Trojan Horse as an indirect technique in nuclear astrophysics. Resonance reactions.

A.M. Mukhamedzhanov, L.D. Bobkhitsev, B.F. Irzayev, A.
S. Kadyrov, M. La Cognata, C. Spitale and R.E. Trickle

1 Cyclotron Institute, Texas A&M University, College Station, Texas, 77843, USA
2 Institute of Nuclear Physics, Moscow State University, Moscow, Russia
3 Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi-23640, N.W.F.P., Pakistan
4 ARC Centre for antimatter-Matter Studies, Curtin University of Technology,
 GPO Box U1987, Perth, WA 6845, Australia and
5 DM FCI, Universita di Catania, Catania, Italy and INFN - Laboratori Nazionali del Sud, Catania, Italy

The Trojan Horse method is a powerful indirect technique that provides information to determine the astrophysical factors for binary rearrangement processes x + A → B + B at astrophysically relevant energies by measuring the cross section for the Trojan Horse reaction a + A → y + b + B in quasi-free kinematics. We present the theory of the Trojan Horse method for resonant binary subreactions

\[
M^r(P;k_{aa}) = \langle \sum_{k_{rr}} (\sum_j V_{yF}) \rangle
\]

Here, is the exact a + A scattering wave function, is the wave function of the system F = b + B = x + A, is the distorted wave of the system y + F, is the bound state wave function of nucleus i, r_{ij} and k_{ij} are the relative coordinate and relative momentum of nuclei i and j, F = f_{yF} f_{kB} g is the six-dimensional momentum describing the three-body system y + b + B in the nalsystem, V_{yF} = V_{yB} + V_{yA} + V_{yA} + V_{yB}.

I. INTRODUCTION

The presence of the Coulomb barrier for colliding charged nuclei makes nuclear reaction cross sections at astrophysical energies so small that their direct measurement in the laboratory is very difficult, or even impossible. Consequently, indirect techniques are being used to determine these cross sections. The Trojan Horse (TH) method is a powerful indirect technique which allows one to determine the astrophysical factor for rearrangement reactions. The TH method, first suggested by Baur [1], involves obtaining the cross section of the binary process x + A → b + B at astrophysical energies by measuring the two-body to three-body (2 → 3) TH process, a + A → y + b + B, in the quasi-free (QF) kinematics regime, where the "Trojan Horse" particle, a = (x, y), is accelerated at energies above the Coulomb barrier. After penetrating through the Coulomb barrier, nucleus a undergoes breakup leaving particle x to interact with target A while projectile y leaves. From the measured a + A → y + b + B cross section, the energy dependence of the binary subprocess, x + A → b + B, is determined.

The main advantage of the TH method is that the extracted cross section of the binary subprocess does not contain the Coulomb barrier factor. Consequently the TH cross section can be used to determine the energy dependence of the astrophysical factor, S(E), of the binary process, x + A → b + B, down to zero relative kinetic energy of the particles x and A without distortion due to electron screening [2,3]. The absolute value of S(E) must be found by normalization to direct measurements at higher energies. At low energies where electron screening becomes important, comparison of the astrophysical factor determined from the TH method to the direct result provides a determination of the screening potential.

Even though the TH method has been applied successfully to many direct and resonant processes (see [4] and references therein), there are still reservations about the reliability of the method due to two potential modulations of the yield from o-shell effects and initial and final state interactions in the TH 2 → 3 reaction. Here we will address the theory of the TH method for resonant binary reactions x + A → b + B.

II. TROJAN HORSE

The TH reaction is a many-body process (at least four-body) and its strict analysis requires many-body techniques. However, some important features of the TH method can be addressed in a simple model. Let us consider the TH process assuming that nuclei x and A are constituent particles, i.e., we neglect their internal degrees of freedom. For simplicity, we disregard the spins of the particles. The TH reaction amplitude is given in the post form by

\[
M^r(P;k_{aa}) = \langle \sum_{k_{rr}} (\sum_j V_{yF}) \rangle
\]
is the interaction potential of y and the system F and U_{yF} is their optical potential. The surface approximation suggested in [7] was the first serious attempt to address the theory of the TH method. The surface approximation assumes that the TH reaction amplitude has contributions from the external region where the interaction between the fragments b and B (x and A) can be neglected and the wave function \(\psi_r^{(i)} \) can be replaced by its leading asymptotic form:

\[
\psi_r^{(i)} = \left(F \right)^{k_{BA}} t_{BA} + F_{BB} u_{k_{BB}}^{(i)}(t_{BB})] + \sum_{k_{BA}!} \frac{1}{2} k_{BB}^2 u_{k_{BA}}^{(i)}(t_{BA});
\]

where \(F_k \) and \(F_{k_{BA}} \) are spherical waves, \(u_{k_{BB}}^{(i)}(t_{BB}) \) is the outgoing spherical wave, \(F_{BB} \) is the b + B elastic scattering amplitude, \(M_{BB ! XA}^{(i)} \) is the b + B ! x + A reaction amplitude, and \(v_{ij} \) is the relative velocity of nuclei i and j. The expression for the TH reaction amplitude \(M \) in the surface approximation is given by:

\[
M^{(R)}(P; k_{BA}) \quad M_{BB ! XA}^{(i)} < \left(\begin{array}{c} k_{yF} \cr k_{BA} \cr \vdots \end{array} \right)^{(i)} \left(\begin{array}{c} k_{yF} \cr k_{BA} \cr \vdots \end{array} \right)^{(i)} \psi_r^{(i)}(E_{BB}) < \left(\begin{array}{c} k_{yF} \cr k_{BA} \cr \vdots \end{array} \right)^{(i)} \left(\begin{array}{c} k_{yF} \cr k_{BA} \cr \vdots \end{array} \right)^{(i)} \psi_r^{(i)}(E_{BB}) > ;
\]

where the exact initial scattering wave function \(\psi_r^{(i)} \) is replaced by \(\psi_r^{(i)} = \psi_r^{(i)}(t_{BA}) \) and \(\psi_r^{(i)} = \psi_r^{(i)}(t_{BA}) \) is the distorted wave describing the scattering of the nuclei A and A in the initial state of the TH reaction. For simplicity we don’t take into account here the Coulomb interactions. However, in the case of the resonant binary reaction x + A ! b + B the dominant contribution comes from the nuclear interior where both channels x + A and b + B are coupled and where the asymptotic approximation for \(\psi_r^{(i)} \) cannot be applied.

In this work we will address the theory of the TH method for the resonant binary subprocesses x + A ! b + B which explicitly takes into account the o - shell character of x. Eq. (6) can be used as a starting point to derive the expression for the TH reaction amplitude. We assume that the resonant reaction x + A ! b + B proceeds through the formation of the intermediate compound state \(i \), i.e., we neglect the direct coupling between the initial x + A and final b + B channels, which contributes dominantly to direct reactions but gives negligible contribution to resonant ones. An important step in deriving the resonant contribution to the TH reaction matrix element is the spectral decomposition of the wave function \(\psi_r^{(i)} \) given by Eq. (3.81). It leads to the shell-model based resonant matrix representation for \(\psi_r^{(i)} \) which is similar to the level decomposition for the wave function in the internal region in the R matrix approach:

\[
\psi_r^{(i)}(E_{BB}) < \left(\begin{array}{c} k_{yF} \cr k_{BA} \cr \vdots \end{array} \right)^{(i)} \left(\begin{array}{c} k_{yF} \cr k_{BA} \cr \vdots \end{array} \right)^{(i)} \psi_r^{(i)}(E_{BB}) > ;
\]

where \(N \) is the number of the levels included, \(E_{BB} \) is the relative kinetic energy of nuclei b and B, \(\psi_r^{(i)}(E_{BB}) \) is the bound state wave function describing the compound system F excited to the level \(i \) similar to the level in the R matrix theory and is given by Eq. (4.2.20b). Finally,

\[
\psi_r^{(i)}(E_{BB}) = \left(\begin{array}{c} k_{yF} \cr k_{BA} \cr \vdots \end{array} \right)^{(i)} \left(\begin{array}{c} k_{yF} \cr k_{BA} \cr \vdots \end{array} \right)^{(i)} \psi_r^{(i)}(E_{BB}) > ;
\]

is the resonant form factor for the decay of the resonance F described by the compound state x + A into the channel b + B. The partial resonance width is given by

\[
\gamma(E_{BB}) = 2 \gamma(E_{BB}) < \left(\begin{array}{c} k_{yF} \cr k_{BA} \cr \vdots \end{array} \right)^{(i)} \left(\begin{array}{c} k_{yF} \cr k_{BA} \cr \vdots \end{array} \right)^{(i)} \psi_r^{(i)}(E_{BB}) > ;
\]

