Search for $B^0 \to \phi \phi$ decay at Belle

(The Belle Collaboration)

1 Budker Institute of Nuclear Physics, Novosibirsk
2 Chiba University, Chiba
3 University of Cincinnati, Cincinnati, Ohio 45221
4 Department of Physics, Fu Jen Catholic University, Taipei
5 Justus-Liebig-Universitat Giessen, Giessen
6 The Graduate University for Advanced Studies, Hayama
7 Kyungpook National University, Chung-Li
8 National Central University, Chung-Li
9 University of Hawaii, Honolulu, Hawaii 96822
10 High Energy Accelerator Research Organization (KEK), Tsukuba
11 Hiroshima Institute of Technology, Hiroshima
12 University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
13 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing
14 Institute of High Energy Physics, Vienna
15 Institute of High Energy Physics, Protvino
16 Institute for Theoretical and Experimental Physics, Moscow
17 J. Stefan Institute, Ljubljana
18 Kanagawa University, Yokohama
19 Korea University, Seoul
20 Kyoto University, Kyoto
21 Kyungpook National University, Taegu
22 Ecole Polytechnique Federale Lausanne, EPFL, Lausanne
23 University of Ljubljana, Ljubljana
24 University of Maribor, Maribor
25 University of Melbourne, School of Physics, Victoria 3010
26 Nagoya University, Nagoya
27 Nara Women’s University, Nara
28 National Central University, Chung-Li
29 National United University, Miao Li
30 Department of Physics, National Taiwan University, Taipei
31 H. Niewodniczanski Institute of Nuclear Physics, Krakow
32 Niigata Dental University, Niigata
33 Niigata University, Niigata
34 University of Nova Gorica, Nova Gorica
35 Osaka City University, Osaka
36 Osaka University, Osaka
37 Panjab University, Chandigarh
38 Peking University, Beijing
Abstract

We search for the doubly charm baryonic decay $B^0 \rightarrow \pi^+ \pi^-$, in a data sample of 520×10^6 $B \bar{B}$ events accumulated at the $(4S)$ resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider. We find no significant signal and set an upper limit of $B(B^0 \rightarrow \pi^+ \pi^-) < 6.2 \times 10^{-5}$ at 90% confidence level. The result is significantly below a naive extrapolation from $B(B^0 \rightarrow \pi^+ \pi^-)$ assuming a simple Cabibbo-suppression factor of $|V_{cd}|^2 |V_{cs}|^2$. The small branching fraction could be attributed to a suppression due to the large momentum of the baryonic decay products, which has been observed in other charm baryonic two-body B decays.

PACS numbers: 13.20.He
The large mass of the b quark and the large quark mixing matrix element V_{cb} [1, 2] for the $b \to c$ transition lead to a large branching fraction (10%) [3] for charmed baryonic decays of the B meson. Charmed baryonic decays into four-, three-, and two-body final states have already been observed. The measured branching fractions are consistent with the theoretical predictions for charmed baryonic decays of the B meson [4, 5, 6, 7, 10].

The hierarchy can be understood by large contributions of various intermediate states known in the decays [3, 4, 5, 6, 7, 10]. The key is to understand quantitatively the decay mechanism of the two-body decays. For example, $B (B \to c(2S)^0 \pi)$ is observed in the three-body decay $B \to \Lambda_c^+ \pi^-$, which is comparable to $B (B \to c(2S)^0 \pi)$, and there is also an interesting measurement of $B (B \to \Lambda_c^+ \pi^-)$, which is quite large in comparison with $B (B \to c(2S)^0 \pi)$, and does not follow the hierarchy. Figures 1(a) and (b) show quark diagrams relevant for these decays through Cabibbo-favored $b \to c$ transitions with $W \to uu$ and $W \to cc$, respectively. Since we naively expect similar branching fractions as $V_{cb} V_{ud}^* j$ and $V_{cb} V_{cs}^*$, the two-order of magnitude difference between $B (B \to \Lambda_c^+ \pi^-)$ and $B (B \to c(2S)^0 \pi)$ is a puzzle. It indicates that there is some mechanism to enhance or suppress specific two-body decays. A discussion of a dynamical suppression mechanism, based on the large Q-value in $B \to c(2S)^0 \pi$ compared to $B \to \Lambda_c^+ \pi^-$, is given in Ref. [20]. It is important to study various two-body decays to understand charmed baryonic B decays.

Fig. 1: Quark diagrams for (a) $B \to \Lambda_c^+ \pi^-$, (b) $B \to \Xi_c^+ \bar{c}$, and (c) $B \to \Lambda_c^+ \bar{c}$. The first two decays are Cabibbo-favored with CKM couplings $V_{cb} V_{ud}$ and $V_{cb} V_{cs}$, respectively, while the third one is Cabibbo-suppressed with coupling $V_{cb} V_{cd}$.

