effects have been introduced in performing the corrections. By contrast, we would expect our own determination to be essentially immune to such large errors (to at least an AB mag of 28 to 28.5) given that our deepest data set for the HDF contains some 25 mag deeper than the data used in most previous determinations (the deep determinations of Beckwith et al. 2006 are discussed below). Even in our shallowest data sets, systematics should be much less of a concern in this magnitude range since we are able to make use of the signi cantly deeper HDF, HDF-Ps, and HDF05 data to quantify the completeness, flux biases, and contamination through degradation experiments (see Appendix A.1). In conclusion, because of this greater robustness of our selection at faint magnitudes, we would expect our HDF to be the most accurate in these regimes.

4.3.2. Comparison at z = 5

Now we will compare our results with several determinations of the LF at z = 5 using moderately deep data (Iwata et al. 2003; Ouchi et al. 2004; Giavalisco 2005; Yoshida et al. 2006; Iwata et al. 2007). Iwata et al. (2003) made their determination from deep Subaru data (575 arc min2) they had around the larger HDF-North, Giavalisco (2005) from the wide-area (316 arc min2) ACS GOODS data, Ouchi et al. (2004) from the deep wide-area (1200 arc min2) Subaru data they had over the Subaru XMM-Newton Deep Field and SDF, Yoshida et al. (2006) from an even deeper imaging over the SDF, and Iwata (2007) from the 1290 arc min2 Subaru data around the HDF-North and J053+1234 region.

A comparison of these LF determinations is provided in Figure 10 and Table 11.

Our z = 5 results are in excellent agreement with many previous studies (Yoshida et al. 2006; Ouchi et al. 2004), particularly at fainter magnitudes $z_{500AB} > 25$. However, we are not able to reproduce the large number density of bright galaxies found by Iwata et al. (2003), Giavalisco (2005), and Iwata et al. (2007). We are unsure of why this might be (since -EH- variations should not produce such large discrepancies, and it has been speculated that a significant fraction of the candidates in the probes deriving the higher volume densities (e.g., Iwata et al. 2003; Iwata et al. 2007) may be contaminants (e.g., Ouchi et al. 2004). While Iwata et al. (2007) have argued, however, that such contamination rates are unlikely for their bright samples given the success of their own spectroscopic follow-up campaign (6 out of 8 sources that they followed up at 24 < z_{AB} < 24.5 were at z = 4), we were only partially able to verify this success over the HDF-North GOODS eld, where our searches overlap. Of the three bright ($z_{AB} > 24.5$) sources cited by Iwata et al. (2007) with spectroscopic redshifts, one (GOODS J123547.96+620941.7) appears to be an AGN. This suggests that a modest fraction of the sources in the Iwata et al. (2007) bright selection may be point-like contaminants like AGN (we note that Iwata [2007, private communication] reported that they re moverd this particular AGN from their bright sample). We will continue to regard our determination of the volume densities of the LF at z = 5 as the most robust due to the superb resolution and photometric quality of the GOODS data set (which allowed us to effectively cull out high-redshift galaxies from our photometric sam-ples to reject both stars and AGNs).

Having discussed previous LFs at z = 4 and 5 based on shallower data, we now compare our LF determinations with that obtained by Beckwith et al. (2006) at z = 4 and 5 using the HDF data and Oesch et al. (2007) at z = 5 using the HDF+HDF05 data. We begin with the results of Oesch et al. (2007). Oesch et al. (2007) based their LFs on large V-dropout selections over the HDF+HDF05 elds and then combined their results with the Yoshida et al. (2006) results to derive best-fit Schechter parameters. Com pared to our z = 5 LF results (which also take advantage of data from the GOODS, HDF-Ps, and HDF05-2 elds), the Oesch et al. (2007) LF appears to be in good overall agreement, albeit a little (20% to 30%) lower at the faint-end. These differences appear to be attributable to (1) the larger (20%) contamination corrections made by Oesch et al. (2007) and (2) Oesch et al. (2007) not correcting their uxes for the light lost on the wings of the PSF (typically a 0.4 to 0.25 mag correction for the small Kron apertures appropriate for faint galaxies; Sirianni et al. 2007).

Beckwith et al. (2006) based their LFs on large B and V-dropout samples derived from the ACS HDF and GOODS elds and used nearly identical selection criteria to those considered here. They also considered a LF which included several previous determinations (Steidel et al. 1999; Ouchi et al. 2004; Sawicki & Thompson 2006a) to dem onstrate the robustness of their results. Their results are plotted in Figures 9 and 10 with the black crosses. Both LFs seem to be fairly similar to our own in their overall shape, but appear to be shifted to slightly lower volume densities. At the faint end of the LF, this shift is the most prominent. After careful con-
TABLE 11
Determination of the best-fitted Schechter Parameters for the rest-frame UV LF at $z = 5$.

<table>
<thead>
<tr>
<th>Reference</th>
<th>M_{UV} (10^{-3} Mpc^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>This work</td>
<td>20.64 0.13 1.5 0.3 1.66 0.09</td>
</tr>
<tr>
<td>Oesch et al. (2007)</td>
<td>20.78 0.21 0.9 0.3 1.54 0.10</td>
</tr>
<tr>
<td>Iwata et al. (2007)</td>
<td>21.28 0.28 0.4 0.3 1.48 0.08</td>
</tr>
<tr>
<td>Yoshida et al. (2006)</td>
<td>20.72 0.16 1.21 0.04</td>
</tr>
<tr>
<td>Beckwith et al. (2006)</td>
<td>20.75 0.9</td>
</tr>
<tr>
<td>Gavazzi et al. (2005)</td>
<td>21.06 0.05 0.83 0.03 1.51 0.18</td>
</tr>
<tr>
<td>Iwata et al. (2003)</td>
<td>21.4 0.4 1.5</td>
</tr>
<tr>
<td>Ouchi et al. (2004)</td>
<td>20.7 0.2 14.8 0.03</td>
</tr>
</tbody>
</table>

Fig. 11. Comparison between the present determination of the LF at $z = 6$ and other determinations in the literature. Included in these comparisons are the LFs by D'Odorico et al. (2004; dashed red line), Bouwens et al. (2004a; dotted green line), Yan & Windhorst (2004; solid magenta line), Bunker et al. (2004; solid blue line), and M. Alhambra (2005; red dot-dashed line). For Beckwith et al. (2006), we present both the LF derived from a set of number counts (solid line) and that obtained by applying a simple cut to the counts (dotted black line). The present determination of the $z = 6$ LF is a slight improvement on our previous determination (B05) and includes 100 additional-dropouts identical over the two very deep HUDF05 fields (reaching to $M_{limit} = 0.4 M ag$ of the HUDF in the z_{AB} band).

Consideration of the Beckwith et al. (2006) results, it appears that this occurs because Beckwith et al. (2006) do not include the most distant objects selected from the HUDF, HUDF-Ps, and GOODS data. Since Beckwith et al. (2006) do not use an approach that is insensitive to redshift variations (e.g., STY79 or SML), we expect this upper limit in the $z = 5$ V-dropouts in the HUDF to propagate directly into the Beckwith et al. (2006) LF and therefore the faint-end of their $z = 5$ LF to be low. Together these two effects appear to account for the difference seen.

4.3.3. Comparison at $z = 6$

Finally, we discuss the UV LF at $z = 6$. A ready, there have been quite a significant number of LF determinations at $z = 6$ (e.g., Dickinson et al. 2004; Bouwens et al. 2004a; Yan & Windhorst 2004; Bunker et al. 2004; M. Alhambra 2005; B06; Beckwith et al. 2006). See Figure 11 for these comparisons. Most of these determinations have been made using some combination of i-dropouts selected from the HUDF, HUDF-Ps, and GOODS data. Since Beckwith et al. (2006) do not use an approach that is insensitive to redshift variations (e.g., STY79 or SML), we expect this upper limit in the $z = 5$ V-dropouts in the HUDF to propagate directly into the Beckwith et al. (2006) LF and therefore the faint-end of their $z = 5$ LF to be low. Together these two effects appear to account for the difference seen.

1 Beckwith et al. (2006) also presented a stepwise determination of the $z = 6$ LF obtained directly from the number counts assuming a distance modulus and selection volume. We do not make a comparison against that determination since the Beckwith et al. (2006) assumption of a simple distance modulus leads to substantial biases in the reported LF. Note the sign of the error bars between the solid and dotted black lines in Figure 11.
2006), which is much smaller than the 75% we estimate empirically through a comparison with our counts.

What then is the probable cause for this discrepancy? We suspect that it is due to the systematic differences between the z_{250}-band photometry by Beckwith et al. (2006) used to select their sample (which appear to come from the photometric catalog initially provided with the HUDF release since an application of the Beckwith et al. (2006) criteria to that catalog yields precisely the same set of i-dropouts as are found in their paper) and that used in our analysis, which is shown in the insert to Figure 12. This is systematics brighter by 0.4 ± 0.3 mag near the HUDF m agnitude limit (red crosses). Though such signi cant differences may be of concern, it is interesting to note that the z_{250}-band magnitudes provided by Beckwith et al. (2006) for i-dropouts in the HUDF (Table 8 from that work) are also typically 0.3 mag brighter than those initially provided with the HUDF release (black crosses). So it would appear that Beckwith et al. (2006) quote di erent z_{250}-band magnitudes for i-dropouts in the HUDF than those initially provided with the HUDF release and which they used to select their i-dropout sample!

4.4. State of the LF at $z = 6$, 5, and 4

Not surprisingly there has already been a great deal of discussion regarding how the UV LF evolves at high redshift ($z = 3$) based on previous determinations, with some studies arguing for an evolution in the faint-end slope (Yan & Windhorst 2004), some studies advocating an evolution in M_{UV} (Beckwith et al. 2006), other studies suggesting an evolution in the characteristic luminosity (Bouwens et al. 2006), and yet other studies arguing for an evolution at the faint-end of the LF (Iwata et al. 2003; Sawicki & Thompson 2006a; Iwata et al. 2007).

