Is there a new physics between electroweak and Planck scales?

Mikhail Shaposhnikov

1 Institut de Theorie des Phénomnes Physiques,
Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne, Switzerland

(Dated: June 2, 2013)

We argue that there may be no intermediate particle physics energy scale between the Planck mass \(M_{\text{Pl}}\) \(10^{19}\) GeV and the electroweak scale \(M_W\) \(100\) GeV. At the same time, the number of problems of the Standard Model (neutrino masses and oscillations, dark matter, baryon asymmetry of the Universe, strong CP-problem, gauge coupling uniﬁcation, etc.) could not yet be resolved at \(M_{\text{Pl}}\) or \(M_W\). The crucial experimental predictions of this point of view are outlined.

PACS numbers: 14.60.Pq, 98.80.Cq, 95.35.+d

I. INTRODUCTION

In this paper we describe a (hopefully) consistent scenario for physics beyond the Standard Model (SM) that does not require introduction of any new energy scale besides already known, namely the electroweak and the Planck scales, but can handle diﬀerent problems of the SM mentioned in the abstract. This point of view, supplemented by a requirement of simplicity, has a number of experimental predictions which can be tested, at least partially, with the use of existing accelerators and the LHC and with current and future X-ray/γ-ray telescopes. Most of the arguments in favour of the absence of an intermediate energy scale presented in this work have already appeared in scattered form in refs. [1–5]; here they are collected together with some extra views added.

The paper is organised as follows. In Section II we will review diﬀerent arguments suggesting that the SM model cannot be a viable effective eld theory all the way up to the Planck scale. In Section III we will discuss different arguments in favour of existence of intermediate energy scale and their weaknesses. In Section IV we discuss a proposal for the physics beyond the SM based on an extension of the SM which we call the MSM. Section V is devoted to the discussion of crucial tests and experiments that can con rm or rule out this scenario.

II. NECESSITY OF EXTENSION OF THE STANDARD MODEL

The content of this section is fairly standard, we need it to x the starting point for the discussion that will follow later.

There are no doubts that the Standard Model de ned as a renormalisable eld theory based on SU(3) × SU(2) × U(1) gauge group and containing three fermionic families with left-handed particles being the SU(2) doublets, right-handed ones being the SU(2) singlets (no right-handed neutrinos) and one Higgs doublet is not a natural theory. On eld-theoretical grounds, it is not consistent as it contains the U(1) gauge interaction and a self-coupling for the Higgs eld, both su ering from the triviality, or Landau-pole problem [6,7,8]. Though the position of this pole may correspond to experimentally inaccessible energy scale, this calls for an ultraviolet (UV) completion of the theory.

The existence of gravity with the coupling related to the Planck scale \(M_{\text{Pl}} = G_{\text{N}}^{-1/2} = 12 \times 10^{19}\) GeV (\(G_{\text{N}}\) is the Newtonian gravitational constant) allows us to it forward the hypothesis that the Landau pole problem is solved somehow by a complete theory that includes the quantum gravity [9]. In that way the triviality is swept under the carpet*, provided the position of the Landau pole is above the Planck scale. It is generally accepted that if the pole occurs below the Planck mass then the UV completion of the SM must not be related to gravity.

It is well known that the requirement that the Landau pole in the scalar self-coupling must not appear below some cutoff scale puts an upper bound on the mass \(M_h\) of the Higgs boson [11–13] (consideration of the U(1) coupling does not produce any extra information). According to the recent computations [14], if it is identiﬁed with the Planck scale, then \(M_h < (1613 + 206^5/3)\) GeV, where the 1σ error is theoretical while the second one is related to the uncertainties in the mass of the top quark. Similar result \(M_h < (180 + 4f_5^5)\) GeV is found in [15]. So, a conservative upper limit is \(M_h < 189\) GeV which is well below the 95% CL limit on the Higgs mass \(M_h < 285\) GeV coming from precision tests of the SM [16].