In this report, we study the doubly charmed baryonic decay $B \to \Lambda_c^+ \pi^-$ as shown in Fig. 1(c). This mode is naively expected to have a branching fraction suppressed by a Cabibbo factor of 54% [3]. To determine the Cabibbo-favored decays, given the large branching fraction $B (B \to \Lambda_c^+ \pi^-)$ relative to $B (B \to c \pi$), we search for the decay $B \to \Lambda_c^+ \pi^-$ and compare the observed branching fraction with simple estimates. We expect $B (B \to \Lambda_c^+ \pi^-) = (7.7 \pm 3.6) \times 10^{-7}$ from $B (B \to \Lambda_c^+ \pi^-)$, taking into account the Cabibbo-suppression factor and the phase space factors in two-body decays proportional to the decay momentum in the B rest frame (assuming a relative S-wave, $L=0$). Alternatively, we expect $B (B \to \Lambda_c^+ \pi^-) = (3.6 \pm 1.1) \times 10^{-4}$ from $B (B \to \Lambda_c^+ \pi^-)$. We expect 0.1 and 45 events, respectively, from these two estimates scaled to our data sample.
This analysis is based on a data sample of 479 fb$^{-1}$, corresponding to 520 10^6 $\ell\ell$ events, which were recorded at the (4S) resonance with the Belle detector at the KEKB asymmetric-energy e^+e^- collider [21].

The Belle detector is a large-solid-angle spectrometer based on a 1.5 Tesla superconducting solenoid magnet. It consists of three layer silicon vertex detector for the first sample of 152 10^6 $\ell\ell$ pairs, a four layer silicon vertex detector for the later 368 10^6 $\ell\ell$ pairs, a 50 layer central drift chamber (CDC), an array of aerogel threshold Cherenkov counters (ACC), a barrel-like arrangement of time of flight scintillation counters (TOF), and an electromagnetic calorimeter com prised of CsI(Tl) crystals located inside the superconducting solenoid coil. An iron return located outside the coil is instrumented to detect K_1^0 mesons and to identify muons. The detector is described in detail elsewhere [22]. To simulate detector response and to estimate efficiency for signal measurement, we use Monte Carlo (MC) event generation program EvtGen [23] and a GEANT [24] based detector simulation code.

To search for $B^0 \rightarrow \Lambda^+_c (pK^+)$ we reconstruct a pair of Λ^+_c’s decaying into pK^+s. Charge-conjugate modes are implicitly included throughout this paper unless noted otherwise. We require tracks to have a distance of closest approach to the interaction point less than 5 cm along the z-axis (opposite to the e^+ beam direction) and 1 cm in a plane perpendicular to the z-axis. Hadrons (protons, kaons and pions) are identified by using likelihood ratios based on CDC dE=dx, TOF and ACC information. We use likelihood ratios $L_s=(L_s+L_b)$, where s and b stand for the hadron species to be identified and for the others, respectively. We require the ratios to be greater than 0.6, 0.6 and 0.4 for proton, kaon and pion selection, respectively. The efficiency for proton identification is 95% with a kaon fake rate of 1.0% due to the small proton momentum (1 GeV=c) in these baryonic decays. The efficiencies for kaons and pions are about 90%, while the corresponding pion and kaon misidentification rates are approximately 10% [25]. Tracks that are positively identified as electrons or muons are rejected. We impose loose requirements on the vertex t^2’s for $\Lambda^+_c (pK^+)$ and $B^0 \rightarrow \Lambda^+_c (\Xi^-)$ to reject background from the decay products of K^0_S and Λ_c particles. When there are multiple B^0 candidates (3%) in an event, we choose the candidate with the smallest 2_B.

![Image](image.png)

FIG. 2: $\Lambda^+_c (pK^+)$ mass distribution for $B^0 \rightarrow \Lambda^+_c (pK^+)$ candidates in $|\Delta E| < 0.2$ GeV and 52 GeV\cdotc$^2 < M_{\Delta c} < 53$ GeV\cdotc2. (a) Data and (b) MC signal. The curves show the fits with a double Gaussian for the signal and a linear function for the background.
We search for the B signal in the two-dimensional plane of E and M_{bc}. The variable $E = E_B - E_{beam}$ is the difference between the reconstructed B meson energy (E_B) and the beam energy (E_{beam}). $M_{bc} = \sqrt{E_{beam}^2 - p_B^2}$ is the beam energy constrained B meson mass with the momentum vector of the B meson (p_B). Here E_{beam}, E_B, and p_B are deduced in the center-of-mass system (CMS). We use the \bar{c} mass and the measured momentum of the \bar{c} system to calculate E_B, as it gives a better E resolution, $43.3 \, M\, eV = c^2$, than that calculated with the \bar{c} energies reconstructed from the decay products, $62.6 \, M\, eV = c^2$.