Then the TH reaction amplitude is

\[
M^{(R)}(P; k_{BA}) \quad M_{BB ! XA}^{(i)} < \left(\begin{array}{c} k_{yF} \cr k_{BA} \cr \vdots \end{array} \right)^{(i)} \left(\begin{array}{c} k_{yF} \cr k_{BA} \cr \vdots \end{array} \right)^{(i)} \psi_r^{(i)}(E_{BB}) < \left(\begin{array}{c} k_{yF} \cr k_{BA} \cr \vdots \end{array} \right)^{(i)} \left(\begin{array}{c} k_{yF} \cr k_{BA} \cr \vdots \end{array} \right)^{(i)} \psi_r^{(i)}(E_{BB}) > ;
\]

where \(M^{(R)}(P; k_{BA}) \) is the exact amplitude for the direct transfer reaction a + A ! y + F populating the compound state F of the system F = x + A = b + B:

\[
M^{(R)}(P; k_{BA}) = \left(\begin{array}{c} k_{yF} \cr k_{BA} \cr \vdots \end{array} \right)^{(i)} \left(\begin{array}{c} k_{yF} \cr k_{BA} \cr \vdots \end{array} \right)^{(i)} \psi_r^{(i)}(E_{BB}) ;
\]

The direct transfer reaction is very well described by the DWBA amplitude, i.e., for the practical analysis we can approximate \(\psi_r^{(i)} \). Correspondingly, \(M^{(R)}(P; k_{BA}) \) can be replaced by

\[
M^{(R)}(P; k_{BA}) = \left(\begin{array}{c} k_{yF} \cr k_{BA} \cr \vdots \end{array} \right)^{(i)} \left(\begin{array}{c} k_{yF} \cr k_{BA} \cr \vdots \end{array} \right)^{(i)} \psi_r^{(i)}(E_{BB}) ;
\]

where \(M^{(R)}(P; k_{BA}) \) is the exact amplitude for the direct transfer reaction a + A ! y + F populating the compound state F of the system F = x + A = b + B:

\[
M^{(R)}(P; k_{BA}) = \left(\begin{array}{c} k_{yF} \cr k_{BA} \cr \vdots \end{array} \right)^{(i)} \left(\begin{array}{c} k_{yF} \cr k_{BA} \cr \vdots \end{array} \right)^{(i)} \psi_r^{(i)}(E_{BB}) ;
\]

where \(M^{(R)}(P; k_{BA}) \) is the exact amplitude for the direct transfer reaction a + A ! y + F populating the compound state F of the system F = x + A = b + B:
Correspondingly for the TH reaction amplitude we get from Eq. (7)

\[M^{(R)}(E_{iA}) = \sum_{i=1}^{M} \psi_{iB}^\ast (E_{iBi}) [D_{i}] M^{DW} (k_{yF} i\kappa_{xA}): \]

(10)

The DW BA amplitude takes into account the rescattering of nuclei A and B in the initial state of the TH reaction and enters as a form factor into the TH resonant reaction amplitude reflecting the o-energy shell character of the transferred particle x. Since in the TH method the astrophysical factor determined from the TH method is normalized to the o-energy-shell (OES) S factor, the replacement of the exact transfer amplitude by the DW BA one, as we will see, practically does not affect the final result.