In fact, for su ciently small Higgs mass the SM vacuum is unstable [17,18,19], which leads to a lower bound

[1] In fact, the scale of quantum gravity may happen to be much smaller than \(M_{\text{Pl}}\). An example is given by theories with large extra dimensions [20,21]. We are not going to consider this possibility here.
on the Higgs mass, depending on the value of the cutoff, which we take to be M_{pl}. The constructions of this bound done in Refs. [22,23,24] lead to $M_H > 134 \, 5 \, \text{GeV}$, consistent with the result of Ref. [14] $M_H > 140 \, 7 \, 10 \, \text{GeV}$. So, a conservative lower limit on the Higgs mass from these considerations is $M_H > 129 \, \text{GeV}$.

To summarize: theoretically it is possible to think that the SM is valid all the way up to the Planck scale, and some complete theory takes over above it, though this is only feasible if the Higgs mass lies in the interval

$$M_H > 129 \, \text{GeV} \quad (1)$$

This region expands at both lower and upper bounds if the scale of quantum gravity is smaller than the Planck mass.

Let us see now if this point of view can survive when confronted with different experiments and observations. Since the SM is not a fundamental theory, the low energy Lagrangian can contain all sorts of higher-dimensional SU(3)$ \times $SU(2) U(1) invariant operators, suppressed by the Planck scale:

$$L = L_{SM} + \sum_{n=1}^{\infty} \frac{O_n}{M_{pl}^{n+1}} \quad (2)$$

These operators lead to a number of physical effects that cannot be described by the SM, such as neutrino masses and mixings, proton decay, etc. For example, the lowest order ve-dimensional operator:

$$O_5 = A \, L \times \gamma L^c \quad (3)$$

leads to Majorana neutrino masses of the order $\nu^2 \approx M_{pl}^{10} \, \text{eV}$ (here L and γ are the left-handed leptonic doublets and the Higgs field, c is the sign of charge conjugation, $\gamma_i = \gamma_\tau$, and $\nu = 175 \, \text{GeV}$ is the vacuum expectation value of the Higgs field). The six-dimensional operators like $O_6 / Q Q Q L$ (where the quark doublet) lead to the proton decay with a lifetime exceeding $\nu = 10^{35} \, \text{years}$ (m_p is the proton mass).

The fact that m follows from this Lagrangian is so small in comparison with the lower bound on neutrino mass coming from the observations of neutrino oscillations $m > m_{atm} = 0.05 \, \text{eV}$ (m_{atm} is the atmospheric neutrino mass, for a review see [23]) means the observation that the SM is a viable effective field theory up to the Planck scale. Though it is enough to kill a theory just by one observation, let us discuss another three, though not solid ones as they related to cosmological observations rather than particle physics experiments.

(i) Since the SM has no candidate for the dark matter (DM) particle and the theory [2] does not contain any new degrees of freedom, a hope to get the DM may be associated with the primordial black holes (BH) (for a review see [24]). However, those BH which were formed at temperatures above $10^5 \, \text{GeV}$ should have been evaporated by now (see, however, [25] and references therein for discussion of the possibility that BH of Planck mass could be stable). The production of BH at later times could be enhanced due to the first order electroweak or QCD phase transitions [30]. However, both of these transitions are in fact smooth crossovers (see [31]) for the EW case and [32] for QCD) and the number of produced BH is far too small to play a role of DM. So, unless a complete theory provides the stable states such as non-evaporating BH or some particles with the Planck mass, the theory [2] fails to describe the dark matter in the Universe.

(ii) The theory [2] does not contain any scalar fields that could play a role of the inflaton and thus the inflation should occur due to some Planck scale physics as was proposed already in [25,33]. However, the vacuum energy density V during inflation is limited from above by (non)observation of tensor fluctuations of the cosmic microwave background radiation, with the current limit being much smaller than the Planck scale, $V_{inf} < (10^3 \, M_{pl})^4$ [34]. This difference seems to make the pure gravitational origin of inflation unlikely and so for the theory [2]. Interestingly, a possible alternative to inflation, the pre-Big-Bang scenario of [31,33], besides the pure gravitational degrees of freedom contains a new field (dilaton), which may be light and is essential for realization of the scenario.