In this paper, we found strong evidence for (i) an increase in the characteristic luminosity M_{UV} as a function of cosmic time, from 20.2 at $z = 6$ to 21.1 at $z = 3$ and (ii) a steep faint-end slope 1.7 at $z = 4$ to 6. While this agrees with the evolution found by some groups (Bouwens et al. 2006; Malhotra et al. 2006; Beckwith et al. 2006), it is in signi cant contradiction with others (Iwata et al. 2007; Sawicki & Thompson 2006a; Beckwith et al. 2006). We find it quite disturbing that there are a wide variety of di erent conclusions being drawn by different teams. However, we think that our large data set, unprecedented in both its size and leverage (both in redshift and luminosity), should allow us to come to more robust conclusions than have previously been obtained. We are encouraged by the fact that one of the most recent studies using the deep wide-area (636 arcmin2) Subaru Deep Field (Yoshida et al. 2006) obtains similar values for M_{UV} and that we nd at $z = 4$ and $z = 5$ and derive almost essentially the same evolution in M_{UV} over this interval (0.35 mag). Similar results are obtained by Ouchi et al. (2004) using somewhat shallower data over the Subaru Deep Field and by Malhotra et al. (2007, in preparation) using an independent analysis of the HUDF + GOODS data.

One of the most noteworthy of several previous studies to differ from the present conclusions is that conducted by Beckwith et al. (2006). The Beckwith et al. (2006) analysis is noteworthy because while Beckwith et al. (2006) use a very similar data set to our own, our analysis includes four deep intermediate depth ACS fields, i.e. the two HUDF05 and two HUDF06 fields. Beckwith et al. (2006) arrive at signi cant di erent conclusions from our own. Beckwith et al. (2006) argue that the evolution of the UV LFs at $z = 4$ and 6 can be most easily explained through an evolution in M_{UV} and cannot be explained through an evolution in M_{UV}. What could be the cause of these di erent conclusions? A nalysis of the Beckwith et al. (2006) results, while we have three signi cant conclusions. First of all, Beckwith et al. (2006) detemine their LFs using the surface density of galaxies binned according to their z_{250} in passbands aected by absorption from the Ly Lyman series (i.e., V_{606} for their $z = 4$ LF, i_{775} for $z = 5$ LF, and z_{850} for $z = 6$ LF). This is worrisome since the Ly Lyman absorption is quite sensitive to the redshift of the sources, and therefore any systematic errors in the model redshift distributions (or forest absorption model) will propagate into the luminosities used for deriving their LFs. While we understand that Beckwith et al. (2006) used this procedure to determine the LF at $z = 4$, 5, and 6.

\begin{table}[h]
\centering
\caption{Determinations of the best- fit Schechter Parameters for the rest-frame UV LFs at $z = 6$.}
\begin{tabular}{|c|c|c|c|c|}
\hline
Reference & M_{UV} & α & ϕ_{*} & Φ_{*} \\
\hline
This work & 20.24 & 0.19 & 1.7 & 1.74 \\
Bouwens et al. 2006 & 20.25 & 0.20 & 1.7 & 1.73 \\
Beckwith et al. 2006 & 20.5 & 0.7 & 1.6 (xred) \\
Malhotra et al. 2005 & 20.83 & 0.4 & 1.6 (assumed) \\
Yan & Windhorst 2004 & 21.03 & 0.5 & 1.6 \\
Bunker et al. 2004 & 20.83 & 0.2 & 1.6 \\
Dickinson et al. 2004 & 19.83 & 5.3 & 1.6 (xred) \\
Bouwens et al. 2004a & 20.25 & 1.7 & 1.5 \\
\hline
\end{tabular}
\end{table}

\footnote{Since the quoted LF was expressed in term of the $z = 3$ LF (Steidel et al. 1999), which is at rest-frame 1700. It was necessary to apply a k-correction (0.2 mag) to obtain the equivalent luminosity at 1350 A to make a comparison with the other LFs given here.}

\begin{itemize}
\item The diversity of conclusions drawn in high-redshift LF studies certainly illustrates how diicult it is to accurately control for systematic errors. Of course, one additional complicating factor is clearly the extreme e ects of faint-end slopes possessed by high-redshift LFs. This makes it very diicult to locate the HUHF in the LF and therefore distinguish evolution in M_{UV}.
\end{itemize}
Figure 12.1: Number of 1-dropouts in the HUDF as a function of z_{2500} magnitude in the present compilation (red histogram) and that obtained by Beckwith et al. (2006; hatched histogram). The selection limit for the Beckwith et al. (2006) probe is shown with the solid vertical line. While the two studies are in good agreement at bright magnitudes ($z_{2500} < 28$), there are significant differences at fainter levels. In particular, the Beckwith et al. (2006) catalog only contains 25% as many sources in our catalog over the interval $28 < z_{2500} < 28.7$ and 54% as many as our z_{2500} limit of < 28. It is clear that the differences might be due to different levels of incompleteness.

The insert shows the differences between the z_{2500}-band magnitude of the 1-dropouts in our catalogs (denoted here as 'New') and that initially provided with the HUDF release (denoted as 'Old') versus z_{2500}-band magnitude (red crosses). We note that our z_{2500}-band magnitudes are typically 0.3 mag brighter than that provided with the HUDF release. This could be the cause of the discrepancy, if Beckwith et al. (2006) used the photometry from the initial HUDF release to select their sources (as it appears they did since an application of the 1-dropout criteria to the photometry from the initial release yields precisely the Beckwith et al. 2006 1-dropout sample). Since the published photometry of Beckwith et al. (2006) (Table 8 from that work) is in good agreement with our work and also typically 0.3 mag brighter than the initial release (the differences between the Beckwith et al. 2006 photometry and that initially provided with the initial release are shown in the insert as black crosses), we would argue that Beckwith et al. (2006) selected their 1-dropout sample using photometry from the initial release which is significantly fainter (0.3 mag) than what they publish (which should represent their best estimates of the total magnitudes) and what we derive. This suggests their HUDF 1-dropout selection may be subject to at least a few small concerns.

5. DISCUSSION

The unprecedented depth and size of current B, V, and 1-dropout surveys, along with the great experience represented in the previously determined LF's from the literature, have enabled us to establish what we think are the most robust μ, Σ, Ω, and ξ estimates for the LF at large redshifts (Steidel et al. 1999; Steidel et al. 2000; Moustes et al. 2005; Wyder et al. 2005). We look at this evolution in terms of the three Schechter parameters, μ, Σ, and Ω, and their figures 13-14). This may give us some clues as to the physical mechanisms that are likely to be at work in global evolution of the galaxy population. The clearest trend seems to be present in the evolution of μ, which brightens rapidly at early times, reaches a peak around $z = 4$, and then fades to $z = 0$. The simplest explanation for the observed brightening in μ is that it occurs through hierarchical coalescence and merging of smaller halos into larger systems. Not only do we expect such a buildup to occur at early times, but we will see in Σ, such a mechanism predicts growth in...
Fig. 13. Evolution of the characteristic luminosity (M_\star) of the UV LF as a function of redshift. Detections are from the present work (red circles) at $z = 4$–6, Steidel et al. (1999) at $z = 3$ (green square), Amons et al. (2005) (blue crosses) at $z = 2$, 3, and Wyder et al. (2005) at $z = 2$, 3 (blue square). Error bars are 1. See compilation in Figure 14. The values of M_\star are determined using the models of Sheth & Tormen (1999) and the empirical model of Stark et al. (2007a). The solid line shows the evolution in M_\star predicted from the halo mass function of Sheth & Tormen (1999) assuming a constant mass to light ratio. To extract a well-defined evolution in M_\star with redshift from the model (which resembles power laws in shape), we need to assume that M_\star was zero, as seen in the observations (Figure 14). In addition, because the changes we derive for M_\star from the models are only differential, the absolute values plotted here are a little arbitrary. The observed characteristic luminosity M_\star shows a significant evolution both at high redshift and at low redshift. At high redshift ($z > 4$), the characteristic luminosity brightens very rapidly, reaching a peak at around $z = 4$, and then fades to $z = 0$. The evolution we observe at high redshift in M_\star is quite consistent with that found in the halo mass function and in the model predictions from the models of Oppenheimer & Davé (2006).

Fig. 14. Evolution of the luminosity normalization (ϕ_0) and faint-end slope (α) of the UV LF as a function of redshift. Detections are from the present work (red circles) at $z = 4$–6, Steidel et al. (1999) at $z = 3$ (green square), Amons et al. (2005) (blue crosses) at $z = 2$, 3, and Wyder et al. (2005) at $z = 2$, 3 (blue square). Error bars are 1. See compilation in Figure 13. The values of ϕ_0 and α are determined using the models of Sheth & Tormen (1999) and the empirical model of Stark et al. (2007a). The solid line shows the evolution in ϕ_0 and α predicted from the model of Sheth & Tormen (1999) assuming a constant mass to light ratio. To extract a well-defined evolution in ϕ_0 and α with redshift from the model, we need to assume that ϕ_0 and α were zero, as seen in the observations (Figure 14). In addition, because the changes we derive for ϕ_0 and α from the models are only differential, the absolute values plotted here are a little arbitrary. The observed luminosity normalization ϕ_0 shows a significant evolution both at high redshift and at low redshift. At high redshift ($z > 4$), the luminosity normalization brightens very rapidly, reaching a peak at around $z = 4$, and then fades to $z = 0$. The evolution we observe at high redshift in ϕ_0 is quite consistent with that found in the halo mass function and in the model predictions from the models of Oppenheimer & Davé (2006).

which is very similar quantitatively to that observed in our data.

