One-loop corrections to a scalar field during inflation

David Seery
Astronomy Unit, School of Mathematical Sciences
Queen Mary, University of London
Mile End Road, London E1 4NS
United Kingdom
E-mail: D.Seery@qmul.ac.uk

Submitted to: JCAP

PACS numbers: 98.80.-k, 98.80.Cq, 11.10.Hi

Abstract. The leading quantum correction to the power spectrum of a gravitationally-coupled light scalar field is calculated, assuming that it is generated during a phase of single-field, slow-roll inflation.

Keywords: Inflation, Cosmological perturbation theory, Physics of the early universe, Quantum field theory in curved spacetime.
1. Introduction

Over the last decade, our theories of the early universe have been promoted from speculation to a field of intense scientific study. The most important developments in our knowledge concern the nature of the primordial curvature perturbation ζ, which is believed to have seeded temperature variations in the cosmic microwave background (CMB). It is now understood that ζ must have had a spectrum which was close to scale invariance on the scales probed by the CMB \[2, 3, 4\].

Many proposals have been made to explain how a primordial perturbation with an almost scale-invariant spectrum could have been generated in the early universe. The most widely-studied candidate is an era of inflation that may have taken place at high energy \[5, 6, 7, 8, 9, 10, 11\], where “inflation” is defined to be any epoch in which the scale factor a undergoes acceleration, $\ddot{a} > 0$. Under this condition, local regions of the universe are exponentially driven to spatial flatness, homogeneity and isotropy \[12\], and each light bosonic field acquires a perturbation generated by amplification of quantum-mechanical vacuum fluctuations \[13, 14, 15, 16\]. The spectrum of this perturbation is close to scale-invariance when the universe inflates at a rate \dot{a}/a which is almost constant. The curvature perturbation observed in the CMB is supposed to be a model-dependent mix of these fluctuations, yielding anisotropies in the temperature of the microwave sky which are compatible with observation. Inflation apparently provides a natural framework in which one can simultaneously understand both the large-scale regularity of the universe and its small-scale irregularity.

Inflation is not a single model, but rather a whole collection of scenarios which fit into the above framework. The only necessary ingredients are: (i) a specification of the field content, which allows a division into ‘light’ and ‘heavy’ fields; (ii) a background evolution $a(t)$ which gives rise to $\ddot{a} > 0$ with the Hubble parameter $H \equiv \dot{a}/a$ slowly varying; and (iii) a rule for generating ζ from the light bosonic fields.

This prescription is rather general and implies that many models (perhaps with wildly different and mutually incompatible microphysics) may simultaneously be compatible with the observational data, since they may make equivalent predictions for the spectrum of ζ. Therefore, we must expect that it will be difficult to learn about the microscopic physics which was operative during the very early universe: it will almost certainly be insufficient simply to study the spectrum of ζ. In order to distinguish between wildly different models of the early universe it is necessary to find another source of information.

Fortunately, any detailed model of the inflationary era does not merely predict the spectrum of ζ; it also implies a subtle but calculable network of correlations between

† There are two primordial perturbations commonly encountered in the literature. The first of these is the comoving curvature perturbation, written \mathcal{R}, which is proportional to the laplacian of the Ricci curvature of comoving spatial slices. On the other hand, the uniform density curvature perturbation ζ is proportional to the laplacian of the Ricci curvature on spatial slices of uniform density. On superhorizon scales, \mathcal{R} and ζ are equivalent up to a convention for signs \[4\].
the higher-order moments. These moments collectively measure the so-called non-gaussianity of \(\zeta \) and arise from interactions among the quanta of the \(\zeta \)-field and the other constituents of the early universe. Non-gaussian effects from interactions of \(\zeta \) quanta have been extensively investigated over the last few years, with the hope that observations of such effects may be able to discriminate between different models for physics in the early universe \cite{17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45}. However, more is possible. Interactions do not only imply non-gaussian statistics in the three- and higher \(n \)-point correlation functions: they also imply quantum corrections to all correlation functions, and in particular the power spectrum or two-point function. It is possible that such corrections may be large in their own right, demanding that they be taken into account in accurate analyses of the observational data, as recently suggested by Sloth \cite{46, 47}. Regardless of their exact magnitude, by searching for signatures of such quantum corrections in the power spectrum and correlating the results with predictions for non-gaussian statistics in the higher \(n \)-point functions we obtain a more sensitive test of physics during inflation.

A second powerful motivation for studying loop corrections is a simple point of principle. The tree-level formula for the spectrum of \(\zeta \) is widely used to make predictions for the amplitude and scale-dependence of fluctuations generated in a very large class of early universe scenarios. Before deciding what degree of credence we should attach to any of these predictions, it is necessary to thoroughly investigate whether the tree-level amplitude is a genuine approximation to the full quantum result.

In this paper, the prospects for detecting quantum corrections to the power spectrum are assessed in the simplest model of inflationary physics, that of inflation with a single scalar \(\phi \) and arbitrary potential \(V(\phi) \). In view of the importance of accurate comparison with the precision measurements which are becoming available, this issue has already attracted considerable attention. Early work by Mukhanov, Abramo & Brandenberger \cite{48, 49} and Abramo & Woodard \cite{50} demonstrated that significant effects were possible (see also Unruh \cite{51}). Later estimates of loop effects were made in a large number of models \cite{52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72}, even at two-loop order \cite{73}. Recently, Sloth \cite{46, 47} determined the full fourth-order action for Einstein gravity coupled to a scalar field and used this to estimate the one-loop correction to the power spectrum of scalar field fluctuations. Although one would naively expect the loop correction to be suppressed by a factor of \((H/M_P)^2 \sim 10^{-10} \), where \(H \) is the Hubble parameter during inflation, Sloth’s calculation yielded a significant cumulative effect (as large as 70% in some models) which could affect the precision determination of cosmological parameters from CMB experiments. The unexpectedly large size of the loop correction in this estimate is due to an amplification by \(N \), the total number of e-folds of inflation which occur. Since \(N \) can be very large in models where inflation begins at around the Planck scale, it may dramatically modify the predictions of naïve dimensional analysis.

This paper attempts to address these issues using a formalism similar to that applied by Sloth \cite{46, 47}. However, in contrast to previous analyses, the estimate is divided into
two parts. First, the one-loop correction to the power spectrum of field fluctuations is computed soon after horizon exit, using the slow-roll approximation to control the calculation. This correction is not observable by itself; in a second step, it must be combined with other correlators of the fields to yield the one-loop correction to the power spectrum of the observable perturbation ζ long after horizon exit. The correct combination can be computed using the δN formula \cite{74,75,19,76,23}. This two-step process has several advantages. We shall see that the loop correction is generally afflicted by divergences at late times and on large scales. The δN formalism naturally resums these late-time divergences into time evolution, which allows the slow-roll approximation to be kept under control. On the other hand, the divergences on large scales can be controlled by performing the calculation within a finite box. In analogy with the late-time divergences, it has recently been shown by Byrnes et al. \cite{45} that these divergences can be resummed into spatial variation on large scales.

The present paper is concerned with the technical issue of computing loop corrections to the power spectrum of field fluctuations. This calculation involves the application of standard methods from quantum field theory, adapted to the case of an expanding spacetime. On the other hand, the assembly of field correlators into ζ correlators is an essentially classical calculation using the δN formula. For clarity, this calculation will be presented separately elsewhere \cite{77}.

In \S2 the background evolution and perturbation theory of the single scalar field are briefly described. The perturbations are characterized (as in more complex cases) by cubic and higher self-interactions which involve the time derivative of the perturbation. This has important consequences for the calculation of quantum corrections. These corrections are introduced in \S3. In \S3.1 a path-integral expression for a general one-loop, single-vertex correction to the power spectrum is given in the Schwinger formalism, and in \S3.2 the question of deriving a correct path integral expression for theories with time-derivative interactions is considered. In such cases the correct path-integral formula is well-known to contain a ghost field, whose quanta do not appear in physical states but circulate in the loops which give rise to quantum corrections. The Feynman rules for this theory are written down in \S3.3. In \S4 the assembled formalism is used to compute the leading radiative correction to the one-point function of the field. This is of interest in its own right, but also provides a simple setting in which some subtle features of the calculational machinery can be resolved. The one-loop correction to the two-point function is computed in \S5, and a brief discussion is given in \S6.

\S2 is introductory and merely serves to fix notation. The reader who is mostly interested in the computation of the two-point function $\langle \delta\phi(k_1)\delta\phi(k_2) \rangle$ may wish to skip directly to \S5 and dispense with \S3.3. These sections are largely dominated by the question of setting up a correct formalism in which the one-loop correction may be computed.

Units are chosen throughout such that $\hbar = c = M_P = 1$, where $M_P^{-2} = 8\pi G$ is the reduced Planck mass. The metric convention is ($-,+,+,+)$, and the unperturbed
background is written in cosmic time t as
\[ds^2 = -dt^2 + a^2(t) dx^2. \] (1)

It is frequently more convenient to employ a conformal time variable, defined by
\[\eta = \int_0^t dt'/a(t'). \]

Indices labelling spacetime coordinates are chosen from the beginning of the Latin alphabet (a, b, \ldots); indices labelling purely spatial coordinates are chosen from the middle of the alphabet (i, j, \ldots). Where multi-field models are under discussion, the different species of light bosonic fields are labelled with Greek indices (α, β, \ldots).

2. Inflation from a single scalar field

2.1. The background evolution

The simplest microphysical model capable of supporting an inflationary epoch consists of Einstein gravity coupled to a single scalar field ϕ with potential $V(\phi)$, which can be taken to be arbitrary except that it must allow inflation for some values of ϕ. The field ϕ is known as the inflaton. The combined action for this system is
\[S = -\frac{1}{2} \int d^4x \sqrt{-g} \left(R - \nabla^a \phi \nabla_a \phi - 2V(\phi) \right), \] (2)

where $g \equiv \text{det} g_{ab}$ is the metric determinant, $d^4x \equiv dt d^3x$ is the product of the spacetime coordinate differentials, and R is the spacetime Ricci curvature. The background field ϕ is taken to be spatially homogeneous and the background metric is parametrized by the scale factor a, given in (1). The evolution of a is determined by the Friedmann equation
\[3H^2 = \frac{1}{2} \dot{\phi}^2 + V(\phi), \] (3)

where $H \equiv \dot{a}/a$ is the Hubble parameter, and $\dot{\phi}$ obeys the homogeneous Klein–Gordon equation
\[\ddot{\phi} + 3H \dot{\phi} + V'(\phi) = 0, \] (4)

in which a prime $'$ denotes a derivative with respect to ϕ. The condition that inflation occurs is $\dddot{a} > 0$, or $\epsilon < 1$, where the parameter ϵ is defined by
\[\epsilon \equiv -\frac{\dot{H}}{H^2}. \] (5)

Using Eqs. (3)–(4) one can show that an equivalent definition is $\epsilon \equiv \dot{\phi}^2/2H^2$.