(iii) Though the SM has all the ingredients [35] to produce the baryon asymmetry of the Universe [40], it fails to do so since there is no first order EW phase transition with experimentally allowed Higgs boson masses [31]. In addition, it is a challenge to use CP-violation in Cabibbo-Kobayashi-Maskawa mixing of quarks for net baryon production. The higher dimension operators can only contribute to baryogenesis provided the temperature is of the order of the Planck scale, whereas the maximum reheating temperature after inflation from the argument above is at most $10^4 \, \text{GeV}$. Thus, the Lagrangian [2] has to be modified.

In addition to experimental and observational drawbacks of the SM, these objections introduce the list of its problems and different naturalness issues, such as W by the EW.

2 Note that the SM is not a consistent field theory up to M_{pl} if the fourth chiral fermion of fermions is introduced [36].
scale is so much smaller than the Planck scale?"; \(W\) hy the cosmological constant is so small but non-zero?"; \(W\) hy CP is conserved in strong interactions?"; \(W\) hy electron is much lighter than t-quark?" etc., m aking the necessity of physics beyond the SM even more appealing.

III. ARGUMENTS IN FAVOUR OF INTERMEDIATE ENERGY SCALE AND WHY THEY COULD BE IRRELEVANT

There is the dominating point of view that we must have some new particle physics between the electroweak scale and the Planck mass. Let us go through these arguments and try to see whether they are really convincing.

GUT and SUSY scales. We start with gauge coupling unification \([43]\). If one uses the particle content of the SM and considers the running of the three gauge couplings one nds that they intersect with each other at three points scattered between \(10^{13}\) and \(10^{17}\) GeV (for a recent review see \([42]\)). This is considered as an indication that strong, weak and electron magnetic interactions are the parts of the gauge forces of some Grand Unified Theory (GUT) based on a simple group like SU(5) or SO(10) which is spontaneously broken at energies \(M_{GUT} \sim 10^6\) GeV which is close, but still much smaller than the Planck scale. The fact that the constants do not meet at the same point is argued to be an indication that there must exist one more intermediate threshold for new physics between the GUT scale and the electroweak scale, chosen in such a way that all the three constants do intersect at the same point. The most popular proposal for the new physics below the GUT scale is the low energy supersymmetric (SUSY). Indeed, it is an amazing that the gauge coupling unification is almost perfect in the Minimal Supersymmetric Standard Model (MSSM) or in the models based on split SUSY \([44,45]\). So, these considerations lead to the prediction of two intermediate energy scales between \(M_H\) and \(M_{GUT}\): one in the potential reach of the LHC whereas the other can only be revealed experimentally by the search of proton decay or other processes with baryon number non-conservation.

The arguments presented above are the standard ones. Before discussing an alternative let us go through the problem of gauge hierarchy which exists in the GUT scenario (why and how to achieve \(\nabla\text{naturally} M_H \sim M_{GUT}\) in some e more details.

Usually the problem of gauge hierarchies is identified with the problem of quadratic divergences which appear if quantum \(\text{e}^\text{t}\) theory is regularized with the use of a scheme that depends explicitly on some mass parameter (this could be, for example, the UV cutoff, or Pauli-Villars, or lattice regularizations). One can hear often that since the quantum corrections to the Higgs scale diverge quadratically, one must introduce new physics which cancels these divergences, and that new physics should appear close to the scale under consideration (EW in our case). This argument, if applied to other (quanti-

\(4\) Incidentally, the author of this note does not see much an advantage of the SUSY here. A dimity, it is very hard if not impossible for a theorist to do the computation of the 13 loop graphs. However, why one should think in terms of unphysical quantities that appear as intermediate steps of perturbative expansion rather than physical, on-shell ones?
vacuum instability above the Planck scale leaves the solution for a complete theory of gravity. Moreover, it is quite possible that the Planck mass cannot be considered as a field-theoretical cut-off (or as a mass of some particle in the dimensional regularization) as we still do not know what happens at the Planck scale.