At later times ($z = 3$), this steady brightening in M_\star halts and then turns around, so that after this epoch the most luminous star-forming galaxies become progressively fainter with time. This may be partially due to the gradual depletion of the cold gas reservoirs in galaxies with cosmic time (independent of M_\star) and partially due to the preferential depletion of gas in the highest mass galaxies (e.g., Erb et al. 2006; Reddy et al. 2006; Neeleman et al. 2007). This latter process would cause vigorous star-formation activity to move from the most massive galaxies to lower luminosity galaxies. This process has been called "downsizing" (Cowie et al. 1996). Similar "downsizing" trends are found in many different areas of galaxy evolution, from the decrease in the cross-over mass between spheroids and disk galaxies (Bundy et al. 2005) to the greater late-stage star formation in the lowest luminosity ellipticals (e.g., Kodama et al. 2004; Coss et al. 2004; Teo et al. 2005; McIntosh et al. 2005; van der Wel et al. 2005). Such trends are also observed in the evolution of the AGN population (e.g., Pei 1995; Ueda et al. 2003), where the buildup of supermassive black-holes mirrors that in galaxy-scale star formation.

Over most of the redshift range $z = 0$–6 probed by current LF detections, we observe no significant evolution in both ϕ_0 and α of the LF. The evolution in ϕ_0 and α is most substantial at the lowest redshifts, where the evolution is from 10^5 to 10^6 Mpc3 at $z = 0$ to 6 at $z = 4$–6. The evolution in ϕ_0 and α is not very significant, though there is some indication that the slope becomes steeper at high redshift than it is at low redshift. Evolution in ϕ_0 is not significant over the interval $z = 0.5$ to 6, but may show a possible increase in low redshift ($z = 0.5$) and high redshift ($z = 6$). We do not show predictions for evolution in α from the models since they cannot be well-established independently of evolution in M_\star due to the very power-law-like appearance of the model. The faint-end slope is predicted to be 1.8 in the theoretical model at $z = 4$ (e.g., Neeleman et al. 2006; Oppenheimer & Davé 2006).
5.2. Interpreting the Observed Evolution in M

We have already seen that one probable interpretation for the observed brightening in M is through the hierarchical coalescence and merging of galaxies into larger halos. We can look at the hypothesis in detail by comparing the observed brightening with the mass buildup seen in the halo mass function (Sheth & Tormen 1999) over this range. We will assume we can characterize the growth in the mass function by looking at the mass of halos with a fixed comoving volume density $10^{2.5} \, h^{-1} \, M_{\odot}$ and that there is a z-dependent conversion from mass to UV light (halo mass to apparent star formation rate). A comoving volume density of $10^{2.5} \, h^{-1} \, M_{\odot}$ pc$^{-3}$ corresponds to that expected for halos near the knee of the luminosity function assuming a duty cycle of 25% (see Stark et al. 2007c; Vema et al. 2007) and 0.03 of $10^{12} \, M_{\odot}$ pc$^{-3}$, which is the approximate volume density of L galaxies in the observations. The duty cycle tells us the approximate fraction of halos that have lit up with star formation at any given point in time. This analysis effectively assumes that z is a function of time, which we assume to match the observations (Figure 14). We plot the predicted brightening on Figure 13 with the solid line. We note that these predictions are only moderately sensitive to volume densities chosen to make these comparisons. At a volume density of $10^{2} \, h^{-1} \, M_{\odot}$ pc$^{-3}$, the predicted brightening is 0.6 mag from $z = 6$ to $z = 4$ while at $10^{3} \, h^{-1} \, M_{\odot}$ pc$^{-3}$, the predicted brightening is 0.9 mag. Surprisingly, the growth in the mass function is in striking agreement with the evolution we observe in M, even out to $z = 7$, where we derive our values of M from the Bouwens & Illingworth (2006) search results (see §5.4). This remarkable agreement strongly suggests that hierarchical buildup may contribute significantly to the evolution we observe.

While this is surely an interesting finding in itself, the overall level of agreement we observe here is surprising since we make a fairly simple set of assumptions about the relationship between the halo mass and the UV light in galaxies hosted by these halos (supposing that it is constant and non-evolving). Had we assumed this ratio evolves with cosmic time, we would have made considerably different predictions for the evolution of the LF. This is interesting since there are many reasons for thinking the mass-to-light ratio might be lower at earlier times and therefore the evolution in M to be less rapid with cosmic time. For one, the efficiency of star formation is expected to be higher at early times. The universe would have a higher energy density then and therefore the gas densities and star formation rate efficiencies should be higher. In addition, the cooling time and dynamical time at early times should be lower at early times. All this suggests that the evolution in the LF should much more closely resemble that predicted by Stark et al. (2007c), who also model the evolution in the LF using the mass function but assume that the star formation time scale evolves as $H(z)^{-1}$ $(1 + z)^{-1}$. As a result of these star formation time scale evolutions, the Stark et al. (2007c) model predicts a mass-to-light ratio which evolves as $(1 + z)^{-0.2}$. This model yields significantly different predictions for how M evolves with redshift (shown as the dash-dotted line in Figure 13). These latter predictions appear to our data somewhat less well than for the simple toy model we adopted above assuming no-evolution in the mass-to-light ratio. This suggests that this mass-to-light ratio may not evolve that dramatically with cosmic time. One possible explanation for this would be if supernovae feedback played a significant role in regulating the star formation within galaxies at these times (keeping it from reaching the rates theoretically achievable given the time scales and gas densities expected). Of course, while it is interesting to note the possible physical implications of our observational results, we should be cautious about drawing too strong of conclusions based upon these comparisons. Our treatment here is crude, and the observational uncertainties are still quite large.

5.3. Comparisons with Model Results

Given the success of our simple toy model for reproducing the observed evolution in M, it is interesting to ask if this success is maintained if we consider more sophisticated treatments like those developed in the literature (Epinat et al. 2006; Oppenheimer & Davé 2006; Nagamine et al. 2004; Nightly et al. 2006; Samui et al. 2007). The most prominent of these models include a wide variety of physics from gravitation to hydrodynamics, shocks, cooling, star formation, chemical evolution, and supernovae feedback (see, e.g., Springel & Hernquist 2003). We examined two different models produced by leading teams in this field and which we suspect are fairly representative of current work in this area. These models are the momentum-driven wind model (e.g. model of Oppenheimer & Davé 2006) and the model of Nightly et al. (2006), which appears to be similar to the constant wind model of Oppenheimer & Davé (2006). Since LFs in these models more closely resemble the power laws in overall shape than they do Schechter functions, we were not able to extract a unique value of M from these models. We were however able to estimate an evolution in M by comparing the model LFs at a fixed number density and looking at the change in magnitude. In doing so, we effectively assume that the value of M is fixed just like we used in the observations (Figure 14). To prove the S/N with which to estimate this evolution from the models, we looked at this evolution over a range of number densities ($10^{12} \, M_{\odot}$ pc$^{-3}$ to $10^{15} \, M_{\odot}$ pc$^{-3}$), we plot the derived evolution from these models in Figure 13, and it is apparent that our observed evolution is in good agreement with the momentum-driven wind model as well as with the model of Oppenheimer & Davé (2006), but exceeds that predicted by the Nightly et al. (2006) model. The fact that our results agree with at least one of the two models is encouraging (since it suggests that the evolution we infer is plausible). Moreover, the fact that the two models agree suggests that we may be able to begin to use our observational results to begin constraining the important aspects of the theoretical models. Particularly relevant on this front are the implications for the feedback prescription, which do quite significantly between the two models considered here. For the momentum-driven wind model, feedback is much more important at early times than it is for the Nightly et al. (2006) model. This feedback effectively suppresses star formation at early times and therefore results in a much more rapid brightening of M with cosmic time, in agreement with the observations.

5.4. Evolution of UV Luminosity at $z > 6$
The present determinations of the LF at $z = 4 \rightarrow 6$ should provide us with a useful guide to the form of the LF at even earlier times and should be helpful in interpreting current searches for very high-redshift ($z > 6$) galaxies. Currently, the most accessible regime for such probes lies just beyond $z = 6$, at $z = 7 \rightarrow 8$, and can be probed by a z-dropout search. At present, the most comprehensive such search was performed by our team using 19 arcmin in2 of deep NEMO S data over the two GOODS epochs (Bouwens & Illingworth 2006; but see also Mannucci et al. 2006). In that work, we applied a very conservative $(z_{250}, J_{110} \leq 13; z_{250}, J_{110} \leq 13 + 0.4J_{110}, H_{160} \leq 12; J_{110}, H_{160} \leq 12 z_{250}$-dropout criterion to that data and found only one plausible z-dropout, but expected 10 sources assuming no-evolution from $z = 6$. We also applied a slightly less conservative z-dropout criterion and found three other possible candidates. From this, we concluded that the volume density of bright ($\mu 3\leq 13$) galaxies at $z = 7 \rightarrow 8$ was just $0.010^{+0.013}_{-0.020}$ and $0.024^{+0.020}_{-0.012}$ times the volume density of bright sources at $z = 6$ for our conservative and less conservative criteria, respectively. Both large-scale structure and Poissonian statistics are included in the estimated errors here. For both selections, the result was significant and suggested to us that there was substantial evolution from $z = 7 \rightarrow 8$ to $z = 6$. Given the sizeable evolution we had observed in M between $z = 6$ and $z = 3$ (B06; see also Dickinson et al. 2004), it made sense for us to model our $z = 7 \rightarrow 8$ search results in terms of an evolution of M, keeping and z. We also considered a model where changes in M were set by changes in z such as to keep the total luminosity density z. Using these two sets of assumptions, we estimated that $M_{AB} = 11.0$ mag and 11.4 mag fainter at $z = 7 \rightarrow 8$ than it was at $z = 6$.

With our current work on the LFs at $z = 4 \rightarrow 6$, we have been able to demonstrate more clearly than before that the most significant change in the LF occurs through a brightening of M from $z = 6$ to $z = 4$ (see also Yoshida et al. 2006). This strengthens the underlying motivations behind the Bouwens & Illingworth (2006) decision to model the evolution of the LF in terms of a change in M. The parameter is consistent with being constant, though it may also decrease with time as suggested by hierarchical buildup. Unfortunately, there are still too many uncertainties in the data to be sure about the trends in z, and so it is difficult to signifi cantly improve upon the M estimates made in Bouwens & Illingworth (2006) study for our most conservative selection.