A. Single resonance

The triple differential cross section for the TH process \(a + A \to y + b + B \) proceeding through an isolated resonance \(R \) is given by

\[\frac{d^3}{dE_{EB} d_x d_{k_{yF}}} = \frac{3}{2} \frac{\psi_{EB}^\ast (E_{EB}) M^{DW} (k_{yF} i\kappa_{xA}) f}{(E_{xA} E_R)^2 + \frac{\gamma (E_{xA})}{4}} : \]

(11)

Here, \(f \) is the kinematical factor, \(\psi_{EB} (E_{EB}) \) is the observable resonance partial width in the channel \(b + B \), \((E_{xA}) \) is the total observable width of the resonance \(F \). Note that all functions \(T (E) \) are related to \(T (E) \) as \(T (E) = T (E) = 1 (\frac{d}{dE}) \) in \(E = E_A \), where \(E_R \) is the resonance energy of the reaction \(F \) in the channel \(b + B \). Thus the TH triple differential cross section, in contrast to the OES single-level resonance cross section, contains the generalized form factor \(M^{DW} (k_{yF} i\kappa_{xA}) f \) rather than the entry channel partial width \(xA (E_{xA}) \) of the binary process \(a + A \to b + B \). A simple normalization of the TH triple differential cross section allows us to single out the OES astrophysical factor for the resonant binary subprocess \(a + A \to b + B \):

\[S(E_{xA}) = N_F (E_{xA}) \frac{d^3}{dE_{EB} d_x d_{k_{yF}}} = \frac{1}{3} \frac{a^2}{x_A} \frac{\psi_{EB}^\ast (E_{EB}) x_A (E_{xA}) (E_{xA})}{(E_{xA} E_R)^2 + \frac{\gamma (E_{xA})}{4}} ; \]

(12)

where the normalization factor \(N_F (E_{xA}) \) is given by

\[N_F (E_{xA}) = \frac{1}{k_{xA}^2} \frac{1}{3} e^{2} x_A \frac{x_A (E_{xA})}{x_A (E_{xA})} N_F (E_{R1}); \]

(13)

Note that the DW BA amplitude \(M^{DW} (k_{yF} i\kappa_{xA}) \) remains practically constant on the interval of a few hundreds keV. Eq. (12) explains and justifies the phenomenological procedure used before successfully in the TH analysis (see Section and references therein). The renormalization factor can be rewritten as

\[N_F (E_{xA}) = \frac{2^{2}}{x_A} x_A \frac{x_A (E_{xA})}{x_A (E_{xA})} N_F (E_{R1}); \]

(14)

where \(xA (E_{xA}) = xA (E_{xA}) \) in the barrier penetration factor appearing in the \(R \) matrix theory. The factor \(N_F (E_{R1}) \) can be found phenomenologically by comparing the experimental TH triple differential cross section with the available OES experimental astrophysical factor at resonance energy. This phenomenological normalization leads to the intermediate astrophysical factor

\[S^0(E_{xA}) = \frac{2^{2}}{x_A} x_A \frac{x_A (E_{xA})}{x_A (E_{xA})} \frac{\psi_{EB}^\ast (E_{EB}) x_A (E_{xA})}{(E_{xA} E_R)^2 + \frac{\gamma (E_{xA})}{4}} ; \]

(15)

The astrophysical factor can be derived by multiplying \(S^0(E_{xA}) \) by the energy-dependent factor in Eq. (14). Thus normalization of the triple TH differential cross section to the experimental astrophysical factor at resonance energy achieved by multiplying Eq. (14) by the factor \(N_F (E_{xA}) \) plays a very special role in the TH method.
B. Two interfering resonances

For two interfering resonances we need to consider the two-level, two channel case. This requires the half-shell (HOES) matrix formalism. Here we address this formalism for a simple case when the distances between two resonances are significantly larger than their total widths. Then the OES reaction amplitude in the subsystem $F = x + A = b + B$ is given by the sum of the amplitudes of each resonance (see Eq. (11)). The corresponding expression for the HOES reaction amplitude in the channel $x + A$ is determined by summing the amplitudes of each resonance in the subsystem $F = x + A = b + B$ is given by
\[
\frac{d^2 \theta}{d \omega d \theta} = \frac{X}{1+2} \left(\frac{1}{E_{x,a}} \right) \left(E_{x,a} - E_{x} \right) + \frac{1}{1+2} \left(E_{x,a} - E_{x} \right) \left(\frac{1}{E_{x,a} - E_{x}} \right) \left(\frac{1}{E_{x,a} - E_{x}} \right)^{-2}.
\]