Of course, it is a pity to give up the Grand Unification. In addition to gauge coupling unification GUTs provide an explanation of charge quantization \[] and give some non-trivial relations between quark and lepton masses \[]. An alternative is to have gauge coupling unification at the Planck scale. It is known \[] that this possibility can be easily realized in GUTs, if higher order non-renormalizable operators are included in the analysis,

\[
L = L_{\text{GUT}} + \sum_{n=5}^{\infty} \frac{O_n}{M_{n+1}^n};
\]

Indeed, if \(F \) is the GUT gauge field strength and is the scalar field in adjoint representation which is used to break spontaneously the GUT group down to the SM, the operators like

\[
O_{4+n} = \text{Tr}[F^{k} F^{nk}]; \quad 0 \leq k < n; n > 0
\]

will rescale the SM gauge couplings with large eect if \(h \sim M_{n+1} \). It was shown \[] that it is sufficient to add dimension 5 and 6 operators to the minimal SUSY (5) theory to bring the unification scale up to the Planck one. In this case the corrections due to higher order operators are reasonably small and within 10%. Note that the fact of charge quantization in GUTs does not depend on the unification scale, while the breaking of the minimal SUSY (5) GUT predictions for lightest fermion masses is in fact welcome.

To summarize: it is appealing to think that there is no new field-theoretical scale between \(M_H \) and \(M_{n+1} \) and that the gauge couplings meet at \(M_{n+1} \) ensuring that all four interactions get unified at one and the same scale.

This is only self-consistent if the Higgs mass lies in the interval \(\left[\frac{4}{3} M_H, M_{n+1} \right] \). The experimental fact that \(M_H < M_{n+1} \) gets explained, but the absence of any field-theoretical cut-off below the Planck mass makes this hierarchy stable, at least in the minimal subtraction renormalization scheme.

In a certain sense the energy density of the Universe at the exit from inflation \(V_{inf} \) (for a review and historical account of inflationary cosmology see \[]) is not known and may vary from \(\left\{ 2 \times 10^{16} \text{ GeV} \right\} \) on the high end (limit as coming from the CMBR observations) down to \(\left\{ 5 \times 10^{17} \text{ MeV} \right\} \) (otherwise the predictions of Big Bang Nucleosynthesis will be spoiled). At the same time, there are the "naturalness" arguments telling that \(V_{inf} \) should be large (for a review see \[]), as otherwise it is difficult to reconcile the necessary number of e-foldings with the amplitude of scalar perturbations. The simplest quadratic potential

\[
V(\varphi) = \frac{1}{2} \varphi^2
\]

fits well the data \[] with \(m < 10^3 \text{ GeV} \). This fact, and also the closeness of this number to the GUT scale is often considered as an extra argument in favour of existence of the high energy scale between \(M_{n+1} \) and \(M_{n+1} \).

It is well known, however, that the CBM constraints the inflation potential (say, in single field chaotic inflation) only for the inflation epoch of the order of the Planck scale and tells nothing about the structure of \(V(\varphi) \) near its minimum (for a recent discussion see \[]). In other words, the inflation may be very light whereas the required large \(V_{inf} \) may come from its self-interactions. For example, even a pure \(4 \) potential (massless in inflation) provides a reasonable fit to the WMAP data with just \(3 \) of the central values for the inflationary parameters \[], which can be corrected by a slight modification of the potential at \(M_{n+1} \) by higher dimensional operators or by allowing non-minimal coupling of the inflaton to gravity \[]. We will discuss a concrete proposal for light in inflationary scenarios in Section \[].

Strong CP problem. One of the non-tuning problems of the SM is related to complicated vacuum structure of QCD, leading to the existence of the vacuum angle \[], leading to CP non-conservation in strong interactions. A most popular solution to the problem is related to Pecevi-Quinn symmetry \[], which brings to zero in a dynamical way; a degree of freedom which is responsible for this is a new hypothetical (pseudo) scalar particle - axion \[], or invisible axion \[,70]. A axion has never been seen yet, and the strong limits its mass and couplings are coming from direct experiments \[] and from cosmology and astrophysics \[]. They lead to an admitted window for the Pecevi-Quinn scale \(10^{8} \text{ GeV} < M_{Ax} < 10^{12} \text{ GeV} \), where the lower and upper bound depend on the type of axion and different cosmological assumptions. So, it looks like an intermediate scale appears again!