When ϵ obeys the stronger condition $\epsilon \ll 1$, the rate of change of ϕ is negligible in comparison with the expansion rate H. In this case one says that the field is slowly rolling. Although slow-roll is not mandatory for inflation to occur, the near scale-invariance of the power spectrum imprinted on the scales which are observed in microwave background experiments suggests that slow-roll was approximately satisfied if the CMB perturbation has an inflationary origin. When $\epsilon \ll 1$ applies, perturbation theory in ϵ and related small quantities is known as the slow-roll approximation. In this paper, we compute all effects to leading order in ϵ.
2.2. Scalar perturbations

Now consider small spatially-dependent perturbations in the inflaton, $\phi = \phi_0 + \delta \phi(t, \mathbf{x})$, where ϕ_0 is the homogeneous background evolution and $\delta \phi$ obeys the smallness condition $|\delta \phi| \ll |\phi_0|$. Since ϕ dominates the energy density of the universe by assumption, any perturbation in ϕ will lead to a perturbation in the metric. These perturbations can be parametrized by a scalar N (the lapse), a spatial vector N^i (the shift), and a spatial metric h_{ij},

$$
 ds^2 = -N^2 dt^2 + h_{ij} (dx^i + N^i dt)(dx^j + N^j dt).
$$

Because of general coordinate invariance, not all choices of $\{N, N^i, h_{ij}\}$ lead to different configurations of the gravitational field. This redundancy is removed by fixing a gauge. We will choose to work in the spatially flat gauge, where h_{ij} is given by its background value $h_{ij} = a^2(t) \delta_{ij}$. Having done so, the metric functions N and N^i are completely determined in terms of $\delta \phi$ by the constraints implicit in the Einstein equations.

These can be obtained by inserting Eq. (6) in the action (2). One obtains

$$
S = -\frac{1}{2} \int dt \, d^3 x \, \sqrt{h} \left\{ N (\nabla^i \delta \phi \nabla_i \phi + 2V) - \frac{1}{N} (E_{ij} E_{ij} - E^2 + \pi^2) \right\},
$$

where $E_{ij} = \frac{1}{2} h_{ij} - \nabla_i N_j$ is the “momentum” associated with h_{ij}, ∇_i is the spatial covariant derivative compatible with h_{ij}, and $\pi = \dot{\phi} - N^j \nabla_j \phi$ is the field momentum. The equations of motion for the lapse and shift follow by varying S with respect to N and N^i respectively, and do not involve time derivatives. Therefore they are not evolution equations but constraints and can be solved algebraically: N and N^i are not propagating fields. Once N and N^i are known they may be substituted in (7) to obtain a reduced action which depends only on $\delta \phi$.

The N constraint is

$$
\nabla^i \delta \phi \nabla_i \phi + 2V + \frac{1}{N^2} (E_{ij} E_{ij} - E^2 + \pi^2) = 0
$$

and the N^i constraint is

$$
\nabla_i \left\{ \frac{1}{N} (E^i_j - E \delta^i_j) \right\} = \frac{\pi}{N} \nabla_j \phi.
$$

One solves Eqs. (8)–(9) order by order in $\delta \phi$. We write

$$
 N = 1 + \sum_{m=1}^{\infty} \alpha_m, \quad \text{and} \quad N_i = \nabla_i \left(\sum_{m=1}^{\infty} \vartheta_m \right) + \sum_{m=1}^{\infty} \beta_m
$$

where α_m, ϑ_m and β_m are all mth order in $\delta \phi$ and the β_m are chosen to be divergenceless, so that $\partial_i \beta_m$ for all m. The expressions necessary to compute S to third order in $\delta \phi$.

† We are adopting a convention, used throughout this paper, in which repeated spatial indices in complementary raised and lowered positions are contracted with the spatial metric h_{ij}, whereas a pair of repeated indices which both appear in the lowered position are contracted with the Euclidean metric δ_{ij}. Thus, $a^i b_i = \sum_{i,j} h^{ij} a_i b_j$, whereas $a_i b_i = \sum_i a_i b_i$. Spacetime indices obey the usual Einstein convention, and always appear in complementary raised and lowered pairs which are contracted with the spacetime metric g_{ab}.
were given by Maldacena in the comoving slicing [18] and rewritten in the flat slicing for multiple fields in Ref. [21]. The expressions necessary to compute S to fourth order were obtained in the flat slicing by Sloth [46, 47] in an approximation where all vector modes were absent, and given in generality in Ref. [78].

We work to leading order in the slow-roll approximation. At first order in $\delta\phi$ the leading terms are $o(\epsilon^{1/2})$,

$$\alpha_1 = \frac{1}{2H}\dot{\phi}\delta\phi, \quad \partial^2 \vartheta_1 = -\frac{a^2}{2H}\dot{\phi}\delta\phi \quad \text{and} \quad \beta_{1i} = 0. \quad (11)$$

At second order in $\delta\phi$ the leading terms are $o(\epsilon^0)$

$$\alpha_2 = \frac{1}{2H}\partial^{-2}\Sigma, \quad \frac{4H}{a^2}\partial^2 \vartheta_2 = -\frac{1}{a^2}\partial_i\delta\phi\partial_i\delta\phi - \delta\phi\delta\dot{\phi} - 12H^2\alpha_2, \quad (12)$$

$$\frac{1}{2a^2}\partial^4 \beta_{2i} = \delta^{rs}(\partial_i\Sigma_{rs} - \partial_r\Sigma_{is}), \quad (13)$$

where bracketed indices (\cdots) are symmetrized with total weight unity and Σ_{rs} is defined by

$$\Sigma_{rs} \equiv \partial_i\delta\phi\partial_i\delta\phi + \delta\phi\partial_i\partial_s\delta\phi, \quad (14)$$

with $\Sigma = \text{tr} \Sigma_{rs}$ its trace in the Euclidean metric. Eqs. (11)–(13) can be inserted into the action, Eq. (7), after which one obtains an expansion of S in powers of $\delta\phi$. The first non-trivial term is quadratic. At $o(\epsilon^0)$ it is equal to

$$S_2 = \frac{1}{2} \int dt d^3x \ a^3 \left\{ \delta\dot{\phi}^2 - \frac{1}{a^2}(\partial\delta\phi)^2 \right\}. \quad (15)$$

There is a cubic interaction whose leading term enters at $o(\epsilon^{1/2})$ [21], which can be written

$$S_3 = \int dt d^3x \ a^3 \ \frac{\dot{\phi}}{4H} \left\{ 2\delta\phi\partial_j\partial^{-2}\delta\phi\partial_j\delta\phi - \delta\phi\left[\delta\dot{\phi}^2 + \frac{1}{a^2}(\partial\delta\phi)^2 \right] \right\}. \quad (16)$$

The quartic term has leading terms of order $o(\epsilon^0)$ [78]. These terms correspond to

$$S_4 = \int dt d^3x \ \left\{ -\frac{1}{4a^2}\beta_{2j}\partial^2\beta_{2j} - \frac{a^2}{4H}\partial^{-2}\Sigma \left[\delta\dot{\phi}^2 + \frac{1}{a^2}(\partial\delta\phi)^2 \right] - \frac{3}{4}a^3(\partial^{-2}\Sigma)^2 - a\delta\phi\beta_{2j}\partial_j\delta\phi \right\}. \quad (17)$$

The free field action S_2 and the interactions $\{S_3, S_4\}$ as written here are all accompanied by terms of higher-order in slow-roll parameters, which we neglect. One must be careful to ensure that this approximation is accurate, and we will return to this at various points in the analysis (see also Ref. [77]).

2.3. Expectation values

The observables in this theory are expectation values of products of n factors of the perturbation $\delta\phi$, taken at a common time t_* but at distinct spatial coordinates $\{x_1, \ldots, x_n\}$. It is often more convenient to work with momentum space expectation values which are obtained by taking Fourier transforms with respect to the x_i, giving k-space correlators which are functions of $\{k_1, \ldots, k_n\}$.
At tree level the one-point expectation value vanishes, \(\langle \delta \phi(k) \rangle = 0 \), since \(\delta \phi \) is by definition a perturbation in the comoving region under consideration. However, the gravitational background is time dependent since the scale factor \(a(t) \) varies with \(t \), and therefore the vacuum state of the theory is changing continuously. This effect leads to gravitational production of inflaton particles \([79]\). Therefore we must expect a non-zero one-point function to be generated radiatively, reflecting the emergence of \(\phi \) quanta from the vacuum. This issue is discussed in more detail in \([4]\) below.

The two-point expectation value defines the power spectrum \(P(k) \),

\[
\langle \delta \phi(k_1) \delta \phi(k_2) \rangle_* = (2\pi)^3 \delta(k_1 + k_2) P_*(k_1).
\]

(18)

The subscript ‘\(\ast \)’ denotes evaluation at the time when the \(k \)-mode under consideration left the horizon, which is unambiguous by virtue of momentum conservation which requires \(k_1 = k_2 \). At tree-level, \(P_*(k) = H^2_*/2k^3 \). It is often useful to work instead with the so-called dimensionless power spectrum, which is related to \(P(k) \) by the rule \(P(k) = k^3 P(k)/2\pi^2 \).

The three-point expectation value defines the bispectrum, \(B(k_1, k_2, k_3) \), and the four-point expectation value defines the trispectrum, \(T(k_1, k_2, k_3, k_4) \),

\[
\langle \delta \phi(k_1) \delta \phi(k_2) \delta \phi(k_3) \rangle = (2\pi)^3 \delta \left(\sum_i k_i \right) B(k_1, k_2, k_3),
\]

(19)

and

\[
\langle \delta \phi(k_1) \delta \phi(k_2) \delta \phi(k_3) \delta \phi(k_4) \rangle = (2\pi)^3 \delta \left(\sum_i k_i \right) T(k_1, k_2, k_3, k_4).
\]

(20)

Typically, \(B \) and \(T \) are proportional at tree-level to \(\mathcal{P}^2 \) and \(\mathcal{P}^3 \) respectively, multiplied by a momentum-dependent form-factor \([18, 19, 20, 22, 80, 81, 21, 78, 82]\).

3. Quantum corrections

3.1. Loop corrections from Schwinger integrals

Schwinger’s formalism. The appropriate formalism for computing expectation values in any quantum field theory was outlined by Schwinger \([83]\). Consider the vacuum expectation value of any observable \(O \), observed at some time \(t_* \), and computed in some theory with light scalar fields \(\{\phi^\alpha\} \). By inserting a complete set of states at any time \(t_i > t_* \), this expectation value can be written

\[
\langle \Omega|O|\Omega \rangle_* = \int [d\phi^\alpha] \langle \Omega|\phi^\alpha_* = \varphi^\alpha \rangle \langle \varphi^\alpha_* = \varphi^\alpha|O|\Omega \rangle_*,
\]

(21)

where \(|\Omega\rangle \) is the vacuum state at \(t \rightarrow -\infty \), the subscript ‘\(\ast \)’ indicates that the fields in the expectation value are evaluated at \(t_* \), and \(\phi^\alpha_* \) denotes \(\phi \) evaluated at \(t_* \). The integral \(\int [d\phi^\alpha] \) is taken over all three-dimensional field configurations at \(t_* \). Each factor in the product of transition amplitudes on the right-hand side of \((21)\) can be expressed using the conventional Feynman path integral formula \([84, 85, 86]\),

\[
\langle \phi^\alpha_* = \varphi|O|\Omega \rangle_* = \int [d\phi^\alpha]_{\Omega} O \exp iS, \text{ where } S \text{ is the action functional and the integral}
\]
is taken over all field configurations which begin in the state $|\Omega\rangle$ and end in the state $|\phi_0 = \varphi\rangle$. These boundary conditions on ϕ are schematically denoted by the limits Ω and φ attached to $[d\phi]$.

