We study theavor-changing-neutral-current process $c \to u$ using $13 fb^{-1}$ of pp collisions.
M any extensions of the standard model (SM) provide an mechanism for flavor-changing-neutral-current (FCNC) decays of beauty, charm, and strange hadrons that could significantly alter the decay rate with respect to SM expectations. Since FCNC processes are forbidden at tree level in the SM, new physics effects could become visible in FCNC processes if the new amplitudes are larger than the higher-order penguin and box diagrams that mediate FCNC decays in the SM. In B meson decays, the experimenter sensitivity has reached the SM expected rates for many FCNC processes. In contrast, GIM suppression in D meson decays is significantly stronger and the SM branching fractions are expected to be as low as 10^{-9} [2,8]. This leaves a large window of opportunity still available to search for new physics in charm decays. There are several models of new phenomena such as SUSY R-parity violation in a single coupling scheme [4] that lead to a tree level interaction mediated by new particles, or little Higgs models with a new up-like vector quark [5] that lead to direct Z^0-$car{c}$ couplings. In both scenarios deviations from the SM might be only seen in the up-type quark sector, motivating the extension of experimental studies of FCNC processes to the charm sector.

In this Letter we report on a study of FCNC charm decays including the first observation of the decay $D^+_s \rightarrow \bar{D}^{*0}$ and the first evidence for the decay $D^{*+} \rightarrow \bar{D}^{*0} \ell^+\nu_\ell$ by requiring a dimuon mass window around the nominal mass. The inclusion of charge conjugate modes is included throughout the text. At the reported level of statistics, we expect no contributions from two body $D^{*+}_{(s)}$ decays due to the smaller $D^{*+}_{(s)}$ branching fractions and the smaller $D^{*+}_{(s)}$ and D^{*0} branching fractions [6,7]. The search for the $c \rightarrow u$ transition in the decay $D^{*+} \rightarrow \bar{D}^{*0} \ell^+\nu_\ell$ is performed in the continuum region of the dimuon invariant mass spectrum below and above the resonance. We focus on the D^* continuum decay as opposed to signal D^* or c decays due to the longer lifetime and higher production fraction of the D^* meson. The study uses a data sample of pp collisions at $\sqrt{s}=1.96$ TeV corresponding to an integrated luminosity of approximately 1.3 fb$^{-1}$ recorded by the D0 detector operating at the Fermilab Tevatron Collider. Similar studies have recently been published by the FOCUS [8] and CLEO-c [9] collaborations, and preliminary results have been presented by the BaBar [3] collaboration.

D0 is a general purpose detector described in detail in Ref. [10,11]. Charged particles are reconstructed using a silicon vertex tracker and a scintillating fiber tracker located inside a superconducting solenoidal coil that provides a magnetic field of approximately 2 T. Photons and electrons are reconstructed using the inner region of a liquid argon calorimeter optimized for electromagnetic shower detection. Jet reconstruction and electron identification are further augmented with the outer region of the calorimeter optimized for hadronic shower detection. Muons are reconstructed using a spectrometer consisting of magnetized iron toroids and three super-layers of proportional tubes and plastic trigger scintillators located outside the calorimeter.

The analysis is based on data collected with dimuon triggers. The D0 trigger is based on a three-tier system. The level1 and 2 dimuon triggers rely on hits in the muon spectrometer and fast reconstruction of mu tracks. The level3 trigger performs a fast reconstruction of the entire event allowing for further muon identification algorithm matching of muon candidates to tracks reconstructed in the central tracking system, and requires events on the positron of the pp interaction.

The selection requirements are determined using pythia [12] Monte Carlo (MC) events to model both cc and bb production and fragmentation. The event generator [13] MC is used to decay prompt D mesons and secondary D mesons from B meson decay into the $c\rightarrow u$ transition in the $c\rightarrow u$ transition in the decay $D^{*+} \rightarrow \bar{D}^{*0} \ell^+\nu_\ell$ is performed in the continuum region of the dimuon invariant mass spectrum below and above the resonance. We focus on the D^* continuum decay as opposed to signal D^* or c decays due to the longer lifetime and higher production fraction of the D^* meson. The study uses a data sample of pp collisions at $\sqrt{s}=1.96$ TeV corresponding to an integrated luminosity of approximately 1.3 fb$^{-1}$ recorded by the D0 detector operating at the Fermilab Tevatron Collider. Similar studies have recently been published by the FOCUS [8] and CLEO-c [9] collaborations, and preliminary results have been presented by the BaBar [3] collaboration.