Nevertheless, we will update our estimates for M at $z = 7 \rightarrow 8$ based upon our conservative selection to be consistent with the present determination for and at $z = 6$ while taking the evolution in the UV LF at $z \leq 6$ to simple be in luminosity (M). With these assumptions (i.e., $z = 1.74$ and 20014 Mpc$^{-3}$), we find a value of $M_{UV} = 19.7^{+0.4}_{-0.4}$ for our UV LF at $z = 7 \rightarrow 8$. It also makes sense to estimate the value of M at $z = 7 \rightarrow 8$ using the results of the less-conservative selection of Bouwens & Illingworth (2006). We did not consider this selection in our original estimate of M in Bouwens & Illingworth (2006) to avoid possible concerns about contamination and thus simplify the discussion. However, the contamination is not likely to be larger

Fig. 15. Two different determinations of the volume density of luminous star-forming galaxies at $z = 4 \rightarrow 6$ from Figure 3. The $z = 4 \rightarrow 6$ search results are shown as solid and open circles (where the error bars are 1σ for Bouwens & Illingworth 2006) conservative and less conservative selections, respectively. The Mannucci et al. (2006) upper limit on these volume density is shown as the magenta downward arrow at 21μAB mag. We have plotted one possible UV LF at $z = 7 \rightarrow 8$ (dashed magenta line) which is in good agreement with the Bouwens & Illingworth (2006) determination (see x5.4), though this result is only 25% (see Bouwens & Illingworth 2006), and this selection in other much better statistics than for our conservative selection (4 sources vs. 1 source) as well as a larger selection window. It should make our selection volume density estimate more reliable. Repeating the determination of M using the results of our less conservative selection ($z = 7 \rightarrow 4$, $z = 6 = 0.24^{+0.30}_{-0.12}$) and assuming simple evolution in M, we find $M_{UV} = 19.7 \pm 0.3$. The normalization and faint-end slope were kept at 1.4×10^{-3} Mpc$^{-3}$ and 174, the values preferred at $z = 6$, for this modelling. Though it seems probable that the faint-end slope may be quite steep at earlier times, this does not have a big effect on the derived values for M and $z = 7 \rightarrow 8$. For example, making a $= 0.4$ change in the assumed faint-end slope only results in a 0.1 mag change in M. We added this determination of M to Figure 13 as an open red circle, and it is in reasonable agreement with some of the theoretical predictions as well as simple extrapolations of our lower redshift results (x5.1-x5.3). We include the Bouwens & Illingworth (2006) search results in Figure 15 along with a comparison with the UV LFs at $z = 4 \rightarrow 6$. The Mannucci et al. (2006) search results for very luminous (brighter than 21.5μAB mag) $z = 7 \rightarrow 8$ galaxies are also included on this gure.

5.5. Reionization

Finally, it seems worthwhile to discuss the implications of the current LF determination on the ionizing flux output of $z = 4 \rightarrow 6$ galaxies. There has been a great deal of interest in the ionizing radiation output of high-redshift galaxies since it was discovered that hydrogen remains almost entirely ionized since a redshift of $z = 6$ (Becker et al. 2001; Fan et al. 2002; Hite et al. 2003; Fan et al. 2006) and that galaxies are the only obvious candidates to produce this radiation. The situation has even become more interesting now with the availability of the WMAP results, indicating that the universe may have
Table 4

<table>
<thead>
<tr>
<th>UV Background</th>
<th>Luminosity Density / mag</th>
<th>(m_{UV})</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^(-16) cm²/erg/s/Å²/pc²/mag</td>
<td>0.2</td>
<td>-22</td>
</tr>
<tr>
<td>10^(-16) cm²/erg/s/Å²/pc²/mag</td>
<td>0.4</td>
<td>-20</td>
</tr>
<tr>
<td>10^(-16) cm²/erg/s/Å²/pc²/mag</td>
<td>0.6</td>
<td>-18</td>
</tr>
</tbody>
</table>

Fig. 16: UV Luminosity density per unit magnitute for galaxies of various luminosities at z = 4 (blue histogram: from our B-dropout sample), z = 5 (red histogram: from our V-dropout sample), and z = 6. Error bars are from the rest-frame eUV LF at z = 4, z = 5, and z = 6 (Table 4). This shows that lower luminosity galaxies make up a significant part of the overall UV background and thus likely play an important role in reionization. A summary of the significant results is provided in Table 4. The present determinations of the luminosity functions at z = 4, 5, and 6 provide significant support for the idea that lower luminosity galaxies contribute significantly to the total ionizing flux (see also Peeples et al. 2006). Previously, there was some support for the idea that lower luminosity galaxies may have been important in the reionization process (Steidel et al. 1999; Amsler et al. 2005; Yoshida et al. 2006), and at lower redshift (e.g., Steidel et al. 1999; Amsler et al. 2005; Yoshida et al. 2006). However, this conclusion was a little uncertain due to the sizeable uncertainties on the faint-end slope at z > 6 (and some conflicting results at lower redshift, e.g., Yan & Indihar 2004). Now, with the present LF determinations (see also Yoshida et al. 2006; Peeples et al. 2006; Oguri et al. 2007), it seems quite clear that the faint-end slope must be quite steep (i.e., \(a < -1.7 \)) at z = 4 (though it is still difficult to evaluate whether this slope evolves from z = 6 to z = 4 due to considerable uncertainties on this slope at z = 6).

We can use the steep LF at z = 4 and z = 5, and z = 6 to look at the contribution that galaxies of various luminosities make to the total ionizing flux. A summary of the significant results is provided in Table 4. The present determinations of the luminosity functions at z = 4, 5, and 6 provide support for the idea that lower luminosity galaxies contribute significantly to the total ionizing flux (see also Peeples et al. 2006). However, this conclusion was a little uncertain due to the sizeable uncertainties on the faint-end slope at z > 6 (and some conflicting results at lower redshift, e.g., Yan & Indihar 2004). Now, with the present LF determinations (see also Yoshida et al. 2006; Peeples et al. 2006; Oguri et al. 2007), it seems quite clear that the faint-end slope must be quite steep (i.e., \(a < -1.7 \)) at z = 4 (though it is still difficult to evaluate whether this slope evolves from z = 6 to z = 4 due to considerable uncertainties on this slope at z = 6).

For the present determinations of the luminosity functions at z = 4, 5, and 6, the fraction is 0.27, 0.24, and 0.34, respectively (Table 4). However, for the more physically-reasonable situation that the LF has a cut-off (at a deconvolution limit of 10^\(-16 \) cm²/erg/s/Å²/pc²/mag, e.g., Read et al. 2006; see x5.5), the fraction is 0.27, 0.24, and 0.34, respectively. In all cases, this fraction is substantial and suggests that a significant fraction of the total ionizing flux may come from galaxies at very low luminosities. In fact, even if we suppose that our high-redshift LF’s cut-off is just below the observational limit of our HUDF selection (i.e., 16^\(+0.6 \) B mag, & 50% of the total ionizing flux would still arise from galaxies fainter than 19^\(+0.6 \) B mag. Since 19^\(+0.6 \) B mag is comparable to or fainter than the observational limit its relevance for most previous studies of high-redshift galaxies (i.e., Figures 9 and 10), this shows that most previous studies do not come close to providing a complete census of the totalUV light or ionizing radiation at high redshift. Ultra deep probes (such as available in the HUDF) are necessary.

6. SUMMARY

Over the past few years, the HST/Advanced Camera for Surveys has provided us with an exceptional resource of ultra-deep, wide-area, multi-wavelength optical (B-V) data for studying star-forming galaxies at high redshift. Such galaxies can be effectively identified in these multi-wavelength data using a dropout criterion, with B > V, and either optical or UV dropout selection probing galaxies at a mean redshift of z = 3.8, z = 5, and z = 5.9. Relative to previous observations, deep ACS data reach several times...
fainter than ever before and do so over large areas. This allows us to investigate the properties of high-redshift star-forming galaxies at extremely low luminosities in unprecedented detail.

Here we have taken advantage of the historical sample of deep, wide-area ACS fields (HUDF, HUDF05, HUDF-Ps, and the two GOODS fields) to identify large, comprehensive selections of very faint, high-redshift galaxies. Our collective sample of B, V, and i-dropouts over these fields totalled 4671, 1416, and 627 unique sources. Putting together our deepest probe (HUDF) with our widest area probe (GOODS), our sample covers a 6-7 mag range with good statistics (factor of 1000 in luminosity), extending from 23 AB mag to 16 or 17 AB mag. Through detailed simulations, we have carefully modelled the completeness, photometric scatter, contamination, and selection functions for each of our sample.

We then put together the information from our combined sample of B, V, and i-dropouts to derive LFs at z = 4, 5, and 6. To ensure that our LF determinations are robust, we considered a wide variety of approaches and assumptions in the determination of these LFs and made extensive comparisons with other determination from the literature.

Here are our principal conclusions:

- Best-fit LFs: We find that the rest-frame UV LFs at z = 4, 5, and 6 are well fit by a Schechter function over a 5-7 mag (factor of 100 to 1000) range in luminosity, from 23 AB mag to 16 AB mag (see also Beckwith et al. 2006). The best-fit parameters for our rest-frame UV LFs are given in Table 13. The present z = 6 LF determination is in reasonable agreement with those from B06 (see Table 12), but is slightly more robust at the faint-end. The most salient finding from the individual LF determination is that the faint-end slope is very steep (1.7) at all redshifts considered here (see x5.4).