The interacting vacuum. In order to evaluate such integrals by the usual Feynman diagram expansion it is necessary to remove these boundary conditions, so that we integrate over all ϕ unrestrictedly. We follow the analysis of Weinberg [65]. To remove the restriction that the field must begin in the vacuum state one can integrate over all ϕ obeying an arbitrary boundary condition at $t \to -\infty$, after multiplying the integrand by the vacuum wavefunctional, $\Psi[\psi] = \langle \phi(-\infty) = \psi|\Omega\rangle$. This has the desired effect of restricting the integral to field configurations which begin in the correct vacuum. The exact expression for Ψ depends on what we assume about $|\Omega\rangle$, but because the theory is supposed to be free as $t \to -\infty$ it must be a gaussian in the fields [84, 65]. Therefore we assume

$$
\Psi[\psi] \propto \prod_{\alpha} \exp \left\{ -\frac{1}{2} \int \frac{d^3q d^3r}{(2\pi)^3} \delta(q+r)\Omega_{\alpha}(q)\psi^\alpha(q)\psi^\alpha(r) \right\} \equiv \prod_{\alpha} \exp \left\{ -\frac{1}{2}(\psi^\alpha, \Omega_{\alpha}\psi^\alpha) \right\}, \tag{22}
$$

for some set of weight functionals $\{\Omega_{\alpha}(q)\}$, where $(\psi, \Omega\psi)$ is a convenient abbreviation for the integral. The expectation value (21) can therefore be written [65]

$$
\langle \Omega|O|\Omega\rangle \propto \left(\prod_{\alpha} \int [d\varphi^\alpha] \right) \left\{ \left(\prod_{\beta} \int [d\phi^\beta]|^\varphi \right) \exp (iS[\phi_-]) \left(\prod_{\beta} \int [d\phi^\beta]|^\varphi \right) \exp \left[-\frac{1}{2}(\phi^\beta, \Omega_{\beta}\phi^\beta) \right] \right\}^\dagger
$$

$$
\left\{ \left(\prod_{\gamma} \int [d\phi^\gamma]|^\varphi \right) O \exp (iS[\phi_+]) \left(\prod_{\gamma} \int [d\phi^\gamma]|^\varphi \right) \exp \left[-\frac{1}{2}(\phi^\gamma, \Omega_{\gamma}\phi^\gamma) \right] \right\}, \tag{23}
$$

where † denotes Hermitian conjugation, and the fields in the two path integrals have been differentiated by the addition of subscripts $^+\!$ and $^-\!$. The overall constant of proportionality is irrelevant. Since (23) requires an integral over final field configurations, it is possible to drop the restriction on the fields ϕ_\pm at t_\pm provided we guarantee that the + and − fields for each species share a common value at this time. This can be accomplished by inserting a δ-function into the integrand which constrains the fields to agree [65]

$$
\prod_{\alpha} \delta \left\{ \phi^\alpha_+(t) - \phi^\alpha_-(t) \right\} \propto \lim_{\varepsilon \to 0} \exp \left\{ -\frac{1}{\varepsilon} \sum_{\alpha} \left[\phi^\alpha_+(t) - \phi^\alpha_-(t) \right]^2 \right\}, \tag{24}
$$

where ε is positive. Also, the action is real by assumption so the only effect of Hermitian conjugation in (23) is to flip the sign of the iS term.

Solution for propagators. Suppose that the action corresponds to a free field, so that it can be written $S = (2\pi)^{-3} \int d^3k_1 d^3k_2 dt_1 dt_2 \phi(t_1, k_1)\delta(t_2, k_2)/2$ for some differential kernel Δ. Eq. (23) can be written as an unrestricted path integral over the fields $\{\phi_+, \phi_-\}$ of the form

$$
\left(\prod_{\alpha} \int [d\phi^\alpha_+ d\phi^\alpha_-] \right) \exp \left\{ \frac{i}{2} \int \frac{d^3k_1 d^3k_2}{(2\pi)^3} dt_1 dt_2 \sum_{\alpha} \left[\phi^\alpha_+(t, k_1) \right] \right\}^{\top} K_{12}^{\alpha\beta} \left[\phi^\beta_-(t, k_2) \right], \tag{25}
$$
where we have assumed that there are no linear couplings among the various species, T denotes a transpose, and $K^α_2$ is the (2×2) kernel

$$K^α_2 \equiv \delta(k_1 + k_2) \left(\begin{array}{cc} \Delta α + \frac{2i}{\epsilon} \delta_1\delta_{2\epsilon} + i \delta_1\delta_{2\epsilon} \Omega_α & -\frac{2i}{\epsilon} \delta_1\delta_{2\epsilon} \\ -\frac{2i}{\epsilon} \delta_1\delta_{2\epsilon} & -\Delta α + \frac{2i}{\epsilon} \delta_1\delta_{2\epsilon} + i \delta_1\delta_{2\epsilon} \Omega_α \end{array} \right).$$

In Eq. (26), $δ_j^z$ is the $δ$-function $δ(t_j - t_2)$ and $δ_j^∞$ is the $δ$-function $δ(t_j + ∞)$. We will also occasionally use the notation $δ_{ij} ≡ δ(t_i - t_j)$. The field propagator matrix for any particular species, consisting of propagators $G_{++, G_+ \pm, G_+ \mp, G_-}$ which connect the \pm and $−$ fields, is found by inverting the quadratic term given in (25),

$$\int dt_2 d^3k_2 K_{12} \left(\begin{array}{cc} G_{++} & G_{+-} \\ G_{-+} & G_- \end{array} \right) = i(2\pi)^3 δ_{13} δ(k_1 - k_3) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right).$$

The subscript ‘23’ indicates that G_{++} is a function of times and momenta in the form $G_{++}(t_2, k_2; t_3, k_3)$, etc.; and similarly for the other G.

Eq. (27) splits into coupled equations for G_{++}, G_{--}, G_{+-} and G_{-+}. It will shortly become apparent that the doublets (G_{++}, G_{+-}) and (G_{--}, G_{-+}) are to be regarded as forming complex conjugate pairs, so half of these equations are related to the other half by complex conjugation. In the application of interest, $Δ$ is given to leading order in the slow-roll approximation by the laplacian of exact de Sitter space,

$$Δ_{12} = \frac{\partial^2}{∂t_1 ∂t_2} (a^3 \delta_{12}) + (k_1 · k_2) a \delta_{12}. \quad (28)$$

Write $G_{++}^{12} = (2π)^3 δ(k_1 + k_2) G_{++}^{12}$. The \tilde{G}_{++} equation reads

$$\frac{∂^2}{∂t_1^2} \tilde{G}_{++}^{12} + 3H(t_1) \frac{∂}{∂t_1} \tilde{G}_{++}^{12} + \frac{k_1^2}{a(t_1)^2} \tilde{G}_{++}^{12} - \frac{i}{a^3} δ_1\delta_{2\epsilon} \Omega(k_1) \tilde{G}_{++}^{∞2} = -\frac{i}{a^3} δ_{12}. \quad (29)$$

\tilde{G}_{--} obeys the homogeneous version of (22), whereas \tilde{G}_{-+} obeys the complex conjugate of (29) and $\tilde{G}_{- -}$ its homogeneous complex conjugate. In addition, Eq. (27) gives \tilde{G}_{-+} and \tilde{G}_{--} the boundary conditions

$$δ_{12} \tilde{G}_{++}^{22} = δ_{12} \tilde{G}_{-+}^{22} \quad \text{and} \quad δ_{12} \tilde{G}_{--}^{22} = δ_{12} \tilde{G}_{++}^{22}. \quad (30)$$

Homogeneous equation. Consider any solution, say \tilde{G}, to the homogeneous version of (29). Any such solution is a function of the single variable t_1, which after changing to conformal time $η$ can be written in the form $\tilde{G}(η) ≡ ζ_k(η)/a(η)$ for some function $ζ(η)$ to be determined. [The dependence of the mixed propagators on a second time argument, t_2, enters only through the boundary conditions (30).] The mode function $ζ_k$ must obey

$$ζ_k'' + \left\{ k^2 (1 - 2iν) - (aH)^2 (2 - ε) \right\} ζ_k = 0 \quad \text{in} \quad (31)$$

where k is the common magnitude of k_1 and k_2, a prime $'$ denotes a derivative with respect to $η$, and $ν$ satisfies

$$ν ≡ δ_{η^∞} Ω(k)/2(ak)^2 ≥ 0. \quad (32)$$
Eq. (31) is equivalent to the condition \(\zeta''(k) + \{k^2 - (\alpha H)^2(2 - \epsilon)\}\zeta(k) = 0 \) almost everywhere, together with the boundary condition \((\zeta(k)/a^2) \to 0 \) as \(\eta \to -\infty \). Heuristically, this boundary condition can be accommodated most naturally by redefining the range of \(\eta \) to include some evolution in imaginary time, \(\eta \mapsto \eta(1 + i\tau) \). Although strictly speaking this contour is singular, owing to the presence of the \(\delta \)-function, it can be approached as a limit of regular contours. It will be seen below that when integrations over \(\eta \) are required the integrands in question are holomorphic. Therefore, any one of these regular contours suffices for calculation and we may as well take \(\eta \mapsto \eta(1 + i\tau) \) for fixed \(\tau \). This prescription was used in Refs. [18, 21, 78] to compute tree-level correlation functions of the \(\{\delta \phi^\alpha\} \) in the interacting vacuum.

Propagator matrix. One can now construct an explicit solution for \(G_{++} \), which satisfies (in conformal time with arguments \(\eta_1 \) and \(\eta_2 \))

\[
G_{12}^{++}(k_1, k_2) = (2\pi)^3 \delta(k_1 + k_2) \times \begin{cases} \xi_k(\eta_1, \eta_2) & \text{if } \eta_1 < \eta_2 \\ \xi_k^*(\eta_1, \eta_2) & \text{if } \eta_2 < \eta_1 \end{cases},
\]

where ‘*’ denotes complex conjugation, \(k \) is the common magnitude of \(k_1 \) and \(k_2 \), and \(\xi_k(\eta_1, \eta_2) \) is defined by

\[
\xi_k(\eta_1, \eta_2) \equiv i\frac{[W(\zeta_k^*, \zeta_k)]^{-1}}{a(\eta_1)a(\eta_2)} \zeta_k(\eta_1)\zeta_k^*(\eta_2),
\]

in which \(W(f, g) \) is the Wronskian \(W(f, g) \equiv fg' - gf' \). Note that \(iW(\zeta_k^*, \zeta_k)]^{-1} \) is real and time-independent, in virtue of Abel’s identity, but may depend on \(k \). The propagator \(G_{--} \) is obtained by complex conjugation of Eq. (33); the mixed propagator \(G_{+-} \) is obtained from a homogeneous equation and therefore is smooth at \(\eta_1 = \eta_2 \). The boundary condition (30) implies that it must satisfy

\[
G_{12}^{+-}(k_1, k_2) = (2\pi)^3 \delta(k_1 + k_2) \xi_k(\eta_1, \eta_2)
\]

and \(G_{-+} \) is given by its complex conjugate. [Note that there is no ambiguity in deciding which propagator should be assigned to a mixed pair \(\langle \delta \phi_+ \delta \phi_- \rangle \), because the mode \(\zeta \) is always assigned to the argument of the + field, and \(\zeta^* \) is always assigned to the argument of the − field.]

The above analysis was carried out for a single field, but where more than one species of light field is present similar results apply, with a mode function \(\zeta_k^\alpha \) for each species which obeys a vacuum boundary condition of the form \((\zeta_k^\alpha/a^2) \to 0 \) in the far past. The propagators which connect two fields of different species \(\alpha \) and \(\beta \) then obey analogues of (33) and (35) with the function \(\xi_k \) replaced by a matrix \(\xi_k^{\alpha\beta} \). If the fields do not couple linearly, then it follows that \(\xi_k^{\alpha\beta} = \delta^{\alpha\beta} \xi_k \).