To optimize the selection parameters for the signal search, we define a B signal region of $jE < 0.02 \, G\, eV$ (4) and $5.27 \, G\, eV = c^2 < M_{bc} < 5.3 \, G\, eV = c^2$.

Figure 2 shows the \bar{c} mass distribution for (a) data and (b) the M C signal for B signal candidates with $jE < 0.2 \, G\, eV$ and $5.2 \, G\, eV = c^2 < M_{bc} < 5.3 \, G\, eV = c^2$. We find a significant \bar{c} mass peak in the data due to the large inclusive branching fraction for B meson decays with a \bar{c} baryon in the final state. The curves show using a double Gaussian for the signal and a linear function for the background. We obtain a \bar{c} yield of 1281 69 events with a $^{2}_{\chi} = 0.05$ (67.4%) in the fit to the data, we take the ratio of tail to core to 2.29 and the tail fraction (to the total area) to 0.028; these values are obtained from a fit to the M C signal. The parameters tail and core are the widths for the core and tail Gaussian, respectively. The fitted masses for \bar{c} are (2285:3 0.2) $M\, eV = c^2$ and (3.3 0.2) $M\, eV = c^2$ for the data, and (2285 0.1) $M\, eV = c^2$ and (3.2 0.1) $M\, eV = c^2$ for the M C signal. We require that the \bar{c} mass lie in the range 2.275 $G\, eV = c^2$ to 2.295 $G\, eV = c^2$ (3 core). The small differences between the data and M C signal are taken into account in the systematic error as discussed later.

In this analysis, the \bar{c} mass requirements are very effective in suppressing the continuum background (e$^+e^-$ $\rightarrow q\bar{q}q\bar{q} = u\bar{d}; s\bar{c})$. The dominant background is from generic B events. To suppress the background further, we use the variable $\cos \theta$, which is the cosine of the angle between the reconstructed B direction and the beam direction in the CMS. The B signal has a $(1 - \cos^2 \theta)_{B}$ distribution while the generic B background and the continuum background have a nearly flat distribution. Using M C simulation, we examine the shape of the signal yield $S = S + N$ as a function of $\cos \theta$. Here, S and N are the signal and background yields in the B signal region, respectively. We assume a branching fraction $B(B^0 \rightarrow \bar{c} c) = 5.10^{-5}$ and a sample of 6×10^6 $B B$ events, and optimize the shape of the signal with the requirement $jE < 0.2$.

To obtain the signal yield, we perform an unbinned maximum likelihood fit to the $B^0 = 2 \bar{c} c$ candidates in a two-dimensional (2D) region $0.15 \, G\, eV < E < 0.2 \, G\, eV$ and $5.2 \, G\, eV = c^2 < M_{bc} < 5.3 \, G\, eV = c^2$. We exclude the region $E < 0.15 \, G\, eV$, as we find from M C simulation that a background from $B^0 = \bar{c} c$ populates the region $E < 0.2 \, G\, eV$. Thus, the effect of the background is negligible small (< 0.05 events) in the region, even if we assume large values of $B(B^0 \rightarrow \bar{c} c; K^0 = 0)$.

We use a likelihood defined by

$$L = \frac{e^{(n+s+n_b)} \cdot n!}{n!} \cdot \left[n_b F_b(E; M_{bc}) + n_b F_b(E; M_{bc}) \right]$$

with the signal yield n_b and the background yield n_b. The parameter n is the observed number of events. The probability density function (PDF) for the signal $F_b(E; M_{bc})$ is expressed as a product of a double Gaussian in E and a single Gaussian in M_{bc}, while the PDF for the background $F_b(E; M_{bc})$ is expressed as a product of a linear function in E and an ARGUS function in M_{bc}.

6
In the L, the E and M_{bc} signal shape parameters are fixed to those obtained from one-dimensional fits to the individual simulated distributions for E with 5.27 GeV < M_{bc} < 5.30 GeV = c^2, and M_{bc} with j Ej < 0.02 GeV. The yields n_s and n_b, the E linear slope parameter and the ARGUS shape parameter are noted. We obtain a signal efficiency of 0.106 ± 0.001 from a 2D fit to the MC signal. For the fit to the data, we cross the signal parameters to those calibrated for the MC/data systematic difference by using a control sample of B^0 -> \phi pi^- decays.