In fact, the axion solution to the strong CP problem is not the unique one. As an example, we will discuss shortly a proposal for a solution of the strong CP problem which uses extra dimensions \[] and does not require the presence of any new scale between \(M_H \) and \(M_{n+1} \) and does not contradict to any observation. Other extra-dimensional solutions have been suggested in \[,76].

\[\text{In fact, in the SM with one fermion generation the structure of U(1) hypercharges of all particles can be fixed by the requirement of absence of gauge and the fixed gauge-gravitational anomalies. The anomaly free solution leads automatically to charge quantization \[]. This is the not case for the SM with 3 fermions, where the choice of hypercharges may be unequal for different generations \[].} \]

\[\text{In higher spatial dimensions appear, for instance, in string theory and in Kaluza-Klein or brane models.} \]
The mere existence of the strong CP problem is based on the assumption that the number of dimensions of the space-time is four. Indeed, the existence of vacua is related to topology: the mapping of the three-dimensional sphere, representing our space, to the gauge group SU (3) of QCD is non-trivial, \(3(S_3) = Z \). This leads to the existence of classical vacua with different topological numbers, and the quantum tunneling between these states forms a continuum of stable vacua characterized by \(Z(0, 2) \). Clearly, these considerations are only valid if the space is 3-dimensional. Thus, in higher dimensional theories, where the 3-dimensional character of the space is just a low-energy approximation, the strong CP-problem has to be reanalyzed.

If the topology of the higher-dimensional space is such that the mapping of it to the gauge group is trivial, the strong CP-problem disappears. Concrete examples were given \([73, 74]\) for \(4 + 1 \) dimensional space-time, where the space is a 4-sphere \(S_4 \). It was shown there that the only remnant from extra dimensions which should be added to the low energy effective theory is a quantum-mechanical degree of freedom \(- \langle \text{global axion} \rangle \) a(t) which depends on time but does not depend on the spatial coordinates and thus does not represent any new particle degree of freedom. The global axion couples to ordinary fields in a way the standard axion does and thus relaxes the effective vacuum angle to zero. Still, the solution of the U(1) problem in QCD is unerected \([71]\). None of the astrophysical bounds can be applied to the global axion, simply because there is no particle to emit or absorb, while it is impossible to excite the a(t) by any local process. As for the lower closure of the Universe constraint, it depends strongly on the cosmological scenario of dynamics of the compactification which may happen at the Planck scale.

We see therefore that the strong CP-problem, if fact, does not point to the existence of an interdimensional scale.

Neutrino masses. A popular argument in favour of existence of the very large mass scale is related to neutrino masses \([73]\). Indeed, let us add to the Lagrangian of the Standard Model a dimension-five operator suppressed by an (unknown a-priori) mass parameter and nd it then from the requirement that this term gives the correct active neutrino masses. One gets immediately that

\[
\frac{\nu^2}{m_{\text{am}}} \geq 10^4 \text{ GeV};
\]

which is an amazingly close to the GUT scale.

In fact, eq. \([7]\) provides an upper bound on the scale of new physics beyond the SM rather than an estimate of this scale. This will be discussed in more detail in Section IV.

Baryogenesis. One of the key points of any baryogenesis scenario is departure from them aleqilibrium \([73]\). One of the original mechanisms is called them aleptogenesis \([73]\). In this scenario heavy Majaps neutrinos N with the mass \(M_N \) decay with non-conservation of lepton number and CP and produce lepton asymmetry of the Universe which is then converted to baryon asymmetry in rapid EW anomalous processes with isospin number non-conservation \([40]\). A very quick (and missing many details) estimate shows that \(M_N \) should be close to the GUT scale. Indeed, the temperature at which N decay should be smaller than their mass (out of equilibrium condition) but larger than the EW scale (sphalerons must be active), \(M_N < T_{\text{decay}} < M_N \). This leads to the following constraint on the cosmologically likely coupling of N to the leptons and the SM Higgs (the decay rate of N is roughly not \(f^2 M_N \)):

\[
\frac{M_N^2}{M_0} < f^2 < \frac{M_N^2}{M_0} ;
\]

where \(M_0 = 10^{16} \text{ GeV} \), and the Hubble constant in today's universe is \(H = T^2 M_0 \). CP-violating effects appear from loop corrections to the decay amplitudes, and without extra ne-tunings one gets an estimate for baryon-to-entropy ratio

\[
\frac{n_b}{s} \simeq 10^3 f^2 ;
\]