- Completeness of z = 4 B-dropout census: The bulk of the bright B-dropouts we identify over the GOODS have 90% of objects (see Figure 8). Since our z = 4 B-dropout selection should be effective in identifying UV-bright galaxies as red as 0.5, the fact that we do not find many such galaxies in our selection in the range 0.5 and 0.5 suggests that this selection is largely complete (90%) at bright magnitudes. This supposition would appear to be supported by complementary selections of galaxies at z = 4 with the Balmer-break technique (Brammer & van Dokkum 2007), which also find that galaxies have very blue UV - continuum slopes (90% of the galaxies in the Brammer & van Dokkum 2007 selection had 0.5). Since Balmer-break selections do not depend upon the value of the UV - continuum slope, this again suggests that the bulk of the star-forming galaxy population at z = 4 is quite blue and will not be missed from our bright B-dropout selection.

- Evolution of the LF: Comparing our best-fit Schechter parameters determined at z = 6, 5, and 4, we find little evidence for evolution in the faint-end slope or from z = 6 to z = 4. On the other hand, the characteristic luminosity for galaxies MUV brightens by 0.7 mag from z = 6 to z = 4 (see also Yoshida et al. 2006).

- UV Luminosity / SFR Densities: The UV luminosity densities and SFR densities we infer at z = 4, 5, and 6 are summarized in Table 13. The UV luminosity density of the very faint galaxies at z = 6 is modestly lower (0.45 0.09) than that at z = 4 (integrated to 175 AB mag). Taking into account the likely evolution in dust properties of galaxies across this interval suggested by the apparent change in mean UV -continuum slope (e.g., B06), we infer a much more significant change in the dust-corrected SFR densities over this same interval of cosmic time, i.e., the SFR density at z = 6 appears to be just 0.3 times this density at z = 4 (integrated to 175 AB mag).

- Galaxies at z = 7: By quantifying the evolution of the UV LF from z = 6 to z = 3, we were able to better interpret the results of recent z = 0.5 -dropout searches of Bouwens & Illingworth (2006) in terms of an evolution of the LF (see x5.4). Supposing that the evolution of the UV LF is simply in M (as observed from z = 6 to z = 4), we estimated that MUV at z = 7 is equal to 1193 -0.4 AB mag and 1997 -0.3 AB mag using the conservative and less conservative search results of Bouwens & Illingworth (2006), respectively (see x5.4).

- Comparison with Model Results: The brightening we observe in M from z = 6 to z = 4 (and plausibly from z = 7) is almost identical to what one finds in the evolution of the halo mass function over this range (see also Stark et al. 2007c) assuming a constant proportionality between mass and light (see x5.2). This suggests that the hierarchical buildup largely drives the evolution in M over the redshift range probed by our samples. It also may indicate that there is no substantial evolution in the ratio of halo mass to UV light over this range. Since we might expect this ratio to evolve significantly due to changes in the mean gas density of the universe and therefore star formation efficiency, this suggests that feedback may be quite important in regulating the star formation of galaxies at early times. Of course, given the considerable uncertainties in the value of M at very high redshifts (z = 6), it seems worthwhile to emphasize that these conclusions are still somewhat preliminary. Our observational results are also in reasonable agreement with that predicted by the momentum -conserving wind model of Oppenheimer & Dave (2006).

- Implications for Reionization: The very steep faint-end slopes of the UV-continuum LF (1.7) suggest that lower luminosity galaxies provide a significant fraction of the total ionizing UX at z = 4 (see also discussion in Lehnert & Bézecq 2003; Yan & Windhorst 2004ab; B06; Sawicki & Thompson 2006ab). Assuming that the escape fraction is independent of luminosity and that the redshift dependence is in a Schechter-like form to a very faint marginal limit (10 AB mag) and cut off beyond this limit, we estimate that 27%, 24%, and 34% of the total UX from galaxies fainter than 16 AB mag for our z = 4, 5, and 6 LFs, respectively (see x5.5).

The recent failure of the Advanced Camera for Surveys aboard HST is a great loss for studies of galaxies. Even with the installation of WFC3, future HST observations will require approximately three times the telescope time that ACS required to obtain comparable constraints on faint, z = 4 galaxies. As a result, it would appear that for the near - to - distant future the current probes of the UV LF at very high redshift will remain an important standard, until future facilities with superior...
surveying capabilities like JW ST com e online (or unless ACS is repaired).

W e acknow ledge R om eel d Ave, K ristian Flnator, B r ad Holten, M au ro G iavalisco, R kni Bata, O livr Le Fevre, K en N agam ine, M asam Uchi, and Na veen Reddy for stimulating conversations and P leco Rosati and R ink W hite for helpful suggestions. W e are grate ful to K ristian Flnator and K entaro N agam ine for com p uting rest- f r am e UV LFs fr om us f or their m odels, and then allowing us to inc lu de these calculations in our pa per.

W e thank A ike Shapley for sending us a copy of her in p l e m entation of the Bershady et al. (1999) M C-NH m od el to compute attenuation from neutral hydrogen al ong random lines of sight. W e are appet i c e to Na veen Reddy and C r ystal M ar t in for a care ful reading of this man u s cript and our anonym ous referees for a numb er of very insig htful comments. ACS was developed under NASA contract N A S 5-32865, and this research was supported under NASA grant H ST-G O 0803.05-A and N AG 5-7697.

TABLE 13

<table>
<thead>
<tr>
<th>Dropout Sample</th>
<th>z</th>
<th>M$_{G90}$</th>
<th>log${10}$ SFR density ($M{\odot}$ pc$^{-2}$ yr$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>M$_{G90}$</td>
<td>L $> 0.9L_{}$, L $> 0.94L_{}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M$_{G90}$</td>
<td>L $> 0.9L_{}$, L $> 0.94L_{}$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M$_{G90}$</td>
<td>L $> 0.9L_{}$, L $> 0.94L_{}$</td>
</tr>
</tbody>
</table>

*Values of M$_{G90}$ are at 1600 A for our B and V -d r opout samples, at 3500 A for our i-d r opout sample, and at 9000 A for our M d r opout sample. Since z = 6 g alaxies are b lue (2; Stanwyk et al. 2005; B 06), we expect the value of M at z = 6 to be very similar (6.0 mag) at 1600 A to the value of M at 1350 A. Similarly, we expect M at z = 7 to be fairly similar at 1600 A to the value at 1900 A.

The luminosity densities, which are used to com pute the uncorr ected SFR densities presented here (x3.5), are given in Table 8.

These LF deter m inations are based upon SY 97 technique, including evolution in M across the redsh i ft window of each sample (see Table 7 and Appendix B). They therefore d i er from those given in Table 5, which do not include evolution.

REFERENCES

B e r t i n, E., and A mouts, S. 1999, A A S, 117, 39
B ol k o n, J., & H aehn el e, M. G. 2007, astro-ph/0703306
B r nual t, G., & Ch arlot, S. 2003, M N R A S, 344, 1000
Gav a lisco, M. 2005, New A st r onom y R ev iew, 45, 1490
H l eve, J., M en el n, G., Per n, U.-L., M erz, H., Shap rio, P. R., & A nolez, M. A. 2006, M N R A S, 369, 1625
I wata, L., O hta, K., T am ura, N., A ndo, M., W ada, S., W atan a be, C., A k iy a m a, M., and A ok i, K. 2003, PhJ, 55, 415
K od a m a, T., et al. 2004, M N R A S, 350, 1005
APPENDIX

A. LF DETERMINATIONS

A.1 Modelling Incompleteness and Photon etic Scattering

To compare the expectations of the model LF’s with the surface densities of dropouts observed, we need to be able to include the effects of incompleteness and photon etic scatter in our calculations. We will accomplish this by com puting corrections which transform the surface density of dropouts from that recoverable in noise-free (in nine S/N) data to that recoverable in each of the tails considered in our study. We emply a two part strategy: first deriving corrections necessary to transform the dropout surface densities from what we would recover for noise-free data to that recoverable in our HUDF selections and second deriving corrections to transform these surface densities from HUDF depth data to that recoverable in even shallow data. Our use of a two part strategy enables us to ensure that the corrections we derive for the shallower selections are extremely model independent (the most notable corrections being derived from degradation experiments).

Both corrections are in planed using a set of transfer functions, which correct the surface density of dropouts recoverable in deeper data to that recoverable in shallow data. We express these transfer functions as two-dim ensional matrices, with the row and column of these matrices indicating speci c magnitude bins in the deeper and shallower data.
One of the transfer functions that we use in our analysis (see Appendix A.1). This transfer functions allow us to calculate the surface density of galaxies that would be identified at a given magnitude in shallower data (here the ACS GOODS data) given a specific surface density of dropouts in a deeper data set (here the ACS HUDF data). The transfer function plotted here is for a B-dropout selection and is binned on 0.1-mag intervals.

data, respectively. Elements in these matrices indicate the fraction of galaxies with specific magnitudes in the deeper data recovered to have some other magnitude in the shallower data (see below). These transfer functions can then be applied to the surface density of dropouts in a given field, expressed as one-dimensional vectors, through simple matrix multiplication. For our B- and V-dropout selections, the axes of these matrices are given in terms of the i, z850 and AAB band magnitudes, respectively. These bands most closely correspond to the approximately constant rest-frame wavelength (1600 Å) at the mean redshift of our samples (z = 3.8 and z = 5, respectively) and are not affected by attenuation from the Ly line.

At our deepest selections, we express these transfer functions in terms of the total magnitude in the z850-band, which corresponds to rest-frame 1350 Å.

As noted, our first set of corrections is designed to correct the surface density of dropouts from what we would recover with noiseless (in nine depth) data to what we would recover in our HUDF selections. We will restrict these corrections to a model of the flux biases and photometric scatter (since completeness will be handled separately using a separate factor P (mz) (see Eq. 2 in Appendix A.1). Modeling this scatter is important because of the tendency for fainter, lower signal sources to scatter into our selection through a Malmquist effect. To quantify this effect, we ran a series of simulations where we took B-dropout galaxies from the HUDF, artificially redshifted them across the redshift selection windows of our samples using our well-tested cloning software (Bouwens et al. 1998a; Bouwens et al. 2003a), measured their photometric scatter of the simulated frames, and finally resampled these sources using our dropout criteria. By comparing the input magnitudes with those recovered, we were able to construct the transfer functions, which successfully incorporated the photometric scatter present in the real data. The assumptions we use in these simulations (e.g., size-redshift scalings, colors) are the same as those given in Appendix A.3.