Figure 3 shows the fit to the data. We obtain a signal of 2.7_{-2.2}^{+2.7} events with a statistical
significance of 1.6. The significance is calculated as \(\frac{2\ln(L_0/L_{\text{max}})}{q} \), where \(L_{\text{max}} \) and \(L_0 \) are the likelihood values at the fitted signal yield and the signal xed to zero.

We investigate a possible peaking background in the sideband data, which includes a background from \(B^0 \! \rightarrow \! c \bar{c} \) when a \(c \) is misidentified as a \(K^+ \). We do this by requiring that one of the \(c \) candidate mass lies in the range \(2.245 \text{ GeV} < c^2 < 2.325 \text{ GeV} \) while excluding mass in the range \(2.275 \text{ GeV} < c^2 < 2.295 \text{ GeV} \). From the 2D to the sideband, we estimate a peaking background of 0.1 ± 0.5 events, which is consistent with zero.

We estimate a systematic error of 14.5% in event reconstruction and selection; a 12.6% uncertainty in the e ciency (arising from possible differences between the data and MC simulation in the reconstructed \(c \) mass, particle identi cation and tracking), a 7.1% uncertainty due to the uncertainty of the signal parameterization used in the 2D to (obtained by varying the parameters by one standard deviation), and a 1.3% uncertainty in the total number of \(B \) events. We obtain a total systematic error of 62% in the measured branching fraction, including a 58% uncertainty due to an error in \(B(\! \rightarrow \! c \bar{c} \! \rightarrow \! K^+ \pi^- \!) = (5.0 \pm 1.3)\% \) and a 18% error for the peaking background. We correct the signal e ciency by a factor of 0.90 due to a systematic difference in particle identi cation between MC and data. We assume the same numbers of neutral and charged \(B \) pairs, and obtain a branching fraction of \((2.22^{+2.22}_{-1.56} \text{(stat)} \pm 1.3 \text{(syst)}) \times 10^{-5}\).

We calculate 7.7 events for the upper limit at 90% con dence level (CL) by integration of the likelihood function obtained from the 2D to. We use the formula of 90% = \(R_{\text{obs}} \times L(n|s)d|s = 0 \times L(n|s)ds \) with \(n = 2.7 \), where the likelihood \(L(n|s) = 1 \times L(n|s) \) is convolved with the Gaussian \(G(s,s) \) to take into account the total error, which is composed of errors in the fitted signal (the signal and the peaking background), and the systematic error discussed above. The corresponding upper limit is found to be \(B(\! \rightarrow \! c \bar{c} \! \rightarrow \! K^+ \pi^- \!) < 6.2 \times 10^{-5} \) at 90% CL.

The present result is much smaller than the naive estimate of \((3.6 \pm 1.1) \times 10^{-4}\) from \(B(\! \rightarrow \! c \bar{c} \! \rightarrow \! K^+ \pi^- \!) \) with a signi cance of approximately 3, where the main uncertainty comes from the experimental error in \(B(\! \rightarrow \! c \bar{c} \! \rightarrow \! K^+ \pi^- \!) \). On the other hand, no signi cant difference is observed for the naive estimate of \((7.7 \pm 3.0) \times 10^{-7}\) from \(B(\! \rightarrow \! c \bar{c} \! \rightarrow \! K^+ \pi^- \!) \) due to the limited statistics. Figure 4 compares the result with the data for other charmed baryonic two-body \(B \) decays; \(B(\! \rightarrow \! c \bar{c} \! \rightarrow \! K^+ \pi^- \!) \) and \(B(\! \rightarrow \! c \bar{c} \! \rightarrow \! K^+ \pi^- \!) \). We de ne a rescaled branching fraction \(F = B(\! \rightarrow \! c \bar{c} \! \rightarrow \! K^+ \pi^- \!)/B(\! \rightarrow \! c \bar{c} \! \rightarrow \! K^+ \pi^- \!)/B(\! \rightarrow \! c \bar{c} \! \rightarrow \! K^+ \pi^- \!) \) with SF = \(f_{\text{SF}} = \frac{V_{Cl}}{V_{W_{Cl}}} \) assuming a b! u(du) tree transition. The open and solid points with error bars show the data for \(B \) and \(B \) decays, respectively. The dashed line shows the function \(L(F(p)) = c + s \times (6.9 \pm 0.8 \text{ (GeV)} = c^{-1}) \) to guide the eye, which is obtained by a t to the three data points. The 90% CL upper limit \(F(\! \rightarrow \! c \bar{c} \! \rightarrow \! K^+ \pi^- \!)/B(\! \rightarrow \! c \bar{c} \! \rightarrow \! K^+ \pi^- \!) \) is close to the line.