One-vertex, one-loop amplitudes. In the remainder of this paper, we shall be concerned with computing expectation values in which a set of \(n \) external fields, \(\phi(k_n) \), observed at some time \(\eta_* \) and carrying momenta \(\{k_n\} \), are paired with a single \((n + 2)\)-valent
internal vertex with coupling constant g. Applying Schwinger’s formula shows that the term in such an expectation value of leading order in g is given by

$$i(2\pi)^3 \int \frac{d^3q_1 \cdots d^3q_n d^3q_{n+1} d^3q_{n+2}}{(2\pi)^{3(n+2)}} \frac{\delta}{\delta q_i} \int_{-\infty}^{\eta_f} d\eta \ gM,$$

where M is defined by

$$M \equiv \left\langle \phi_+^\alpha(k_1) \cdots \phi_+^\beta(k_n) \phi^-_+(q_1) \cdots \phi_+^\delta(q_{n+1}) \phi_+(q_{n+2}) \right\rangle$$

$$- \left\langle \phi_+^\alpha(k_1) \cdots \phi_+^\beta(k_n) \phi^-_-(q_1) \cdots \phi_+^\delta(q_{n+1}) \phi_+(q_{n+2}) \right\rangle. \tag{37}$$

Greek indices label the species of fields, which are here allowed to run over field derivatives as well as the fields themselves; the issue of obtaining a correct path integral for theories with derivative interactions causes no difficulties for the purposes of Eqs. (36)–(37), but will be taken up again in more detail in the next section. Any amplitude of the type given in (36)–(37) is automatically of one-loop order, because the two field operators left over after all n external fields have been paired with n of the vertex fields must contract amongst themselves, leaving a single un constrained integral over momentum.

The time integral in (36) has been carried to some arbitrary late time η_f which satisfies $\eta_f > \eta_*$. Using Eqs. (33)–(35) together with their complex conjugates in Eq. (36), it follows that the expectation value can be written

$$i(2\pi)^3 \delta(k_1 + \cdots + k_n) \int \frac{d^3q}{(2\pi)^3} \int_{-\infty}^{\eta_f} d\eta \ \xi_{k_1}^{\gamma}(\eta, \eta_*) \cdots \xi_{k_n}^{\delta}(\eta, \eta_*) \xi_\rho^{\sigma}(\eta, \eta)$$

$$- i(2\pi)^3 \delta(k_1 + \cdots + k_n) \int \frac{d^3q}{(2\pi)^3} \int_{-\infty}^{\eta_f} d\eta \ \xi_{k_1}^{\gamma*}(\eta, \eta_*) \cdots \xi_{k_n}^{\delta*}(\eta, \eta_*) \xi_\rho^{\sigma*}(\eta, \eta)$$

$$+ \text{permutations}, \tag{38}$$

in which the second term is the complex conjugate of the first, and all permutations likewise assemble into complex conjugate pairs. Observe that the internal term $\xi_\rho(\eta, \eta)$ in the first line comes from pairing two + fields, whereas in the second line it comes from pairing two − fields. Eq. (31) shows that for the $\delta\phi$ propagator, $\xi_\rho(\eta, \eta)$ is real, so that $\xi_\rho(\eta, \eta)$ and $\xi_\rho^*(\eta, \eta)$ are in fact equal.

The part of the integration over times between η_* and η_f has cancelled out, since in this region Eq. (35) is given by the same expression as Eq. (33), whereas in the region $\eta < \eta_*$ it is given by its complex conjugate. Note that for interactions which contain more than a single vertex and a single loop the process of deriving expressions such as (38) using the path integral technology described above becomes increasingly cumbersome. For such interactions, some form of the diagrammatic operator formalism recently elaborated by Musso [87] is likely to prove superior (see also Ref. [88]).

3.2. Theories with derivative interactions

An important feature of the interactions (16) and (17) is that they include time derivatives of the perturbation, $\delta\dot{\phi}$ [51]. This means that the lagrangian can not be
written in the canonical form \(L(\delta \phi, \dot{\delta \phi}) = \frac{1}{2} \delta \phi \Delta \delta \phi + V(\delta \phi) \) (where the operator \(\Delta \) is field independent), in which there is only a quadratic dependence on \(\delta \phi \). As a result the textbook construction of the path integral formula based on \(L \) does not work.

In the standard construction one identifies a momentum, \(\pi \), canonically conjugate to \(\delta \phi \) and writes the lagrangian as a Legendre transformation of the hamiltonian function \(H \),

\[
L(\delta \phi, \dot{\delta \phi}) = \pi \delta \dot{\phi} - H(\delta \phi, \pi).
\] (39)

In the quantum theory \(\delta \phi \) and \(\pi \) cannot be specified simultaneously. Since it is \(H \) that generates time evolution, when one constructs the path integral one naturally arrives at a functional integration that involves independent integrals over \(\delta \phi \) and \(\pi \). If \(L \) depends at most quadratically on \(\delta \dot{\phi} \) then \(H \) depends at most quadratically on \(\pi \) and the momentum integral can be performed immediately. This has the effect of setting the value of \(\pi \) equal to the one stipulated by Hamilton’s equations and results in the standard lagrangian path integral formula \([84] \). However, when \(H \) has a more complicated dependence on \(\pi \) the momentum integral must be treated more carefully.

The properties of lagrangians with derivative interactions have been studied extensively in the context of the non-linear \(\sigma \)-model. (See, eg., Coleman \([89] \); a path integral treatment is given in Ref. \([84] \), whereas the canonical approach was followed in Ref. \([90] \).) After inspection of Eqs. (16)–(17) it is clear that no term contains as many as four time derivatives, although there are terms containing one, two or three. Let us parametrize a general action for a field \(\theta \) with arbitrary interactions containing as many as three time derivatives in form

\[
S = (2\pi)^3 \int d\eta \left(\frac{1}{2} \gamma_{\alpha\beta} \dot{\theta}^\alpha \dot{\theta}^\beta - \frac{1}{2} \delta_{\alpha\beta} \partial \theta^\alpha \partial \theta^\beta - V(\theta) + \lambda_\alpha \dot{\theta}^\alpha + \frac{1}{3} \omega_{\alpha\beta\gamma} \dot{\theta}^\alpha \dot{\theta}^\beta \dot{\theta}^\gamma \right).
\] (40)

In order to keep this and subsequent expressions manageable, Eq. (40) has been written in an abbreviated “de Witt” notation, where contraction over indices implies not only a summation over species, but also an integration over momentum variables with measure \(d^3k/(2\pi)^3 \). With these conventions the object \(\delta_{\alpha\beta} = \delta(k_\alpha + k_\beta) \) is a “pseudo-metric” on \(k \)-space which is numerically identical to its index-raised counterpart, \(\delta^{\alpha\beta} \). Note that we have taken any interactions involving exactly two factors of \(\dot{\theta} \) to be included with the kinetic term in \(\gamma_{\alpha\beta} \). Moreover, without loss of generality \(\gamma_{\alpha\beta} \) and \(\omega_{\alpha\beta\gamma} \) can be supposed to be symmetric under exchange of their indices. We assume that \(\gamma_{\alpha\beta} \) is invertible, with inverse \(\gamma^{\alpha\beta} \).

The momentum conjugate to \(\dot{\theta}^\alpha \) is \(\pi_\alpha \),

\[
\pi_\alpha \equiv \frac{\delta S}{\delta \dot{\theta}^\alpha} = (2\pi)^3 \left(\gamma_{\alpha\beta} \dot{\theta}^\beta + \lambda_\alpha + \omega_{\alpha\beta\gamma} \dot{\theta}^\beta \dot{\theta}^\gamma \right)
\] (41)

where we have used the assumed symmetry under index exchange to simplify this expression. In order to apply this formalism to the cubic and quartic interactions (16)

† Although it is tempting to regard \(\delta_{\alpha\beta} \) as an object for raising and lowering indices, it is not a true metric because with our conventions, the object obtained by mixing indices, \(\delta_{\alpha\beta} \delta^{\gamma\delta} \), is not the identity operator \((2\pi)^3 \delta(k_\alpha - k_\gamma) \), although it is proportional to it.
and \((17)\) it is only necessary to compute to \(O(\theta^4)\), where we formally assume that \(\pi \sim \theta\) in order of magnitude. Since there are no three-derivative interactions in \(S_3\), this implies that \(\omega = O(\theta)\) and it will be sufficient to work to leading order in \(\omega\). To this order, the Hamiltonian can be written
\[
H = \frac{1}{2(2\pi)^3} \gamma^{\alpha\beta} \pi_\alpha \pi_\beta + \frac{1}{2}(2\pi)^3 \delta^{\alpha\beta} \partial^{\alpha} \partial^{\beta} + \frac{1}{2}(2\pi)^3 \gamma^{\alpha\beta} \lambda_\alpha \lambda_\beta + (2\pi)^3 V
\]

\[
- \frac{1}{3}(2\pi)^3 \omega^{\alpha\beta\gamma} \gamma^{\alpha\rho} \gamma^{\beta\sigma} \gamma^{\gamma\tau} \pi_\rho \pi_\sigma \pi_\tau - \gamma^{\alpha\beta} \pi_\alpha \pi_\beta.
\]

This Hamiltonian can be used to construct a path integral for \(\theta\), giving
\[
\int [d\theta^\alpha d\pi_\beta] \exp \left\{ i \int \! d\eta \left(\pi_\alpha \dot{\theta}^\alpha - H \right) \right\}.
\]

The fields \(\dot{\theta}^\alpha\) and \(\pi_\beta\) are now variables of integration, and therefore independent, so we are free to redefine the momentum field by a shift,
\[
\pi_\alpha \mapsto (2\pi)^3 (\pi_\alpha + \chi_\alpha)
\]
with \(\chi_\alpha\) chosen to eliminate the term in Eq. \((43)\) which is linear in \(\pi_\alpha\),
\[
\chi_\alpha \equiv \gamma^{\alpha\beta} \dot{\theta}^\beta + \lambda_\alpha + \omega^{\alpha\beta\gamma} \dot{\theta}^\beta \dot{\theta}^\gamma.
\]

This shift leaves the path integral measure \([d\pi_\beta]\) invariant. Having done so, one may rearrange terms to find a simplified path integral expression
\[
\int [d\theta^\alpha d\pi_\beta] \exp \left\{ i(S_\theta + S_{gh}) \right\},
\]
where \(S_\theta\) is the original \(\theta\) action \((40)\) with all derivative interactions in their original form, and \(S_{gh}\) is an effective action for the “ghost” field \(\pi\),
\[
S_{gh} = (2\pi)^3 \int \left(-\frac{1}{2} \gamma^{\alpha\beta} \pi_\alpha \pi_\beta + \omega^{\alpha\beta\gamma} \gamma^{\alpha\rho} \gamma^{\beta\sigma} \gamma^{\gamma\tau} \pi_\rho \pi_\sigma \pi_\tau + \frac{1}{3} \omega^{\alpha\beta\gamma} \gamma^{\alpha\rho} \gamma^{\beta\sigma} \gamma^{\gamma\tau} \pi_\rho \pi_\sigma \pi_\tau \right)
\]

The quanta associated with \(\pi\) do not appear in physical states, although they couple to \(\theta\) and so affect its expectation values when loop corrections are taken into account. This explains why it has been permissible to ignore such ghosts in previous tree-level calculations; the \(\pi\) integral makes no contribution to tree-level expectation values. Note that unlike the more familiar Fadeev–Popov ghost, the \(\pi\) field is a spacetime scalar and not a spin-1/2 fermion.