Now we derive corrections to take selections made with the HUDF data to similar selections made with shallower data. We accomplish this through a straightforward procedure, degrading the HUDF data to the depths of our shallower data and then recovering our selection and photometric scatter at both depths. We perform these experiments for all three dropout samples and between the HUDF and all of our shallower fields (GOODS, HUDF-Ps, HUDF05). Again, we express the results of these experiments as transfer functions, which correct the surface density of dropouts from what we would recover in the deeper data to that recoverable in shallower data. To improve the statistics at bright magnitudes, we performed similar degradation experiments on our other deeper fields (e.g., HUDF-Ps and HUDF05) and used those results at magnitudes where these fields appear to be essentially complete (i.e., AB mag < 26). The transfer functions were binned on 0.1-mag intervals, and then smoothed along the diagonal. The smoothing length was set so that at least 20 sources from the input images contributed to each element in the matrix. An illustration of one of the transfer functions we derived using this procedure is shown in Figure A1. Typical fluxes recovered from our GOODS data set were 0.1 mag fainter than in the HUDF, with a completeness of ~ 90% at z850AB 25.5 and 50% at z850AB 26.5. Flux biases in our deeper HUDF-Ps and HUDF05 data were similar in general; at brighter magnitudes, and significant incompleteness did not set in until i775 27.5 in our B-dropout selections and z850AB 27.5 in our V-dropout and i-dropout selections.

A.2. Evaluating the Likelihood of Model LFs

In this paper (x3), we evaluate candidate LFs by comparing the predicted dropout counts from these LFs with that found in our different fields. We compute the dropout counts from the LFs using a two-step procedure: first calculating the number of galaxies we would expect in our deepest selection the HUDF using Eq. 2 and then correcting this for
photometric scatter and incompleteness using the transfer functions we derived in Appendix A.1.

To perform the integral in Eq. 2, we recast it in discrete form

\[k \cdot kV_{m, k} = N_m \quad (A1) \]

\(N_m \) is the number counts binned in 0.1 mag intervals at rest-frame 1600 Å and in using the 2800-band uxes of z = 3.5 mag -dropout to derive luminosity at 1600 Å. \(W (M, M_k) \) is the LF binned on 0.1 mag intervals, and \(V_{m, k} \) is an effective volume e-type kernel which can be used to calculate the number counts \(N_m \) given some LF. It is calculated as

\[V_{m, k} = \frac{Z}{Z_{m + 0.05}} W (M (m, \sigma z), M_k) \frac{dV}{dz} \quad (A2) \]

where

\[W (x) = \begin{cases} 0; & x < 0.05 \\ 1; & 0.05 < x < 0.05 \\ 0; & x > 0.05 \end{cases} \quad (A3) \]

Because of the \(m \) in m alk-correction required in using the \(i_{775} \)-band uxes of z = 4 B-dropouts to derive luminosity at rest-frame 1600 Å and in using the 2800-band uxes of \(z = 4 \) -dropout to derive luminosity at 1600 Å (no Lyman forest absorption to consider), there is a fairly tight relationship between apparent and absolute \(m \)agnitudes in our z = 4 and z = 5 detem inations (the only sizeable d1 eerrors are due to small changes in the distance modulus (see Figure A2). The only elements which are non-zero in the kernel \(V_{m, k} \) span a small range in \(m \)agnitude (\(m \) = 1.5 mag). At \(z = 6 \), there is no deep wide-area imaging which probes rest-frame 1600 Å for i-dropouts, and therefore we must resort to xing galaxy luminosities at a slightly bluer wavelength (i.e., 1350 Å) using the 2800-band uxes of i-dropouts. Since the 2800-band uxe is not strongly affected by attenuation from the Lyman forest, the relationship between the apparent and absolute \(m \)agnitudes is considerably less tight (see Figure A2), so the non-zero elements in the kernel \(V_{m, k} \) span a much wider range in \(m \)agnitude (i.e., \(m \) = 15 mag; see Figure 7 of B06).

To incorporate the e ects of incompleteness and photometric scatter on our results, we need to modify Eq. A1 to include the transfer functions we computed in Appendix A.1. The resultant formula is

\[1_{k} \cdot k\mu_{V_{m, k}} = N_m \quad (A4) \]

where \(T_m \) is the transfer function we derived in Appendix A.1 to take galaxies from a true total \(m \)agnitude of \(L \) to an observed total \(m \)agnitude of \(L \). This we do using a simple analysis in com putting the surface density of galaxies in a given \(m \)odel LF.

We use the ability to calculate the number counts \(N (m) \) given a LF, we need some means to decide which \(m \)odel LF ts our data the best. Our two primary approaches, STY 79 and SWML, accomplish this by maximizing the likelihood of reproducing the distribution of galaxies as a function of \(m \)agnitude. Since we consider the surface density of galaxies over multiple \(m \)agnitude intervals in our analysis, we express this likelihood as a simple product

\[L = \prod_{i} \prod_{j} \left(p(m_i) \right) \quad (A5) \]

where

\[p(m_i) = \frac{n_{\text{expected},i}^{\mu_{\text{observed},i}}}{\sum_{j} n_{\text{expected},j}^{\mu_{\text{observed},j}}} \quad (A6) \]

and \(n_{\text{observed},i}^{\mu_{\text{observed},i}} \) is the number of sources observed in the \(m \)agnitude interval \(i \) and \(n_{\text{expected},i}^{\mu_{\text{observed},i}} \) is the number of sources expected in the \(m \)agnitude interval \(i \). In Eq. A5, note that we only include \(m \)agnitude intervals where \(n_{\text{observed},i}^{\mu_{\text{observed},i}} \) is positive. The value of \(n_{\text{expected},i}^{\mu_{\text{observed},i}} \) has no bearing on whether a \(m \)agnitude interval is included or not.

A3. Selection effects

In the detem inations of the LF we perform ed in this paper, it was essential for us to account for the e ciency with which we can select dropouts in our data. We computed this e ciency as a function of rest-frame \(z \) and the apparent \(m \)agnitude of the star-forming galaxy in question. We establish these selection e ciencies for galaxies in the HUDF since we reference our shallower selections to the HUDF through transfer functions (Appendix A.1). The apparent \(m \)agnitudes here are in the same passband as we use to bin our dropout sam ples, i.e., the \(i_{775} \)-band for our B-dropout sam ples, the 2800 band for our V-dropout sam ples, and the 2800 band for our i-dropout sam ples.

We estimate the selection e ciencies \(P (m, z) \) using our well-tested cloning software (Bouwens et al. 1998a; Bouwens et al. 2003a; R. J. Bouwens et al. 2007, in preparation) to project individual sources from our \(z = 4 \) HUDF B-dropout sam ple across the rest-frame range of our high-redshift sam ples. In calculating the selection e ciencies \(P (m, z) \) for our \(z = 4 \) -dropout selection, our projected B-dropout sam ples was taken to have mean UV contin uum slopes of 1.5 at \(L_{580} \), UV luminosities, but steep e mean UV continuum slopes of 2.0 at lower UV luminosities (< 0:41L_{580}) while at intermediate UV luminosities the mean slope is varied smoothly between these two extremes. This is to account for the fact that UV-continuum galaxies at high redshift (\(z \geq 2 \)) are found to have redder UV continuum slopes (Adelberger & Steidel 2000; Ouchi et al. 2004) than lower redshift galaxies at these redshifts (Meyer et al. 1999; Beckwith et al. 2006; Ilbert et al. 2007; R. J. Bouwens et al. 2007, in preparation). For our \(z = 5 \) V-dropout and \(z = 6 \) i-dropout selections, the mean UV-continuum slopes of galaxies was taken to be 2.0 to match the bluer observed
To test the robustness of our LF detections against them any significant uncertainties (e.g., large-scale structure and the model k-corrections) which can affect our results, it is useful to consider a variety of different approaches in the determination of these LFs.

In this appendix, we consider seven such approaches. Our first two approaches employ alternative techniques to cope with large-scale structure uncertainties and to explore the resulting uncertainties. Our third approach exploits possible uncertainties related to measuring the rest-frame UV LF at a bluer rest-frame wavelength where Lyman forest absorption is a concern. Our fourth and fifth approaches examine the dependence of our LF results on the assumption we make about the form of SED templates and the Lyman forest. Our sixth approach explores the dependence of these LF results on different selection criteria. Finally, with our final approach, we investigate the effect that an inherent evolution in M across the selection windows of each of our samples would have on our results. A summary of the LF deteminations is provided in Table 6.

B.1. Method (LSS correction)

One of the most significant uncertainties in the determination of the Lyman forest function is the effect of large-scale structure (cosmic variance). Large-scale structure can result in significant variations in the effective normalization of the LF as a function of position or line of sight. In this paper, we cope with these variations by fitting for the shape of the LF (i.e., M) in each of our elds using the STY 79 maximum likelihood procedure. Since the normalization of the LF does not factor into the M of our deteminations and should be robust to the presence of large-scale structure.

An alternative approach is to establish the relative normalization of the LF in each of our elds and then correct for eld-to-eld variations directly. The relative normalization is established through a two stage process, where we first establish the relative normalization of the UDF to our intermediate depth elds (UDF-Ps, UDF05) and second establish the relative normalization of the intermediate depth elds to the GOODS elds. In each stage, we establish the relative normalization by degrading our deeper elds down to the depth of our shallower elds, reapplying our selection procedure, and then comparing the surface densities to those found in the shallower eld. To maximize the signi cance of these measurements, we repeated these degradation experiments 10 times.
Table B1
Surface Densities of B, V, and i-dropouts by field, to a fixed magnitude limit.