D^0 is a general purpose detector described in detail in Ref. [10,11]. Charged particles are reconstructed using a silicon vertex tracker and a scintillating fiber tracker located inside a superconducting solenoidal coil that provides a magnetic field of approximately 2 T. Photons and electrons are reconstructed using the inner region of a liquid argon calorimeter optimized for electromagnetic shower detection. Jet reconstruction and electron identification are further augmented with the outer region of the calorimeter optimized for hadronic shower detection. Muons are reconstructed using a spectrometer consisting of magnetized iron toroids and three super-layers of proportional tubes and plastic trigger scintillators located outside the calorimeter.

The analysis is based on data collected with dimuon triggers. The D0 trigger is based on a three-tier system. The level1 and 2 dimuon triggers rely on hits in the muon spectrometer and fast reconstruction of mu tracks. The level3 trigger performs a fast reconstruction of the entire event allowing for further muon identification algorithm matching of muon candidates to tracks reconstructed in the central tracking system, and requires events on the positron of the pp interaction.

The selection requirements are determined using pythia [12] Monte Carlo (MC) events to model both cc and bb production and fragmentation. The event generator [13] MC is used to decay prompt D mesons and secondary D mesons from B meson decay into the $c\rightarrow u$ transition in the $c\rightarrow u$ transition in the decay $D^{*+} \rightarrow \bar{D}^{*0} \ell^+\nu_\ell$ is performed in the continuum region of the dimuon invariant mass spectrum below and above the resonance. We focus on the D^* continuum decay as opposed to signal D^* or c decays due to the longer lifetime and higher production fraction of the D^* meson. The study uses a data sample of pp collisions at $\sqrt{s}=1.96$ TeV corresponding to an integrated luminosity of approximately 1.3 fb$^{-1}$ recorded by the D0 detector operating at the Fermilab Tevatron Collider. Similar studies have recently been published by the FOCUS [8] and CLEO-c [9] collaborations, and preliminary results have been presented by the BaBar [3] collaboration.
below 2 GeV=c^2. The dimuon mass distribution in the
region of the light quark-antiquark resonances is shown
in Fig.1. M, the corresponding to the production of
! and ! mesons are seen. The is observed as a broad
structure beneath the ! peak, and there is some indication
of production as well. For the initial search for
resonance dimuon production we require the + mass to be
within 0.04 GeV=c^2 of the nominal + mass and to deter-
mine the muon momentum with a mass constraint
imposed which is proves the + invariant mass resolution by 33%.

Candidate D_s (+) mesons are formed by combining the
dimuon system with a track that is associated with the
same track jet as the dimuon system, has hits in both the
silicon and layer trackers, and has p_T > 0.28 GeV=c.
The pion impact parameter sign can be seen as the point of closest approach of the track helix to
the interaction point in the transverse plane relative to its
element, requiring that the muon momentum enter with a mass constraint
imposed which is proves the + invariant mass resolution by 33%.

Candidate D_s (+) mesons are formed by combining the
dimuon system with a track that is associated with the
same track jet as the dimuon system, has hits in both the
silicon and layer trackers, and has p_T > 0.28 GeV=c.
The pion impact parameter sign can be seen as the point of closest approach of the track helix to
the interaction point in the transverse plane relative to its
element, requiring that the muon momentum enter with a mass constraint
imposed which is proves the + invariant mass resolution by 33%.