Eq. \((47)\) is not yet in a form suitable for perturbative calculations. In particular the ghost kinetic term involves the inverse \(\gamma^{\alpha\beta}\). This will be a complicated object even for relatively simple choices of \(\gamma^{\alpha\beta}\), but it is pointless to compute beyond \(O(\theta^4)\) since the action to which we wish to apply this formalism [namely Eqs. \((15)–(17)\)] was truncated at this level. For a canonically normalised scalar field in an almost-de Sitter spacetime \(\gamma^{\alpha\beta}\) can be written
\[
\gamma^{\alpha\beta} = a^2 \delta(k_\alpha + k_\beta) + 2\Gamma_1(k_\alpha, k_\beta) + 2\Gamma_2(k_\alpha, k_\beta) + \cdots
\]
where the \(\Gamma_m\) are taken to be \(o(\theta^m)\), the factors of two have been inserted for future convenience, and ‘\(\cdots\)’ denotes higher order terms which have been omitted.
The first term is \(o(\theta^3) \). Its purpose is to provide corrections to the vertices in which momentum labels and integrals are written explicitly. where the \(\psi_i \) are constrained by the appearance of the propagator for a so-called static ultra-local field \(\delta \). One can verify that the normalization in Eq. (49) is correct, since when (48) and (49) are contracted together the \(o(\theta^0) \) term becomes

\[
\int \frac{d^3k_\beta}{(2\pi)^3} a^2 \delta(k_\alpha + k_\beta) \cdot (2\pi)^6 \frac{1}{a^2} \delta(k_\beta + k_\gamma) = (2\pi)^3 \delta(k_\alpha - k_\gamma) = \delta_\alpha^\gamma.
\]

The \(o(\theta) \) equation implies that \(\psi_1 \) satisfies

\[
\psi_1(k_\alpha, k_\beta) \equiv -\frac{2}{a^4} \Gamma_1(-k_\alpha, -k_\beta),
\]

whereas the \(o(\theta^2) \) equation implies that \(\psi_2 \) satisfies

\[
\psi_2(k_\alpha, k_\beta) \equiv -\frac{2}{a^4} \Gamma_2(-k_\alpha, -k_\beta) - \frac{4}{a^4} \int d^3q \Gamma_1(-k_\alpha, q) \Gamma_1(-q, -k_\beta).
\]

The ghost action can therefore be written

\[
S_{gh} = (2\pi)^9 \int d\eta \left\{ -\frac{1}{2a^2} \delta^{\alpha\beta} \pi_\alpha \pi_\beta - \psi_1^{\alpha\beta} \pi_\alpha \pi_\beta - \psi_2^{\alpha\beta} \pi_\alpha \pi_\beta + \frac{(2\pi)^6}{a^4} \omega_{\alpha\beta\gamma} \hat{\delta}^{\beta\delta} \hat{\delta}^{\gamma\tau} \hat{\theta}^\alpha \pi_\rho \pi_\tau + \frac{(2\pi)^{12}}{3a^6} \omega_{\alpha\beta\gamma} \hat{\delta}^{\beta\delta} \hat{\delta}^{\gamma\tau} \hat{\pi}_\rho \pi_\tau \right\}
\]

The first term is \(o(\theta^3) \) and can be taken as the free-field part, whereas the remainder is \(O(\theta^3) \) and can be taken as the interaction term. In this form, the ghost action is suitable for perturbative evaluation.

3.3. Feynman rules for the interacting scalar/ghost theory

We are now in a position to write down the Feynman rules for the \(\delta \phi \) theory, including the effect of the ghost field. In this section we will not be obliged to carry out any of the complicated manipulations which characterized \[3.2\] and so we will revert to a notation in which momentum labels and integrals are written explicitly.

The propagators for the pure \(\delta \phi \) theory were written down in \[3.1\] The free part of the ghost action can be inverted immediately to find the ghost propagator. For the + fields this gives

\[
\langle \pi_+(\eta_1, k_1) \pi_+(\eta_2, k_2) \rangle = -\frac{i}{(2\pi)^3} a(\eta_1) a(\eta_2) \delta(\eta_1 - \eta_2) \delta(k_1 + k_2),
\]

from which the --- propagator can be obtained by complex conjugation. Eq. (54) is the propagator for a so-called static ultra-local field \[91\, 85\]. Its \(k \) and \(\eta \) dependence is constrained by the appearance of \(\delta \)-functions, so the ghost does not propagate: its purpose is to provide corrections to the vertices of the theory which account for the presence of coincident time derivatives there. At one-loop order, we do not require the mixed propagator; the ghost field only appears in loops, but at one-loop the only mixed
contractions involve pairings of external fields with internal fields and these cannot occur for the ghost.

In the one-loop, single-field vertex formula, Eq. (38), the ghost propagator always appears in the role of the propagator evaluated at equal arguments, associated with the internal momentum \(\mathbf{q} \). Note that the special simplification, which occurred for the \(\delta \phi \) propagator, where \(\xi_2(\eta, \eta) \) and \(\xi_2(\eta, \eta) \) were equal, does not apply for the ghost field.

It remains to identify the interaction terms \(V, \lambda, \Gamma_1, \Gamma_2 \) and \(\omega \). Reading these off from Eqs. (16)–(17) we obtain

\[
V = a^2 \frac{\dot{\phi}}{4H} \int \frac{d^3q_1 \, d^3q_2 \, d^3q_3}{(2\pi)^9} \delta \left(\sum_{i=1}^{3} q_i \right) \left\{ \prod_{j=1}^{3} \delta \phi(q_j) \right\} (q_2 \cdot q_3)
\]

\[
\lambda(q_1) = \frac{a}{4H} \int \frac{d^3q_2 \, d^3q_3 \, d^3q_4}{(2\pi)^9} \delta \left(\sum_{i=1}^{4} q_i \right) \left\{ \prod_{j=2}^{4} \delta \phi(q_j) \right\} (q_2 \cdot q_3) \frac{\sigma(q_1, q_4)}{q_{14}^2}.
\]

\[
\Gamma_1(q_1, q_2) = -a^2 \frac{\dot{\phi}}{4H} \int \frac{d^3q_3}{(2\pi)^3} \delta \left(\sum_{i=1}^{3} q_i \right) \delta \phi(q_3) \left(1 + 2 \frac{\sigma(q_2, q_3)}{q_1^2} \right)
\]

\[
\Gamma_2(q_1, q_2) = -a^2 \int \frac{d^3q_3 \, d^3q_4}{(2\pi)^6} \delta \left(\sum_{i=1}^{4} q_i \right) \left\{ \prod_{j=3}^{4} \delta \phi(q_j) \right\} \times \left(\frac{z(q_1, q_3) \cdot z(q_2, q_4)}{q_{13}^2 q_{24}^2} + \frac{3\sigma(q_1, q_4) \sigma(q_2, q_4)}{4 q_{14}^2 q_{24}^2} + 2 \frac{q_1 \cdot z(q_2, q_3)}{q_4^2} \right)
\]

\[
\omega(q_1, q_2, q_3) = -a \frac{\dot{\phi}}{4H} \int \frac{d^3q_4}{(2\pi)^3} \delta \left(\sum_{i=1}^{4} q_i \right) \delta \phi(q_4) \frac{\sigma(q_1, q_4)}{q_{14}^2},
\]

where \(q_{ij} = q_i + q_j \). The functions \(\sigma \) and \(z \) are defined by

\[
\sigma(a, b) \equiv a \cdot b + b^2
\]

and

\[
z(a, b) \equiv \sigma(a, b)a - \sigma(b, a)b.
\]

These are the momentum-space counterparts of Eqs. (13)–(14). Note that as written, Eqs. (57)–(58) for \(\Gamma \) and Eq. (59) for \(\omega \) are not symmetric under exchange of their arguments. For \(\Gamma \) this is immaterial, because (40) and (53) show that it always appears in a symmetric contraction. On the other hand, \(\omega \) does appear once in an asymmetric contraction, namely \(\omega_{\alpha\beta\gamma\delta} \dot{\gamma}^\alpha \dot{\gamma}^\beta \dot{\gamma}^\gamma \pi_\sigma \pi_\tau \). To avoid an unnecessarily tripling of the length of (59) we leave it in asymmetric form, carrying out an explicit symmetrization when computing amplitudes involving the asymmetric vertex.

\[\dagger\] In v1–2 of the arXiv version of this paper, and the version which subsequently appeared in JCAP, the interaction \(\Gamma_2 \) contained a sign error in its third term, which propagated through the remainder of the calculation. This caused the coefficient of \(\ln k \) which appeared in Eq. (105) to be incorrect. I would like to thank P. Adshead, R. Easther and E. Lim for bringing this error to my attention. This error was corrected in Ref. [92]; however, owing to a typographical error in that reference, the final coefficient of \(\ln k \) was again given incorrectly (P. Adshead, personal communication).
One-loop corrections to a scalar field during inflation

Figure 1. Pure $\delta \phi$ vertices. A dot on a scalar line entering a vertex shows that a time derivative is applied to the field at the point of interaction. In terms of Eq. (40), the diagrams correspond to the vertices produced by (a) the potential V; (b) the λ vertex; (c) the Γ_1 vertex; (d) the Γ_2 vertex; and (e) the ω vertex.

Figure 2. Scalar/ghost vertices. Solid lines represent the scalar field $\delta \phi$, whereas dashed lines represent the ghost. A dot on a scalar line entering a vertex shows that a time derivative is applied to the field at the point of interaction. Time derivatives are never applied to ghost fields. In terms of Eq. (53), the diagrams correspond to the vertices produced by (a) the $\psi_1 \pi^2$ interaction; (b) the $\psi_2 \pi^2$ interaction; (c) the $\omega \dot{\pi} \pi$ interaction; and (d) the $\omega \pi^3$ interaction.

Diagrammatic representation. Eqs. (55)–(59) lead to a rather complicated diagrammatic formalism in which the vertices produce a number of related terms, depending on the number of derivatives which apply to the lines entering the vertex. In order to keep track of these related contributions it is useful to introduce a refinement of the Feynman rules in which the lines of scalar propagators to which derivatives are applied are decorated with a dot.

For the pure $\delta \phi$ vertices, the resulting diagrams are depicted in Fig. 1. For the mixed $\delta \phi$/ghost vertices, the resulting diagrams are shown in Fig. 2.

4. The one-point function

In §2.3 we observed that at tree-level the one point function of $\delta \phi$ is zero, $\langle \delta \phi(k) \rangle = 0$. This is not merely a question of convention; if the one-point function was not zero then so-called ‘tadpole’ diagrams such as Fig. 3 would mean that $\delta \phi$ quanta would emerge from the vacuum. Conservation of momentum forces such particles to condense in the zero-momentum mode, and the accumulation of such particles causes the classical background field to change. Such an instability implies that any perturbation theory based on the original unstable vacuum state would not give meaningful answers. This problem can be avoided by ensuring that the vacuum which we take as the basis of our perturbation theory is stable, at least at tree-level.