A correct prediction is obtained for \(f^2 = 10^7 \), leading to the requirement \(M_N > f^2 M_0 = 10^{11} \text{ GeV} \). At the same time, since the temperature in the baryogenesis scenario cannot exceed \(10^{16} \text{ GeV} \), the leptogenesis with Planck mass MajoPHiggs leptons does not seem to be possible.

Electroweak baryogenesis, in which the only source for baryon number non-conservation is the electroweak anomaly, requires strongly rst order phase transition \([81, 82]\). As this phase transition is absent in the SM \([31]\), the use of EW anomaly for baryogenesis calls for model building of the scalar sector of the EW theory by introducing new scalar singlets or doublets and thus to a new physics in the vicinity of the EW scale.

Though both of these arguments are certainly true for spec. cmisms of baryogenesis, they are not universal. We will discuss in more detail in Section IV how they are avoided in the MSM.

Dark matter. A particle physics candidate for dark matter must be a long-lived or stable particle. The most popular candidates are related to supersymmetry (neutralino etc.) or to the axion, which we have already discussed. The scenario for WIMPs assumes that initially these particles were in thermal equilibrium and then annihilated into the particles of the SM. Quite an amazingly, if the cross-section of the annihilation is of the order of the typical weak cross-section (for a review see \([83]\)) one gets roughly correct abundance of dark matter, suggesting that the mass of DM particles is likely to be of the

\[\text{Even stronger constraints exist in supergravity theories coming from the copious gravitino production, see \([84]\) for a recent discussion.}\]
order of the EW scale, as it happens, for example, in the MSSM, and thus to a new physics nearby.

This argument is based on the specific processes by which the dark matter can be created and destroyed and thus is not valid in general. In the next section we will discuss the MSSM dark matter candidate with completely different properties.

IV. THE MSSM AS AN ALTERNATIVE

In Section II we reviewed the arguments that the SM must necessarily be extended while in Section III we argued that the solutions to the problem of gauge coupling unification and strong CP problem can be shifted up to the Planck scale. This cannot be done with neutrino masses and, unlike the possibility with other problems we have discussed, namely with dark matter, baryon asymmetry of the Universe and in action. In this section we review how a minimal extension of the SM, the MSSM, can solve all of them.

Let us add to the SM three right-handed fermions \(N_1, N_2, N_3 \) (they can be called singlet leptons, right-handed leptons or Majorana neutrinos) and write the most general renormalisable interaction between these particles and fields of the SM:

\[
L_{MSSM} = L_{SM} + N_1 \bar{N}_2 \frac{M_{N_3}}{2} N_1 N_3 + h.c. ;
\]

\[(10) \]

Here \(L_{SM} \) is the Lagrangian of the SM, \(e; \mu; \tau \), and both Dirac (\(M_0 = F \cdot h \cdot i \)) and Majorana (\(M_1 \)) masses for singlet fermions are introduced. This Lagrangian contains 18 new parameters in comparison with the SM.

Why this Lagrangian? Since we even do not know where the SM itself is coming from, the answer to this question can only be very vague. Here is an argument in its favour. The particle content of the SM has an asymmetry between quarks and leptons: every left-quark and charged lepton has its counterpart – right-quark or right-handed lepton, while the right-handed counterpart for neutrino is missing. The Lagrangian (10) simply restores the symmetry between quarks and leptons. Interestingly, the requirement of gauge and gravity anomaly cancellation, applied to this theory, leads to quantization of electric charges for three fermionic generations [33], which was not the case for the SM, because of new relations coming from Yukawa couplings and Majorana masses.