<table>
<thead>
<tr>
<th>Field</th>
<th>B-dropouts</th>
<th>V-dropouts</th>
<th>i-dropouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDFN GOODS</td>
<td>8.05 0.22</td>
<td>2.23 0.12</td>
<td>0.49 0.06</td>
</tr>
<tr>
<td>CDGS GOODS</td>
<td>8.67 0.23</td>
<td>2.06 0.11</td>
<td>0.67 0.06</td>
</tr>
<tr>
<td>HUDFP1</td>
<td>7.97 1.09</td>
<td>1.56 0.46</td>
<td>0.56 0.25</td>
</tr>
<tr>
<td>HUDFP2</td>
<td>6.66 1.11</td>
<td>3.00 0.80</td>
<td>0.15 0.15</td>
</tr>
<tr>
<td>HUDF05-1</td>
<td></td>
<td></td>
<td>2.92 0.53</td>
</tr>
<tr>
<td>HUDF05-2</td>
<td></td>
<td></td>
<td>2.55 0.52</td>
</tr>
<tr>
<td>HUDF</td>
<td>8.09 0.79</td>
<td>1.45 0.32</td>
<td>0.83 0.26</td>
</tr>
</tbody>
</table>

*As observed in these fields after degrading the imaging data to the depth of the GOODS elds and reselecting dropouts in the same way as performed on the GOODS data.

Table B2
Comparison of the number of B, V, and i-dropouts in our intermediate depth fields with the HUDF degraded to the same depths.

<table>
<thead>
<tr>
<th>Field</th>
<th>B-dropouts</th>
<th>V-dropouts</th>
<th>i-dropouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUDFP1</td>
<td>127</td>
<td>46</td>
<td>34</td>
</tr>
<tr>
<td>HUDFP2</td>
<td>78</td>
<td>35</td>
<td>19</td>
</tr>
<tr>
<td>HUDF05-1</td>
<td>130</td>
<td>96</td>
<td>53</td>
</tr>
<tr>
<td>HUDF05-2</td>
<td>113</td>
<td>74</td>
<td>28</td>
</tr>
</tbody>
</table>

*Only B-dropouts, V-dropouts, and i-dropouts to a depth $b_{75} < 28$, $z_{850} < 28$, and $z_{850} < 28$, respectively, are considered in these comparisons for the HUDF. For the HUDF05 elds, this comparison is made to a depth of $z_{850} < 28$ for our V and i-dropout selections.

Table B3
Surface density of dropouts in our deep ACS fields relative to that present in GOODS.

<table>
<thead>
<tr>
<th>Field</th>
<th>B-dropouts</th>
<th>V-dropouts</th>
<th>i-dropouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>HUDF</td>
<td>0.08 0.18</td>
<td>0.38 0.18</td>
<td>0.93 0.23</td>
</tr>
<tr>
<td>HUDF05</td>
<td>1.11 0.17</td>
<td>0.76 0.19</td>
<td></td>
</tr>
<tr>
<td>HUDF</td>
<td>0.96 0.10</td>
<td>0.77 0.11</td>
<td>1.06 0.25</td>
</tr>
</tbody>
</table>

*Computed from Table B1 and B2 using the procedures outlined in x3.6 of B06. Factors greater than 1.0 indicate that the dropouts in those elds are over-density relative to the cosmic average de ned by the GOODS elds and factors less than 1.0 indicate an underdensity.
in each of our fields, computing ΣE and then calculating the corresponding likelihood. To account for the uncertainties in the LF that result from the uncertain normalizations of our various fields (Table B1), we ran a series of simulations to compute the effect on the Schechter parameters M_0, α, (see, e.g., Appendix E from B06). In these simulations, we varied the normalizations of our different fields according to the approximate errors given in Table B3 and calculated the resulting covariance matrix. We then smoothed our likelihood contours according to this covariance matrix and also included an additional 14% uncertainty in the value of due to E_h-to-E_l variations on the scale of the two GOODS fields (Somerville et al. 2004; see also x3.1). The latter two effects make up a significant fraction of our overall error budget in deriving the LFs. The best- t Schechter parameters are provided in Table 6 and are in excellent agreement with our SEDfit STY 79 determinations. Previously we used this approach in our determination of the LF at $z = 6$ (x5.1 of B06), where it was called the \textit{D}irect Method.

B.2. 2 Method (no LSS correction)

In our STY 79 determinations (x3.1) and the above determination (Appendix B.1), we considered two different methods for computing the LF at $z = 4$ and $z = 5$ in the presence of large-scale structure. In the first approach (x3.1), we attempted to treat large-scale structure by using the STY 79 fitting procedure, and in the second (Appendix B.1), we accommodated this by renormalizing the surface density of dropouts found in the HUDF, HUDF05, and HUDF-P fields to match the GOODS fields. Though both approaches should provide us with an effective mean dealing with large-scale structure, it is also interesting to determine the LF at $z = 4$ and 5, ignoring these considerations altogether (and thus implicitly assuming that each survey field is representative of the cosmic average). This will allow us to better assess the impact that large-scale structure could have on the current LF determination. Using the same methodology as we described in Appendix B.1, we repeat our determination of the LFs without making any large-scale structure corrections to the observed surface densities. The results are presented in Table 6 and are quite consistent with our SEDfit STY 79 determinations. This suggests that large-scale structure variations only have a modest effect on the Schechter parameters we derive.

B.3. STY 79 M method (at 1350 A)

Thus far, we have presented two alternate determinations of the rest-frame UV LFs at $z = 4$ and $z = 5$. Each determination of the LF at $z = 4$ and 5 in the presence of large-scale structure. However, in both the $z = 4$ and $z = 5$ determinations, we have derived the LFs using the surface density of dropouts bins as a function of their magnitude at the same approximate rest-frame wavelength (1600 Å). For our $z = 4$ B-dropout sampl, dropouts were binned according to their i_{75} and m magnitudes, and for our $z = 5$ V-dropout sample, dropouts were binned according to their z_{850} band magnitudes. These two bands are sufficiently redward of Ly (1216 Å) that they are not contaminate by absorption from the Ly forest. This makes the determination of the UV LF relatively straightforward using approaches like the effective volume technique of Steidel et al. (1999).

Unfortunately, when moving to our highest redshift $z = 6$ i-dropout sample, it simply has not been possible to determine the LF in the same manner as at $z = 4$ and 5 due to the lack of deep near-infrared (U*-band) data to obtain coverage at 1600 Å. Consequently, in our determinations of the UV LF (here and in B06), we had to resort to use of the g in the z_{850} band (rest-frame 1350 Å) as a measure of the UV-continuum luminosity. The difficulty with this is that since the z_{850} band extends below 1216 Å, for galaxies at $z > 5$, the g in this band is significantly attenuated by the Ly forest, and so it was necessary for us to carefully model the redshift distribution of i-dropouts in our sample to remove this effect.

Though this latter procedure would be effective in treating the effects of the Ly forest, it is not obvious that it will not result in any significant systematicatic in our determination of the LF. After all, the results will clearly depend on what the rest-frame of the LFs is detemined as well as the model redshift distributions and assumed foreground absorption model (see Appendix A.3 and B.7). To verify that no large systematicatic is introduced, it is useful to repeat the determination of the rest-frame UV LF at $z = 4$ and $z = 5$ but instead compile the dropout surface density in terms of the magnitudes in the optical passband just redward of the dropout band (i.e., the V_{606} band for our B-dropout sample and the i_{75} band for our V-dropout sample) to parallel usage of the z_{850} band for our i-dropout sampl. In this way, we will obtain a determination of the rest-frame UV LF at $z = 4$ and $z = 5$ at 1350 Å to match our determination at $z = 6$. The best-fit parameters obtained using this approach are as follows:

- $M_0 = 1.2\pm0.3\,M_{\odot}$, $M_{1350} = 20.84\pm0.10$, and 1.1 ± 0.05 for our B-dropout sample and $M_{850} = 20.73\pm0.26$, and 1.1 ± 0.09 for our V-dropout sample.

- The values of M_0 at $z = 4$ and 5 are somewhat fainter than in our SEDfit STY 79 determination. However, to make a fair comparison, it is necessary to account for the k-correction from 1350 Å to 1600 Å. The typical galaxy at $z = 4$ has an approximate UV-continuum slope of 1.5 (e.g., Ouchi et al. 2004), but at $z = 5$, the UV-continuum slope is much bluer, i.e., 1.2 (Lehnert & Barger 2003; Stanway et al. 2005; B06; Yun et al. 2005). This results in a typical k-correction of 0.14 mag for $z = 4$ galaxies and 0.14 mag for $z = 5$ galaxies, resulting in an approximate value of M_0 at 1600 Å of 20.94 at $z = 4$ and 20.77 at $z = 5$. These values are in good agreement with our other determinations (Table 6), particularly when one considers the fact that the results of this approach are sensitive to the foreground absorption model, large-scale structure along the line of sight, and an accurate model of the redshift distribution for each of our dropout samples.
Throughout this paper, we have modeled the spectra of LBGs with 10^9-yr constant star formation system s with varying amounts of dust extinction. We have used these modeled spectra to estimate the selection volumes of star-forming galaxies in our B, V, and i-dropout selections. For our z = 4 B-dropout selections, the model selection volumes are taken to have mean UV continuum slopes of 1.5 at higher UV luminosities while at lower UV luminosities (see Appendix A.3), the model selection volumes are taken to have much bluer mean UV slopes in accordance with the observations (Meurer et al. 1999; R.J. Bouwens et al. 2007, in preparation). At z = 5 and z = 6, the model selection volumes are assumed to have UV continuum slopes of 2 to match that present in the observations (Lehnert & Bormer 2003; Stanford et al. 2005).