In an inflationary universe, the emergence of $\delta \phi$ quanta from the vacuum is exploited.
to produce small density fluctuations on superhorizon scales. Therefore we may expect to encounter some symptoms of vacuum instability when quantum corrections are taken into account. These symptoms manifest themselves as a radiatively generated one-point function,

$$\langle \delta \phi(k) \rangle = (2\pi)^3 \delta(k) O,$$

where $O \neq 0$ is a dimensionless quantity. Although it is not the observable in which we are principally interested, the present section is devoted to a calculation of O. This is important for two reasons. The first is that it provides a consistency check on δN calculations [21, 78, 23, 34, 82, 44, 45] which typically assume $O = 0$, even beyond tree level. The second is that it allows us to develop some aspects of the calculational formalism in a simpler setting than the computation of the two-point function.

4.1. Ghost diagrams

Consider the one-point function associated with some wavenumber k. We aim to compute this at the time η_* when k crosses the horizon, which is roughly defined by the condition $-k\eta_* = 1$. Eventually conservation of momentum will force us to set $k = 0$, but in order to regularize the calculation we compute for finite k and then study the limit $k \to 0$.

We deal first with the diagrams which contain a ghost loop. There is only one such diagram, which arises from the $\psi_1 \pi^2$ coupling,

$$\langle \delta \phi(k) \rangle_\ast \subseteq \quad \quad .$$

This diagram makes a contribution to $\langle \delta \phi(k) \rangle_\ast$ equal to

$$\langle \delta \phi(k) \rangle_\ast \supseteq -(2\pi)^3 \delta(k) \int_{-\infty}^{\eta_*} d\eta \int \frac{d^3 q}{(2\pi)^3} \frac{H_* H}{2k^3} \delta(0)(1 - i k \eta) e^{ik \eta} \frac{\dot{\phi}}{4H} \left(1 + 2 \frac{\sigma(-q, k)}{q^2} \right)$$

+ complex conjugate,

where the symbol ‘\supseteq’ indicates that $\langle \delta \phi(k) \rangle$ contains the indicated contribution (among others), and in deference to the vacuum prescription outlined in §3.1 we should deform the contour of the η integral to include some evolution in imaginary time for large $|\eta|$. In this region the exponential factor is strongly decaying (cf. the discussion in §3.1).
so there is very little contribution to the integral from very early times; if η_* is not too late, the integral receives its dominant contributions from times around horizon crossing, where $\eta \sim -1/k$. We may therefore approximate the slowly varying factors $H_* H$ and $\dot{\phi}/H$ by their values at the time of horizon crossing, which are equal to H_*^2 and $\dot{\phi}_*/H_*$ respectively. In this simple example the η integral and the integral over the internal momentum q factorize, leaving a final result

$$
\langle \delta \phi(k) \rangle_* \supset - (2\pi)^3 \delta(k) P_*(k) \frac{\dot{\phi}_*}{2H_*} \int_{-\infty}^{\eta_*} \mathrm{d}\eta \delta(0)(1 - \imath k\eta)e^{\imath k\eta} \int \frac{\mathrm{d}^3q}{(2\pi)^3} \left(1 + 2\frac{\sigma(q, -k)}{q^2}\right)
$$

+ complex conjugate

(65)

where $P_*(k)$ is the tree-level power spectrum evaluated at η_*. The object $\delta(0)$ is the η delta-function evaluated at zero argument, and is badly divergent. In the present case, however, this is not material. The η integral can be rotated to imaginary time, leaving a result which is purely imaginary. Hence, although divergent, this diagram makes no contribution to the one-point function.

4.2. Pure $\delta \phi$ diagrams

Now consider the pure $\delta \phi$ diagrams.

The vacuum prescription and renormalization. In these diagrams, as above, early times make almost no contribution to the η integral, so that slowly varying quantities such as H and $\dot{\phi}/H$ can be evaluated at η_*. A generic pure-$\delta \phi$ contribution to O will then take the form

$$
O \supset \imath P_*(k) \frac{\dot{\phi}_*}{4H_*} \int_{-\infty}^{\eta_*} \mathrm{d}\eta \int \frac{\mathrm{d}^3q}{(2\pi)^3} e^{\imath k\eta} \Sigma, +\text{complex conjugate}
$$

(66)

where Σ is a k- and q-dependent quantity which is to be calculated. In evaluating Σ we will encounter instances where a $\delta \phi$ propagator begins and ends at the same vertex, giving it coincident time arguments. We will choose to set such a propagator equal to

$$
\langle \delta \phi(q_1, \eta) \delta \phi(q_2, \eta) \rangle = (2\pi)^3 \delta(q_1 + q_2) \frac{H^2}{2q^3}(1 + q^2\eta^2),
$$

(67)

where the exponential factors $e^{\imath q\eta}e^{-\imath q\eta}$ have cancelled among themselves, and q is the common magnitude of q_1 and q_2.

The discussion of vacuum boundary conditions in §3.1 emphasized that the fields which participate in the Schwinger path integral must be chosen to begin in the appropriate interacting vacuum, and that this could be achieved heuristically by deforming the contour of integration to include some evolution in imaginary time. In view of this, one may question whether (67) is the correct choice, or whether it should be modified to read

$$
\langle \delta \phi(q_1, \eta) \delta \phi(q_2, \eta) \rangle \overset{?}{=} (2\pi)^3 \delta(q_1 + q_2) \frac{H^2}{2q^3}|1 - \imath q\eta|^2 e^{-2q\Im(\eta)}, \quad \text{where } \Im(\eta) > 0.
$$

(68)

† It makes no difference if we allow η to develop a small imaginary component in the prefactor $|1 - \imath q\eta|^2$, since the exponential term is so strongly decaying for large $|\eta|$.

This would apparently have the very desirable effect of decoupling our prediction for $\langle \delta \phi(k) \rangle$ from any details of the deep ultraviolet regime where $q \to \infty$, because (68) is strongly decaying in this limit owing to the exponential factor. Therefore one might have some reservations that the choice of (67) would introduce unphysical divergences, arising from an incorrect treatment of the vacuum. On the other hand, Eq. (68) has the undesirable feature that it leads to a non-holomorphic integrand. This means that it would be necessary to rescind the possibility of contour rotation in evaluating the η integral. A loop amplitude computed using (68) would therefore depend sensitively upon the supposedly arbitrary value we assign to $\text{Im}(\eta)$, which in turn depends on the structure of the vacuum at past infinity. It is not clear how the resulting amplitude should be interpreted.

This situation can be understood as follows. It was explained in §3.1 that the trick of contour rotation can be expected to account reliably for the vacuum boundary conditions only when the integrand is holomorphic. This is automatically true at tree-level, as argued in §3.1 and gives completely unambiguous results which are independent of the details of physics in the deep ultraviolet. At one-loop level the situation is different. If we adopt Eq. (67), then the loop amplitude depends on the ultraviolet parameter $\text{Im}(\eta)$. If we adopt the holomorphic expression Eq. (67) for the propagator, then the result is free of any dependence on $\text{Im}(\eta)$ but there is instead a prospect of sensitivity to the details of ultraviolet physics from the q integral. Although we can choose from which source this sensitivity arises, we cannot evade it altogether—as we should expect. However, any divergences associated with the limit $q \to \infty$ can be subtracted by conventional methods of renormalization, after which the contour-rotation prescription gives a finite, contour-independent result which correctly incorporates the vacuum boundary conditions. In what follows we adopt this prescription.

This leaves open the question of how the q-integral should be regulated. Since the Einstein action is supposed to be an effective theory of gravity for energies less than the Planck scale $M_P \approx 10^{18} \text{GeV}$, and inflation is usually supposed to occur at energies at least a few orders of magnitude less than M_P, one might imagine applying a cutoff on the loop momenta of order the Planck scale. However this in itself is ambiguous since the Planck scale, unlike the speed of light, is not a Lorentz invariant and varies between locally inertial frames. In particular, the comoving Planck scale at a given instant η is given by $a(\eta)M_P$. Therefore a momentum cutoff of this form entangles the η and q integrations, and for this reason it seems preferable to use a method of regularization, such as dimensional regularization, which does not depend on the explicit use of a cutoff. In the present paper we will compute expectation values using a fixed momentum cutoff both in the infrared and ultraviolet. In the case of the one-point function it may be checked that when the ultraviolet region has been discarded both dimensional regularization and a fixed momentum cutoff yield comparable predictions for the leading infrared divergences.

This is sufficient for the purposes of the present paper, since it is the behaviour in the infrared rather than the ultraviolet which is of principal interest in a cosmological
context. Divergences in the ultraviolet come from the behaviour of the fields at high energies and small scales. Such small scale modes exist far inside the horizon, where the equivalence principle suggests that flat spacetime quantum field theory is expected to be a good approximation. The subtraction of these modes has recently been considered by Finelli et al., who argue that no special treatment is required for the power spectrum [93] (see also Ref. [94]). On the other hand, the infrared behaviour comes from low energies and large scales, where the field modes are well outside the horizon. On such scales, flat spacetime field theory is a very poor approximation and we are obliged to take account of the gravitational background.

This does not preclude the appearance of new ultraviolet divergences in our expectation values. Indeed, many of the integrals we shall encounter do contain ultraviolet divergences, of which the ultraviolet divergent quantity $\delta(0)$ which appears in Eq. (65) is an example. Such divergences do not interfere with our ability to perform accelerator or laboratory particle physics experiments on earth, which are characterized by time- and length-scales that are small compared to the expansion time-scale and horizon length-scale of the universe. On such small scales the ultraviolet divergences we shall encounter (none of which are present in the $\delta\phi$ theory in Minkowski space) are presumably subdominant with respect to divergences from the pure matter theory and therefore do not interfere with our ability to perform terrestrial experiments, or with the success of the principle of equivalence.

Zero-derivative interactions. We now return to the $\delta\phi$ diagrams. It is simplest to classify these diagrams according to the number of derivatives applied to propagators entering the vertex.

There is a zero-derivative interaction from the vertex in Fig. (1) (a),

\[
\langle \delta\phi(k) \rangle \geq \overline{\square}. \tag{69}
\]

This term makes a contribution to Σ which equals

\[
\Sigma \geq -\left(\frac{1}{2q\eta^2} - \frac{k \cdot q}{q^3\eta^2} \right)(1 - ik\eta)(1 + q^2\eta^2). \tag{70}
\]

The term involving $k \cdot q$ is not rotationally invariant and disappears in the integral over q. Let us introduce a fixed ultraviolet cutoff Λ and infrared cutoff μ. Evaluating the q and η integrals as described above gives

\[
O \geq -P^a \phi^a \frac{1}{4H^4} (\Lambda^4 - \mu^4). \tag{71}
\]

Two derivatives, both derivatives on internal leg. The next class of diagrams contain two derivative operators, and divide naturally into two sorts: those where the derivatives are applied to both ends of the internal loop, and those where one derivative is applied to the loop but the other is applied to the external leg.