In summary, we search for the doubly charmed baryonic decay \(B \! \rightarrow \! c \bar{c} \) in a data sample of 520 \(10^6 \) \(B \) events. We obtain \(B(\! \rightarrow \! c \bar{c} \! \rightarrow \! K^+ \pi^- \!) = (2.22^{+2.22}_{-1.56} \text{(stat)} \pm 1.3 \text{(syst)}) \times 10^{-5}\) with an upper limit of \(B(\! \rightarrow \! c \bar{c} \! \rightarrow \! K^+ \pi^- \!) < 6.2 \times 10^{-5} \) at 90% con dence level. The result is signi cantly smaller than a naive extrapolation from \(B(\! \rightarrow \! c \bar{c} \! \rightarrow \! K^+ \pi^- \!) \), assuming a simple Cabibbo suppression factor. The suppression of \(B \! \rightarrow \! c \bar{c} \) could be attributed to the strong m om entum dependence of the decay amplitude that has been observed in other
FIG. 4: The rescaled branching fraction \(F = \frac{B}{p \cdot \text{CSF}} \) for \(B^0 \rightarrow c \bar{c} \), \(B^0 \rightarrow p \), \(B^0 \rightarrow s \), \(B^0 \rightarrow p \), \(B^0 \rightarrow s \), \(B^0 \rightarrow p \), \(B^0 \rightarrow s \), \(B^0 \rightarrow p \) decays. The dashed line shows a fit to \(\ln(F(p)) = c + s \cdot p \) with \(s = 6.9 \) GeV/c to guide the eye.

We thank the KEKB group for excellent operation of the accelerator, the KEK cryogenics group for excellent solenoid operations, and the KEK computer group and the NII for valuable computing and Super-SINET network support. We acknowledge support from MEXT and JSPS (Japan); ARC and DEST (Australia); NSFC and KIP of CAS (China); DST (India); MOEHRD, KOSEF and KRF (Korea); KBN (Poland); MES and RFAER (Russia); ARRS (Slovenia); SNSF (Switzerland); NSC and MOE (Taiwan); and DOE (USA).

From the measurement of $B(\bar{c}^0 \rightarrow c\pi^-\pi^+\pi^+)$, we calculate $B(\bar{c}^0 \rightarrow c\pi^-\pi^+\pi^+) = (5.2 \pm 2.9) \times 10^{-3}$ and $(2.8 \pm 1.1) \times 10^{-3}$ for two theoretical predictions: $B(\bar{c}^0 \rightarrow c\pi^-\pi^+\pi^+) = 0.83\% \text{[16]}$ and $1.74\% \text{[17]}$, respectively. We refer to 0.83% in the introduction. We also calculate $B(\bar{c}^{+} \rightarrow c\pi^-\pi^+\pi^+) = (3.0 \pm 1.3) \times 10^{-3}$ from the measurement of $B(\bar{c}^0 \rightarrow c\pi^-\pi^+\pi^+)$. Thus, $B(\bar{c}^{+} \rightarrow c\pi^-\pi^+\pi^+) = (9.3 \pm 3.2\%) \times 10^{-3}$ for $B(\bar{c}^0 \rightarrow c\pi^-\pi^+\pi^+) = 0.31\% \text{[16,17,18,19]}$ and the measurement $B(\bar{c}^{+} \rightarrow c\pi^-\pi^+\pi^+) = 0.55\% \text{[16,17,18,19]}$. There is one order of magnitude uncertainty in these extrapolations. We therefore decide to quote only the result from $B(\bar{c}^0 \rightarrow c\pi^-\pi^+\pi^+)$ decay.

[28] For comparison of those data points, we normalize them to the absolute branching fraction $B(\bar{c}^{+} \rightarrow c\pi^-\pi^+\pi^+)$ = 5.6\%. We calculate the errors for $F(\bar{c}^{+} \rightarrow c\pi^-\pi^+\pi^+)$ and $F(\bar{c}^{0} \rightarrow c\pi^-\pi^+\pi^+)$ excluding the uncertainty from the absolute branching fraction as these modes decay to final states with one \bar{c}. On the other hand, we include the error for $F(\bar{c}^{+} \rightarrow c\pi^-\pi^+\pi^+)$ as it decays to two \bar{c}'s. The error in $F(\bar{c}^{0} \rightarrow c\pi^-\pi^+\pi^+)$ includes the theoretical uncertainty in $B(\bar{c}^{0} \rightarrow c\pi^-\pi^+\pi^+)$ = 0.83-1.74\% discussed above.