Candidate D_s (+) mesons are formed by combining the
dimuon system with a track that is associated with the
same track jet as the dimuon system, has hits in both the
silicon and layer trackers, and has p_T > 0.28 GeV=c.
The pion impact parameter sign can be seen as the point of closest approach of the track helix to
the interaction point in the transverse plane relative to its
element, requiring that the muon momentum enter with a mass constraint
imposed which is proves the + invariant mass resolution by 33%.
We normalize the results to the $D^+ \rightarrow \pi^+ \pi^+ \mu^-$ signal instead of the larger $D_s^+ \rightarrow \phi \mu^-$ production fractions. We use the product of the known $D^+ \rightarrow \pi^+ \pi^+ \mu^-$ branching fractions \cite{3}. The signal is centered in the $D^+ \rightarrow \pi^+ \pi^+ \mu^-$ channel in the preselection sample and the $D^+ \rightarrow \pi^+ \pi^+ \mu^-$ channel in the preselection sample is determined from MC to be $(5\pm 0.8)\%$. The inputs to the limit calculation are summarized in Table \ref{tab2}. The systematic uncertainty is dominated by the modeling of the vertex resolution, particularly in the ϕ_{Vtx} requirement. Using this, we find

$$ B(D^+ \rightarrow \pi^+ \pi^+ \mu^-) = 2.09 \pm 0.91 \% \text{ C.L.} $$

The limit is determined using a Bayesian technique \cite{20}. Using the central value of $D^+ \rightarrow \pi^+ \pi^+ \mu^-$ and $D^{*-}\to \pi^- \pi^+ \mu^-$.
Relative efficiency 0.054 0.008
B(D⁺ ! + +) 6.50 ± 0.3
B(!!) 2.86 ± 0.08
Single event sensitivity 3.0 ± 0.7
B(D⁺ ! + +) 95% C.L. < 6.1 ± 0.8
B(D⁺ ! + +) 90% C.L. < 3.9 ± 0.6

Branching fractions gives

B(D⁺ ! + +) < 3.9 × 10⁻⁶; 90% C.L.

This is approximately 30% below the limit one would expect to set given an expected background of 25 ± 46 events. The single event sensitivity, given by the branching fraction one would derive based on one observed signal candidate, is 3.0 ± 0.7.

In conclusion, we have performed a detailed study of D⁺ and D⁺ decays to the + + nal state. We clearly observe the D⁺ ! + + intermeditate state and see evidence for the D⁺ ! + + intermeditate state. The branching fraction for the D⁺ ! + + + nal state is consistent with the product of B(D⁺ ! + +) and ! + + branching fractions. We have performed a search for the continuum decay of D⁺ ! + + by excluding the region of the dimuon invariant mass spectrum around the . We see no evidence of signal above background and set a limit of B(D⁺ ! + +) < 3.9 × 10⁻⁶ at the 90% C.L. This is the most stringent limit to date in a decay mediated by a c → u transition. Although this is approximately 500 times above the SM expected rate, it already reduces the allowed parameter space of the product of SUSY R-parity violating couplings 22k 21k 21k [4]. However, it is still an order of magnitude above the expected level from little Higgs models [5].

We thank the sta s at Fermilab and collaborating institutions. We also thank Sandip Pakvasa for several dis- cussions. We acknowledge support from the DOE and NSF (USA); CEA and CNRS-IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil); KRF and KOSEF (Korea); CONICET and UBACYT (Argentina); FOM (The Netherlands); Science and Technology Facilities Council (United Kingdom); MSTM and GACR (Czech Republic); CRRC, INFN, NERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); Alexander von Humboldt Foundation; and the Marie Curie Program.

[a] Visitor from Augustana College, Sioux Falls, SD, USA.
[b] Visitor from The University of Liverpool, Liverpool, UK.
[c] Visitor from ICN-UNAM, Mexico City, Mexico.
[d] Visitor from IFI-Physikalisches Institut, Georg-August-Universität Gottingen, Germany.
[e] Visitor from Helsinki Institute of Physics, Helsinki, Finland.
[f] Visitor from Universitat Zurich, Zurich, Switzerland.
[g] Visitor from Universitat Zurich, Zurich, Switzerland.
[h] Fermilab International Fellow
[i] deceased