The first sort give rise to diagrams of the form
One-loop corrections to a scalar field during inflation

\[\langle \delta \phi(\mathbf{k}) \rangle_* \supset \quad \bigcirc; \]
(72)

such diagrams contribute an amount to \(\Sigma \) corresponding to

\[\Sigma \supset - \frac{q}{2} (1 - i \kappa \eta) \left(1 + 2 \frac{\sigma(q, -\mathbf{k})}{q^2} \right). \]
(73)

Evaluating the integrals by the method described above, one arrives at

\[O_* \supset - P_*(k) \frac{1}{4 \dot{H} \pi^2 k^4} \left(\Lambda^2 - \mu^2 \right) (4k^2 + \Lambda^2 + \mu^2). \]
(74)

Two derivatives, single derivative on internal leg. The final class of diagrams contain a single derivative on the internal line, and apply the remaining derivative to the external leg. These diagrams are of the form

\[\langle \delta \phi(\mathbf{k}) \rangle_* \supset \quad \bigcirc \]
(75)

and contribute to \(\Sigma \) according to the rule

\[\Sigma \supset - \frac{k^2}{2q} (1 - i \eta) \left(2 + 2 \frac{\sigma(-\mathbf{k}, \mathbf{q})}{q^2} \right). \]
(76)

This class of diagrams makes a contribution to \(O_* \) which equals

\[O_* \supset - P_*(k) \frac{1}{4 \dot{H} \pi^2 k^4} \left(\frac{8k}{3} (\Lambda^3 - \mu^3) + 4k^2 (\Lambda^2 - \mu^2) \right). \]
(77)

4.3. Infrared behaviour

We now collect terms from Eqs. (71), (74) and (77). The result shows only power law divergences, which could have been anticipated from the outset because the tadpole loop must be independent of \(k \). Accordingly, the \(\mu \to 0 \) limit is perfectly regular, and yields

\[\langle \delta \phi(\mathbf{k}) \rangle_* = -(2\pi)^3 \delta(\mathbf{k}) \frac{H_* \dot{\phi}_*}{16 \pi^2} \left(\frac{\Lambda^4}{k^4} + \frac{4 \Lambda^3}{3 k^3} + \frac{4 \Lambda^2}{k^2} \right). \]
(78)

This is purely divergent. Whatever renormalization scheme we choose, all these power-law divergences must be subtracted. The result may leave a \(k \)-independent remainder, but even if this is true the zero-momentum limit \(k \to 0 \) will be finite.

In practice, inflation does not last for an indefinite number of e-folds and the region of the universe described by the inflationary patch will not be unboundedly large. One should identify the \(\mathbf{k} = 0 \) mode with the spatial average of \(\delta \phi \) within this patch. If \(\langle \delta \phi(\mathbf{k}) \rangle \) is non-zero after renormalization, this spatial average can be absorbed into a redefinition of the background field \(\phi(t) \) by enforcing the condition \(\langle \delta \phi(\mathbf{k}) \rangle = 0 \), as discussed (for example) in Refs. [62, 63, 46, 47]. It follows that when \(\delta \phi \) is defined in this way one may take \(O = 0 \), as usually assumed.
5. The two-point function

We now turn to the central purpose of this paper, the computation of the leading loop correction to the two-point function \(\langle \delta \phi(k_1)\delta \phi(k_2) \rangle \ast. \)

It is first necessary to decide which classes of diagrams are to be included in the computation. In general, the one-loop correction to the two-point function of the \(\delta \phi \) will be given by a sum of diagrams, the leading terms of which are of the form

\[
\text{loop correction} \supset \text{Diagram} + \text{Diagram} + \cdots.
\]

Eqs. (16)–(17) show that the leading contribution from the first diagram is \(O(\epsilon^0) \) in slow-roll, whereas the leading contribution from the second diagram is \(O(\epsilon) \). Therefore, provided \(\epsilon \ll 1 \) and there are no large logarithms which can compensate for small slow-roll parameters, the expectation value will be dominated by the lowest-order part of the first diagram. This is opposite to the case considered by Sloth [46, 47], where a large logarithm was used to compensate for the smallness of \(\epsilon \). In this regime the first diagram will be dominated by its subleading slow-roll part, and for consistency one should also take into account sub-leading slow-roll terms from the second diagram, and possibly from other sources. In the present paper, we wish to use the slow-roll approximation to simplify the calculation and therefore we will retain only the contribution from the leading part of the first diagram. The question of when this is a good approximation, together with a more general analysis of any possible large logarithms, will be postponed to another publication [77].

5.1. Ghost diagrams

The relevant vertices here come from the \(\psi_2 \pi \pi \) and \(\omega \delta \dot{\phi} \pi \pi \) terms in the ghost action. There is no contribution from the \(\omega \pi \pi \pi \) interaction because this involves three ghost fields, which must appear in loops, and at one-loop order there is always one ghost field which is left unpaired. Therefore this term can be disregarded, although it would play a role in a two- or higher-loop calculation. To determine the \(\psi_2 \) contribution explicitly, consider Eq. (52) which gives \(\psi_2 \) in terms of the known functions \(\Gamma_1 \) and \(\Gamma_2 \). We are computing to leading order in slow-roll, so the term involving \(\Gamma_2^2 \) can be discarded, because Eq. (57) shows that it is proportional to the slow-roll parameter \(\epsilon \sim \dot{\phi}^2/H^2 \), whereas the leading terms in the fourth-order interaction are \(o(\epsilon^0) \).

The relevant ghost diagrams are

\[
\langle \delta \phi(k_1)\delta \phi(k_2) \rangle \ast \supset \text{Diagram} + \text{Diagram} + \cdots.
\]

Both these diagrams are purely imaginary and cancel between the ++ and -- propagators in exactly the same manner described in §4 for the computation of the one-point function.

The ghost diagrams have therefore entirely cancelled out in both the one- and two-point functions. This leads to expressions which agree with those reported in
One-loop corrections to a scalar field during inflation

Ref. [46, 47]. However, one should not immediately conclude that the ghost diagrams always sum to zero. Although this issue deserves more detailed attention, at two-loop order and above one can presumably expect the factors of i to combine to give non-vanishing contributions. This will apparently occur whenever there are an even number of ghost propagators in the diagram.

5.2. Pure $\delta \phi$ diagrams

As in the one-point calculation, it is convenient to classify the pure $\delta \phi$ diagrams according to the number of derivatives they contain.

Single derivative. There are no zero-derivative interactions, because the gravitational interactions responsible for generating the vertices in Fig. 1 make no contribution to the potential at $O(\delta \phi^4)$, and the cubic contribution which is generated would make a contribution to the loop correction which is subleading in slow-roll.

The first non-trivial term contains a single derivative, which can be applied to an internal or external line,

$$\langle \delta \phi(k_1)\delta \phi(k_2) \rangle_* \supset \begin{array}{c} \hline \end{array} + \begin{array}{c} \hline \end{array}. \quad (80)$$

As in the case of the one-point function, it is useful to parametrize the contribution each diagram makes to $\langle \delta \phi(k_1)\delta \phi(k_2) \rangle_*$ in terms of a function Π, which is defined by

$$\langle \delta \phi(k_1)\delta \phi(k_2) \rangle_* = i(2\pi)^3 P_* (k)^2 \int d\eta \int \frac{d^3 q}{(2\pi)^3} e^{2i k_\eta} \Pi + \text{complex conjugate}, \quad (81)$$

where $P_* (k)^2$ is the square of the tree-level power spectrum, and the quantity Π (to be calculated in this section) depends on the external momenta $\{k_1, k_2\}$ and the loop momentum q.

The class of diagrams where the derivative is applied to the external leg makes a contribution to Π which corresponds to

$$\begin{array}{c} \hline \end{array} : \quad \Pi \supset (1 - i k \eta)(1 + q^2 \eta^2) \left(\frac{k^2}{4q^3} (q \cdot k_2) \frac{\sigma(-k_1, q)}{|k_1 + q|^2} + \frac{k^2 \sigma(-k_1, k_2)}{8q k_{12}^2} \right)$$

$$+ |k_1 \rightleftharpoons k_2|, \quad (82)$$

where $|k_1 \rightleftharpoons k_2|$ denotes the same term with k_1 and k_2 interchanged. The ratio $\sigma(-k_1, k_2)/k_{12}^2$ is obviously singular when the momentum conservation condition $k_1 + k_2 = 0$ is enforced and must be treated carefully to avoid an unphysical divergence. Consider the non-singular quotient $\sigma(a, b)/|a + b|^2$ where a and b approach k and $-k$ respectively,

$$\lim_{\epsilon, \delta \to 0} \frac{\sigma(k + \delta, -k + \epsilon)}{|\epsilon + \delta|^2} = \lim_{\epsilon, \delta \to 0} \frac{k \cdot (\delta + \epsilon) + \epsilon^2 + \delta \cdot \epsilon}{\delta^2 + \epsilon^2 + 2\delta \cdot \epsilon} \quad (83)$$

This is not symmetric between δ and ϵ, because σ is not a symmetric function of its arguments; as a result, the limits do not commute. Moreover, as δ and ϵ approach zero
the numerator of \((83)\) vanishes linearly, as fast as \(O(\epsilon, \delta)\), whereas the denominator is vanishing quadratically, like \(O(\epsilon^2, \delta^2)\). Therefore \((82)\) is na"ıvely divergent. In fact, the value of \((83)\) depends on what is assumed about \(k \cdot \delta\) and \(k \cdot \epsilon\); if we demand that the limit is approached along a sequence of vectors of magnitude \(k = |k|\) then it follows that \(|k + \delta| = | - k + \epsilon| = k\) and therefore

\[
k \cdot \epsilon = \frac{\epsilon^2}{2} \quad \text{and} \quad k \cdot \delta = -\frac{\delta^2}{2}.
\]

With this choice, Eq. \((83)\) evaluates to \(1/2\) and the limits become commuting. This prescription was used implicitly in §4.2 of Ref. [78], but there does not seem to be any compelling reason to demand that the limit is approached along such a specific sequence of vectors. Fortunately a catastrophic divergence is averted, since Eq. \((82)\) requires symmetrization over the exchange \(k_1 \leftrightarrow k_2\). The problematic term \(k \cdot (\delta + \epsilon)\) is antisymmetric under this exchange and cancels out of the expectation value \((82)\), leaving a finite limit. The result of this procedure gives the same answer as if we had adopted Eq. \((84)\), which can be regarded as a justification for the analysis presented in Ref. [78].

After performing the symmetrization over \(k_1\) and \(k_2\) and integrating over \(q\) and \(\eta\), this class of diagrams make a contribution to the two-point function of the form

\[
\langle \delta \phi(k_1) \delta \phi(k_2) \rangle_* \supset (2\pi)^3 \delta(k_1 + k_2) \frac{P_s(k)^2}{\pi^2} \left(-\frac{3}{16} k^3 \ln k - \frac{1}{120} k^3 + \cdots \right)
\]

where ‘\(\cdots\)’ denotes ultraviolet power law divergences which have been omitted.

Now consider the diagrams in which the derivative is applied to the internal line. Such diagrams contribute to \(\Pi\) according to

\[
\frac{\mathcal{Q}}{} : \quad \Pi \supset (1 - i k \eta)^2 (1 - i q \eta) \left(\frac{k_1 \cdot q}{4q} \frac{\sigma(q, -q_k)}{|k_2 + q|^2} + \frac{k^2 \sigma(q, -q)}{8q} \frac{\sigma(q, -q)}{|q - q|^2} \right) + [k_1 \leftrightarrow k_2],
\]

This class of diagrams contains a similar ill-defined ratio, \(\sigma(q, -q)/|q - q|\). Consider Eq. \((83)\) again, with \(k\) replaced by \(q\). Although there is no longer any injunction to symmetrize over \(q \leftrightarrow -q\), the non-rotationally-invariant part \(q \cdot (\delta + \epsilon)\) will vanish underneath the integral and does not give rise to any divergence. In order to assign a definite value to the remaining limit, we must assume something about \(\delta\) and \(\epsilon\). Since \(q\) is merely a variable of integration and can be freely replaced by \(-q\), we assume that \(\sigma(q, -q)\) is to be regularized by taking its symmetric part. With this prescription, the ratio \(\sigma(q, -q)/|q - q|\) evaluates to \(1/2\).