We assume that $E_{R_1} < E_{R_2}$. The goal of the THM is to determine the energy dependence of the astrophysical factor at the astrophysically relevant energies. The ratio $M^{D,W}_{k_{F} k_{A}} = M^{D,W}_{k_{F} k_{A}}(k_{F} k_{A})$ is practically constant in the interval of a few hundred keV, $E_{x,A} < E_{x}$. We assume that the second resonance can be neglected, and the astrophysical factor is determined from the TH reaction
\[
S^T_H (E_{x,A}) = \frac{e^2}{2} \left(E_{x,A} \right) \left(\frac{1}{E_{x,A} - E_{x}} \right) + \frac{1}{1+2} \left(E_{x,A} - E_{x} \right) \left(\frac{1}{E_{x,A} - E_{x}} \right) \left(\frac{1}{E_{x,A} - E_{x}} \right)^{-2}.
\]

This astrophysical factor is to be compared with the OES astrophysical factor determined from direct measurements
\[
S (E_{x,A}) = \frac{e^2}{2} \left(E_{x,A} \right) \left(\frac{1}{E_{x,A} - E_{x}} \right) + \frac{1}{1+2} \left(E_{x,A} - E_{x} \right) \left(\frac{1}{E_{x,A} - E_{x}} \right) \left(\frac{1}{E_{x,A} - E_{x}} \right)^{-2}.
\]

Here, $(k_{A_{12}}) = (k_{A_{12}}) = \frac{1}{1+2} \left(E_{x,A} - E_{x} \right) \left(\frac{1}{E_{x,A} - E_{x}} \right) \left(\frac{1}{E_{x,A} - E_{x}} \right)^{-2}$ is the reduced width for the ith resonance in the channel $x + A$. Each amplitude $M^{D,W}_{k_{F} k_{A}}(k_{F} k_{A})$ is complex, but the ratio $M^{D,W}_{k_{F} k_{A}}$ may have a small imaginary part. The normalization of the THS factor to the OES one at resonance energy plays a crucial role in the TH method. After such a normalization, we need to know only the ratio of the DWBA amplitudes to calculate $S^T_H (E_{x,A})$.

1. Plane wave approximation

Ratio $M^{D,W}_{k_{F} k_{A}}$ can be approximated by the ratio of the corresponding amplitudes calculated in a plane wave approximation, because the simple plane wave approximation gives similar angular and energy dependence as the DWBA but fails to reproduce the absolute value. It explains why a simple plane wave approximation works well in the TH analysis. Note that in the plane wave approximation $M^{D,W}_{k_{F} k_{A}}(k_{F} k_{A})$ is replaced by
\[
M^0 (k_{F} k_{A}) = e^{i k_{F} x} \left(\frac{1}{E_{x,A} - E_{x}} \right) \left(\frac{1}{E_{x,A} - E_{x}} \right)^{-2}.
\]

Note that the post and prior form factors are equivalent but the post form is more convenient for our purpose. In the QF kinematics for sufficiently high momentum of the projectile, it will interact dominantly with the fragment x while the contribution of the target with V_{yA} is minimized. This is why in what follows we neglect the term containing V_{yA}. Then the transfer reaction amplitude in the plane wave approximation takes the form
\[
M^0 (k_{F} k_{A}) = e^{i k_{F} x} \left(\frac{1}{E_{x,A} - E_{x}} \right) \left(\frac{1}{E_{x,A} - E_{x}} \right)^{-2}.
\]

where $I_{x,a} = i_{A,x} \cdot j_{x}$ is the overlap function of the wave function of the resonance state F and the bound state wave functions of nuclei $A; x$ and y, and $i_{A,x} = i_{A,x} \cdot j_{x}$ is the overlap function of the bound state wave functions of nuclei $A; x$ and y, and $j_{A,x} = j_{X,A} \cdot j_{x}$ is the overlap function of the bound state complex. The plane wave amplitude $M^0 (k_{F} k_{A})$ can be written in a factorized form
\[
M^0 (k_{F} k_{A}) = M_{x,a} (k_{F} k_{A}) I_{x,a}^0 (k_{F} k_{A});
\]