However, it is legitimate to ask how much our estimated selection volumes may depend upon the form of the SED templates. For example, we have just as easily had modeled high-redshift galaxies using different star formation histories, dust content, or metallicities, even electing to model these systems as power laws f / . Fortunately, these choices can largely be constrained by the observed colors of our sample galaxies, and in fact in our simulations of the HUDF B, V, and i-dropout data (x3) we find excellent agreement between our model results and the observed colors. Even so, different SED templates only have a modest effect (> 20%) on the selection volumes of our dropout sample (e.g., see Tables 9-10 of Beckwith et al. 2006), particularly if we ignore concerns about the limited S/N of the data and photometric scatter. With an 1 mag selection limit, however, the limited S/N of the data becomes a real concern, and the selection volume can often be quite different. This makes it necessary to run detailed Monte-Carlo simulations like those described in Appendix A.3 (Figures A2) to properly estimate the selection volumes.

To test the sensitivity of our LF determinations to the precise assumption about the UV continuum slopes of high-redshift galaxies, we repeated our determination of the LF at z = 4, 5, and 6 assuming a mean UV continuum slope of 1.4 and 2.4, with both scatter of 0.6. As in our ducial STY 79 determinations, we use 10^9-yr constant star formation models (Bruzual & Charlot 2003) with the extinction (Calzetti et al. 1994) varied to match these UV continuum slopes. In general, we found that Schechter parameters (Table 6) consistent with our ducial determinations. One important exception was in our determination of the z = 4 LF assuming the redder = 1.4 UV continuum slopes. In that case, we found a significantly steeper faint-end slope (i.e., z = 2.1) than what we obtained in our ducial determinations. A quick investigation indicated that this resulted from the fact that red galaxies have a significant contribution to the LF at z = 4, 5, and 6, a result that is consistent with the results of Shapley et al. (2003). At z = 5, the incidence of Ly emission increases sharply in strength and over-all prevalence, though the numbers remain small and somewhat controversial. Some groups, using a narrow band selection, claim that 80% of star-forming galaxies at the high-redshift end of our range (z = 5) have Ly equivalent widths of 100A (Shapley et al. 2002), while spectroscopic follow-up of our dropout selections indicate that the fraction is closer to 32%, with typically equivalent widths of 30A to 50A (Dow-Hygelund et al. 2007; Stanford et al. 2004; Vanzella et al. 2006). These results suggest a modest to substantial increase in the fraction of Ly emitters from z = 3 to z = 6.

It is interesting to model the m e e t such an emitters would have on our computed selection volumes and therefore over all selection de terminations of the LF at z = 4 and z = 5. We do this using the same procedure as we used in x3, but assume that 33% of the star-forming galaxies at z = 4, 5 have Ly equivalent widths of 50A. This fraction decreases slightly the results of the Dow-Hygelund et al. (2007) study above and was chosen partially as a compromise with the Shapley et al. (2006) work. The Schechter parameter values for this procedure are presented in Table 6 for our B, V, and i-dropout samples. At z = 4, these LFs have slightly lower r's than similar LF determinations assuming no such emission. At z = 5 and z = 6, however, the derived r's are higher. This owes to the fact that Ly lies outside of the dropout band at the lower redshift end of our B-dropout selections, but inside this band at the lower redshift end of our V and i-dropout selections. Note that we did not include such emission in the SEDs for our ducial STY 79 determinations since (1) Ly can also be seen in absorption, not just emission (which would counteract this effect somewhat) and (2) the overall distribution of Ly equivalent widths in star-forming galaxies at z = 4, 5 still has not been well established.

B.6. STY 79 Method (With Alternate Selection Criteria)

The present dropout selections rely upon the presence of a two-colour selection to isolate a sample of high-redshift star-forming galaxies at z = 4 and z = 5 and a one-colour criterion at z = 6. These colour criteria were chosen to maximize our sample of the high-redshift galaxies, while minimizing contamination by low-redshift galaxies. However, we could have just as easily chosen a different set of colour criteria for our B, V, and i-dropout selections and computed our LFs on the basis of those criteria. To test the robustness of the present LFs, we elected to modify the present selection criteria slightly and repeat our determination of the z = 4, 5, and z = 6 LFs using the methodology laid
out in x_2 and x_3. The criteria we chose were $(B_{435} V_{606}) > 12) \land (B_{435} V_{606} > 14 (V_{606} z_{850}) + 12) \land (V_{606} z_{850}) < 12)$ for our alternate B-dropout selection, $(V_{606} H_{775} > 0.9 (z_{850})) \land (V_{606} H_{775} > 12) \land (z_{850}) < 12)$ for our alternate V-dropout selection, and $(H_{775} z_{850} < 14) \land (H_{775} z_{850} < 14) \land (S-N (V_{606} H_{775}) < 2))$ for our alternate i-dropout selection. The B-dropout criterion above is the same as used in the Cavaillac et al. (2004b) work and resulted in a sample about half the size of the present one, with a narrower selection window in redshift and similar mean redshift. The V-dropout criterion is similar to that used in our primary selection, except that the $(V_{606} H_{775})$ colour cut was lowered to make our selection more complete at the higher redshift end of the V-dropout selection window. The best- t Schechter param eters for these selections are presented in Table 6 and are in reasonable agreement with our fiducial STY 79 detem inations.

B.7. STY 79 Method (Madau Opacities)

In this work, we use the Monte-Carlo procedure of Bershadly et al. (1999) to model the e cts that HI I line and continuum absorption have on the colours of high-redshift galaxies (Appendix A). We adopted this approach rather than the more conventional approach of using the Madau (1995) opacities to better account for the stochastic e cts that line of sight variations have on the colours of high-redshift galaxies and to take advantage of advances in our knowledge of HI column densities at $z \approx 5$ (e.g., from Songaila 2004). This should make the present detem inations of the LF slightly more accurate overall than we would have obtained had we not made these e Emeralds. This being said, it is useful nevertheless to compare our LF detem inations with what we would have obtained using the wavelength and redshift dependent opacities compiled by Madau (1995). This will allow us to ascertain what the e cts of these changes are on the present detem inations. Repeating our detem ination of the selection e cts of B, V, i and d-dropouts with the Madau (1995) opacities (Appendix A), we nd that our V and i-dropout selection windows are shifted to slightly higher redshifts in general, by $z = 0.05$, but overall very similar. The LFS we derive using these assumptions are presented in Table 6 and are quite similar to our fiducial STY 79 detem inations, except at $z = 5$ $6 M$ is 0.05 mag brighter and at $z = 6$ the value of is 10% higher.

**B.8. STY 79 Method (With An Evolving M *) **

In our fiducial STY 79 detem inations of the LF for each dropout sample, we assume that the LF does not evolve in redshift across the selection window of each sample. Since we observe significant evolution in the LF over the redshift range probed by our LFs ($z = 6$ to $z = 4$), this assumption clearly cannot be correct in detail. To investigate whether our detem ination may have been affected by this assumption, we repeated our detem ination of the LF for each of our samples, but assumed that M evolved by 0.35 mag per unit redshift. This evolution in M is a good match to the evolution we observe in the UV LF from $z = 6$ to $z = 4$. The values of M, i, and z are presented in Table 6. Encouraging enough, the values we obtain including evolution are very similar to those recovered without evolution. This suggests that the overall Schechter param eters we have derived here are quite robust. Nonetheless, there do appear to be some systematic changes in the best- t Schechter param eters if evolution is included. A counting for evolution, the M's recovered are 0.06 mag fainter, the i's recovered are 10% higher, and the faint-end slopes are marginally shallower (by 0.02). Since the inclusion of evolution in the detem ination of the LF is presumably a better assumption than not including this evolution, the LF param eters we adopt in this paper (Table 7) will be from this section.

C. Effect of Large-Scale Structure Variations Along the Line of Sight on Our Results

The standard SWML and STY 79 maximum likelihood approaches allow us to detem ine the shape of the LF in a way that is insensitive to the presence of large-scale structure. Unfortunately, since we do not have exact redshift information for the galaxies in our samples, we cannot detem ine the absolute magnitudes for individual galaxies in our sample and therefore we must modify the SWML and STY 79 maximum likelihood approaches slightly so that the likelihoods are expressed in term s of the apparent magnitude for individual sources (instead of the absolute magnitude). Since the apparent magnitudes are related to the absolute magnitudes via the redshift and the distribution of redshifts is uncertain due to the presence of large-scale structure along the line of sight, our LF results will show some sensitivity to this structure.

To detem ine the effect of this structure on the derived values of M, i, and z, we ran a number of Monte-Carlo simulations where we introduced large-scale structure variations upon a canonical mock catalog of dropouts for each dropout sample which we generated using the Schechter param eters given in Table 7. Our use of one standard mock catalog for each sample was necessary to ensure that variations in the best- t param eters only resulted from large-scale structure variations and not Poissonian-type variations (which would arise if we regenerat ed these catalogs for each trial in our Monte-Carlo simulations). We then proceeded to introduce large-scale structure variations into this catalog. Within redshift slices of size $z = 0.05$, we calculated the expected density variations expected for each of our dropout samples assuming the values of the bias given in $x_{3.1}$, made random realizations of these density variations, applied these variations to our mock catalogs, and then recomputed the Schechter param eters using our implementation of the STY 79 method. Repeating this process several hundred times for each dropout sample, we computed the RMS variations in M and i expected to result from large-scale structure along the line of sight. For our $z = 4 B$-dropout sample, we found 1 RMS variations of 0.07 mag, 13% and 0.01 in M and i, respectively. For our $z = 5 V$-dropout sample, we found 1 RMS variations of 0.05 mag, 12% and 0.01, respectively,
and for our z_{59} dropout sample, we found 1σ RMS variations of 0.05 mag, 16%, and 0.04, respectively. Since the nominal errors from the STY79 method on M and t are typically at least two to three times as large as this, this structure only increases the uncertainties on M and t by a minimal 10%.