Symmetrizing over \(k_1\) and \(k_2\), and omitting ultraviolet power laws, we find

\[
\langle \delta \phi(k_1) \delta \phi(k_2) \rangle_* \supset (2\pi)^3 \delta(k_1 + k_2) \frac{P_s(k)^2}{\pi^2} \left(-\frac{1}{8} k^3 \ln k + \frac{3}{20} k^3 + \cdots \right)
\]
Two derivatives. We have now exhausted all diagrams with only a single derivative. The next set of diagrams all involve two derivatives and break naturally into three sets: the first class includes all diagrams with the derivatives applied to both external legs of the two-point function; the second set includes all diagrams where one derivative is applied to an external leg while the other applies to the internal propagator; and the third set includes all diagrams with both derivatives applied to the internal propagator:

\[\langle \delta \phi(k_1) \delta \phi(k_2) \rangle \supseteq \begin{array}{c} \sigma \cr \sigma \cr \sigma \end{array} \left(\begin{array}{c} \bullet \cr \bullet \cr \bullet \end{array} \right) \] \quad (88)

Consider first the set of diagrams with both derivatives on the external legs. We obtain

\[\begin{array}{c} \square \end{array} : \quad \Pi \supseteq -\frac{k^4}{2q^2}(1 + q^2 \eta^2)Q, \] \quad (89)

where \(Q \) is the quantity

\[
Q \equiv \frac{z(-k_1, q) \cdot z(-k_2, q)}{|q - k_1|^4 |q + k_2|^2} + \frac{3 \sigma(-k_1, q)\sigma(-k_2, -q)}{4 |q - k_1|^2 |q + k_2|^2} - 2 \frac{q \cdot z(-k_2, q)}{|q - k_1|^2} \]

\[+ \frac{z(-k_1, q) \cdot z(-k_2, q)}{|q - k_1|^4}. \] \quad (90)

Unlike the previous examples, none of the ratios which appear in \(Q \) are ill-defined. However, this result can still be simplified using the symmetry properties of \(z \) and \(\sigma \). In particular, we observe that \(\sigma \) is a quadratic form, and therefore

\[\sigma(-a, -b) = \sigma(a, b) \quad \text{and} \quad z(-a, -b) = z(b, a). \] \quad (91)

These identities can be used together with the obvious antisymmetry of \(z \) \([i.e., z(a, b) = -z(b, a)]\). After performing the symmetrization over \(k_1 \) and \(k_2 \), \(Q \) can be reduced to the simpler form

\[Q = -2 \frac{z(q, k)^2}{|q + k|^6} + \frac{3 \sigma(q, k)^2}{2 |q + k|^4} - 4 \frac{q \cdot z(q, k)}{|q + k|^4}. \] \quad (92)

In this expression, \(k \) can be taken to be either \(k_1 \) or \(k_2 \); after integration, the result depends only on the magnitude \(k \) and not its orientation, and we obtain

\[\langle \delta \phi(k_1) \delta \phi(k_2) \rangle \supseteq (2\pi)^3 \delta(k_1 + k_2) \frac{P_s(k)^2}{\pi^2} \left(\frac{13}{48} k^3 \ln k - \frac{4}{9} k^3 + \cdots \right). \] \quad (93)

The set of diagrams with one derivative on an external leg and one derivative on the internal propagator are the most complicated. To evaluate them, we write

\[\begin{array}{c} \bullet \end{array} : \quad \Pi \supseteq -\frac{k^2}{2q}(1 - ik\eta)(1 - iq\eta)R, \] \quad (94)

where \(R \) can be expressed as

\[
R \equiv 4 \frac{z(q, k)^2}{|q + k|^6} + \frac{3 \sigma(q, k)\sigma(q, k)}{2 |q + k|^4} - \frac{q \cdot z(q, k)}{|q + k|^4} - \frac{4 q \cdot z(q, k)}{|q + k|^4}. \] \quad (95)

in which we have used the symmetry properties of \(z \) and \(\sigma \), and the same convention that \(k \) may be chosen as either \(k_1 \) or \(k_2 \) applies. In arriving at this expression for \(Q \), we
have discarded a number of contributions of the form \(X \cdot \{ z(-k,k) + z(k,-k) \} \) for some vector \(X \), which may itself require regularization. However, no matter how we choose to regularize the bracket \(\{ \cdots \} \), the antisymmetry of \(z \) guarantees that it sums to zero, and therefore that such contributions cancel out of the observable expectation value.

After integration, one obtains
\[
\langle \delta \phi(k_1) \delta \phi(k_2) \rangle_\star \supset (2\pi)^3 \delta(k_1 + k_2) \frac{P_\star(k)^2}{\pi^2} \left(-k^3 \ln k + \frac{5}{6} k^3 + \cdots \right). \tag{96}
\]

The final class of diagrams of this type involve both derivatives applied to the internal propagator,
\[
\int \quad \Pi \supset -\frac{q}{2} (1 - ik\eta)^2 \left(-2 \frac{z(q,k)^2}{|q + k|^6} + \frac{3}{2} \frac{\sigma(q,k)^2}{|q + k|^4} - 4 \frac{k \cdot z(q,k)}{|q + k|^4} \right), \tag{97}
\]
which does not require regularization. After integration, one obtains
\[
\langle \delta \phi(k_1) \delta \phi(k_2) \rangle_\star \supset (2\pi)^3 \delta(k_1 + k_2) \frac{P_\star(k)^2}{\pi^2} \left(\frac{19}{48} k^3 \ln k - \frac{23}{180} k^3 + \cdots \right). \tag{98}
\]

Three derivatives. The only remaining class of diagrams are those containing three derivatives at the vertex. These diagrams break into two groups: those in which one end of the internal propagator is free of a derivative, and those in which an external leg is free of a derivative:
\[
\langle \delta \phi(k_1) \delta \phi(k_2) \rangle_\star \supset \quad \quad + \quad \quad \quad \quad \tag{99}
\]
Both types give rise to comparatively simple expressions. For the first we obtain
\[
\int \quad \Pi \supset \frac{k^4}{8q} \eta^2 (1 - iq\eta) \left(4 \frac{\sigma(k,q)}{|q + k|^2} + 1 \right); \tag{100}
\]
after integration this class of diagrams give contributions totalling
\[
\langle \delta \phi(k_1) \delta \phi(k_2) \rangle_\star \supset (2\pi)^3 \delta(k_1 + k_2) \frac{P_\star(k)^2}{\pi^2} \left(-\frac{1}{24} k^3 \ln k + \frac{1}{18} k^3 + \cdots \right). \tag{101}
\]
On the other hand, for the second type of diagram we obtain
\[
\int \quad \Pi \supset \frac{k^2 q}{8} \eta^2 (1 - ik\eta) \left(4 \frac{\sigma(q,k)}{|q + k|^2} + 1 \right). \tag{102}
\]
After integration, we find
\[
\langle \delta \phi(k_1) \delta \phi(k_2) \rangle_\star \supset (2\pi)^3 \delta(k_1 + k_2) \frac{P_\star(k)^2}{\pi^2} \left(\frac{1}{48} k^3 \ln k - \frac{1}{90} k^3 + \cdots \right). \tag{103}
\]
5.3. Infra-red behaviour

Having obtained the relevant contributions to the two-point function, given by Eqs. (85), (87), (93), (96), (98), (101) and (103), we may collect these quantities to obtain an estimate of the total loop correction. It can be written

\[\langle \delta \phi(k_1) \delta \phi(k_2) \rangle_{s} \sim (2\pi)^3 \delta(k_1 + k_2) P_s(k) P_s \left(-\frac{4}{3} \ln k + \beta \right), \]

where \(\beta \) is an unknown renormalization-scheme dependent quantity left over after cancellation of the ultraviolet divergences; it implicitly contains the (ultraviolet) scale which makes \(\ln k \) dimensionless. The coefficient of the logarithm, however, is scheme-independent [65, 84].

6. Discussion

In this paper, I have computed estimates for the leading radiative corrections to the one- and two-point expectation values of the inflaton field perturbation during a phase of single-field, slow-roll inflation. After suitable ultraviolet renormalization, the loop correction to the one-point function was found to be given by an arbitrary renormalization-scheme dependent constant which can be absorbed into the background value of \(\phi \). On the other hand, the loop correction to the two-point function yielded a correction to the power spectrum of the form

\[P_{1\text{loop}} = P_s \left(1 - \frac{4}{3} P_s \ln k + \cdots \right). \]

Although the amplitude of the \(\delta \phi \) power spectrum itself is not observable, the amplitude of \(\zeta \) is accurately known to be of order \(10^{-10} \). At tree-level in a single-field model, the two are approximately related via \(P_\zeta \sim P_s/\epsilon \), where \(\epsilon \) is the slow-roll parameter introduced in Eq. (5). Since \(\epsilon \) is expected to be of order \(10^{-2} \) or less, we can conservatively suppose that \(P_s \lesssim 10^{-10} \). The loop correction given by Eq. (105) is therefore extremely small provided that the logarithm is not too large.

This does not yet allow us to conclude that loop corrections are too small to be observable in the CMB, because it is the loop corrections in \(\zeta \) rather than the \(\delta \phi \) themselves which are accessible to experiment. Therefore, the prediction (105) must be translated into a prediction for \(P_\zeta^{1\text{loop}} \) before a final determination concerning the magnitude of loop corrections can be made. This calculation will be presented elsewhere [77]. However, it is already clear from Eq. (105) that quantum effects do not greatly disturb the magnitude of the fluctuations imprinted in \(\delta \phi \) as successive \(k \)-modes pass outside the horizon. It is only the accumulation of fluctuations on superhorizon scales, where the fields are in an effectively classical regime, which can give rise to a large loop correction.

Eq. (105) is consistent with previous estimates which have been made in the literature. In particular, Weinberg has estimated a correction to \(P_s \) from matter loops in a multi-field theory [65] which has the same functional form as (105). Sloth [46, 47]
One-loop corrections to a scalar field during inflation

has given a similar estimate, based on the same action given in Eqs. (25)–(17), but evaluated several tens of e-folds after horizon crossing when large infrared divergences can compensate for a suppression in powers of slow-roll parameters; in this limit a different set of terms extracted from Eq. (17) dominate the loop correction. This loop correction is proportional to $\langle \delta \phi^2 \rangle \sim P_\ast \ln(k)$ for a flat spectrum, which reproduces the logarithmic k-dependence described by (105).

Acknowledgments

I acknowledge support from PPARC under grant PPA/G/S/2003/00076. I would like to thank M. Sloth, D. Lyth, K. Malik, J. Lidsey, C. Byrnes and A. Mazumdar for useful conversations, and especially F. Vernizzi for lengthy conversations and correspondence which have helped clarify my understanding. I would like to acknowledge the hospitality of the Abdus Salam Institute for Theoretical Physics, Trieste, and the Department of Physics, University of Cardiff, where portions of the work outlined in this paper were carried out.

I would like to thank P. Adshead, R. Easther and E. Lim for drawing my attention to a sign error in the Feynman rules of §3.3 which appeared in earlier versions of this paper.

References

One-loop corrections to a scalar field during inflation

One-loop corrections to a scalar field during inflation

[63] D. Boyanovsky, H. J. de Vega, and N. G. Sanchez, Quantum corrections to the inflaton potential...