Here, $I_{x,a}^0 (p_{x,a})$ is the Fourier transform of the overlap function $I_{x,a}^0 (p_{x,a})$ and
\[
W_{x,a} (k_{A}) = e^{i k_{x,a} \cdot x} \left(\frac{1}{E_{x,A} - E_{x}} \right) \left(\frac{1}{E_{x,A} - E_{x}} \right)^{-2}.
\]
FIG. 1: Comparison of the calculated astrophysical factor $S^T(E)$ for 15N(p; 12C (solid line), where $E = E_{xA}$, with the direct data [9,10,11].

$$\frac{d^2}{dE_{ee} \, d \, k_{yr} \, d \, k_{sb}} = \frac{3}{4} J^b_\gamma(k_y \, m_X^b \, k_a)^b \, \delta(k_{sb} \, m_X^b \, k_a) \, \frac{1 - \frac{1}{2} \frac{m_X^b}{m_X^0} \, k_{FB}}{E_{xA} - E_{xR} + i \frac{m_X^b}{m_X^0} \, \frac{k_{FB}}{2}}.$$ (23)

Now we can get the HOES cross section for the binary subprocess $x + A \rightarrow b + B$ from the triple differential cross section

$$\frac{d}{d \cos \theta} \, \frac{d^2}{dE_{ee} \, d \, k_{yr} \, d \, k_{sb}} = \frac{1}{4} J^b_\gamma(p_{yx})^b.$$ (24)

where $p_{yx} = k_y \, m_X^b \, k_a$. Eq. [24] explains and justifies the procedure used in [9,11] to connect the triple and binary TH cross sections. Note that in a strict approach the triple differential cross section is expressed in terms of the overlap function $I^a_{\gamma x}$ rather than the two-body bound state wave function γ_a. Note that $I^a_{\gamma x}$ and γ_a are related by

$$I^a_{\gamma x} = S^{1 \rightarrow 2} \, \gamma_a.$$ (25)

where $S^{1 \rightarrow 2}$ is the spectroscopic factor. The binary reaction HOES cross section is only intermediate result. The final goal is the TH astrophysical factor, which can be determined by normalization of the triple differential cross section to the OES astrophysical factor in the first resonance peak and is given by Eq. [17]. In the plane wave approximation M_{21}^0 is replaced by

$$M_{21}^0 = \frac{[M_{xA} \, k_a \, m_X^b \, k_F]}{[M_{xA} \, k_a \, m_X^b \, k_F]}.$$ (26)

If $M_{21}^0 (xA)_21$, the astrophysical factor $S^T(E_{xA})$ reproduces the OES S factor $S(E_{xA})$ at energies E_{xA}. In Fig. 3 the astrophysical factor $S^T(E_{xA})$ for 15N(p; 12C calculated using Eq. [17] for the TH reaction 15N(d,p) 12C is compared with the experimental $S(E_{xA})$ obtained from direct measurements. There are two interfering resonances at $E_{R1} = 312$ keV and $E_{R2} = 962$ keV. The best γ has been achieved for $x_A(1) \, p(1) = 1$ keV, $b(1) \, b(1) = 93$ keV, $x_A(2) \, p(2) = 95$ keV, $b(2) \, b(2) = 45$ keV. To end M_{21}^0 we used Eq. [22], in which the overlap function $I^a_{\gamma x}$ is approximated by a single-particle 15N wave function in the Woods-Saxon potential calculated in the internal region by a procedure similar to that used in R-matrix method to calculate the level eigenfunctions. We end that $M_{21}^0 (xA)_21 = 1$ while $M_{21}^0 (xA)_20 = 0$. It explains why the calculated $S^T(E_{xA})$ shown in Fig. 1 is in an excellent agreement with the direct data.

We presented the expression for the resonant S factor determined from the TH reaction taking into account the orbital energy-shell effects within the HOES R matrix formalism and justifying a simple plane wave approximation. Validating this makes it clear why the TH method is such a powerful indirect technique for nuclear astrophysics.
This work was supported in part by the U.S. DOE under Grant No. DE-FG 02-93ER40773.

[12] Generally speaking one must be very careful in using the asymptotic approximation for the scattering wave function because the matrix element with the exact wave function in the initial state and ingoing spherical wave $u_{kx}^i (r_{x_A})$ in the final state vanishes after transformation of the volume integral into a surface integral.