Besides xing the Lagrangian, one should specify the masses and couplings of singlet fermions. The seesaw [28] logic picks up the Yukawa term in (10) and tells that it is \(\text{\textit{natural}} \) to have Yukawa coupling constants of new leptons of the same order of magnitude as Yukawa couplings of quarks or charged leptons. Then the mass parameters for singlet fermions must be large, \(M_{N_1} \approx 10^8 \) GeV, to give the correct order of magnitude for active neutrino masses. This leads to an intermediate energy scale already discussed above. Yet another proposal is to have the masses of single fermions in the eV region [22] to explain the LSND anomaly [23]. Note that the oscillation explanation of the LSND result is disfavoured by the MiniBooNE experiment [24].

The MSSM logic picks up the mass term in (10) and assumes that it is \(\text{\textit{natural}} \) to have it roughly of the order of another mass term in the EW Lagrangian, namely that of the Higgs boson [2]. This does not lead to any intermediate scale but requires smaller Yukawa couplings. To get a more precise idea about the values of Majorana masses, a phenomenological input, discussed below, is needed.

Neutrino masses and oscillations. The Lagrangian (10) can explain any pattern of active neutrino masses and mixing angles for arbitrary (and, in particular, below the EW scale) choice of the Majorana neutrino masses. This is a simple consequence of the parameter counting: the active neutrino mass matrix can be completely described by 9 parameters whereas (10) contains 18 arbitrary masses and couplings.

Dark matter. The dark matter candidate of the MSSM is the long-lived lightest singlet fermion. The mass of this particle is not fixed by theoretical considerations. However, there are some cosmological and astrophysical arguments giving a preference to the keV region. In particular, the keV scale is favoured by the cosmological considerations of the production of dark matter due to transitions between active and sterile neutrinos [34] and by the structure formation arguments related to the problem of missing satellites and cuspy profiles in the Cold Dark Matter (CDM) cosmological models [35,36,37,38,39] (see, however, [40]); warm DM may help to solve the problem of galactic angular momentum [41].

At the same time, much larger masses are perfectly allowed [42,43]; in this case the dark matter sterile neutrino is a CDM candidate. This particle has never been in thermal equilibrium in the early Universe and thus the arguments about the mass scales of the dark matter particle of the previous section do not apply to it. For reviews of different astrophysical constraints on the properties of the sterile neutrino dark matter, and the mechanism of its cosmological production see [42,43] and references.
Baryogenesis. The phase structure of the SM is the same as that of the SM: there is no EW phase transition which could lead to large deviations from thermal equilibrium. The masses of singlet fermions are smaller than the electroweak scale, they decay below the sphaleron freeze-out temperature and thus the three lepton generations do not work. However, the presence of singlet fermions provides another source of the non-equilibrium, simply because these particles, due to their small Yukawa couplings, interact very weakly. The mechanism of baryogenesis in this case is related to coherent resonant oscillations of singlet fermions. To explain simultaneously neutrino masses, dark matter and baryon asymmetry of the Universe at least three singlet fermions are needed, with two of them with the mass preferably in the GeV region. They are required to be almost degenerated. The specific pattern of the singlet lepton masses and couplings leading to phenomenological success of the SM can be a consequence of the lepton: U(1) symmetry discussed in [3].

In a theory, adding just new fermions to the SM cannot lead to baryogenesis. The simplest way out is to introduce a singlet scalar field, with scalar potential

\[V(\phi) = \frac{1}{2} m^2 \phi^2 + \lambda \phi^4 \]

and renormalisable couplings to the field of SM. The number of these interactions is in fact not that large, possible terms are those of interaction with the Higgs field and singlet fermions,

\[L = h_1^2 \phi^2 + h_2 \phi^4 + f_{ij} N_i S_j \]

As we have already discussed in Section III, the mass of the in-aton can be small, and taking it to be below the electroweak scale does not contradict to any principles or observations. Note also that for large values of \(M_{pl} \) can be obtained due to Planck scale corrections. It is not difficult to nd constraints on the in-aton couplings to the fields of the SM which ensure that the model with in-aton satis es experimental, astrophysical, and cosmological constraints.

In fact, the number of the parameters in the SM with the in-aton field can be reduced greatly without loosing its attractive phenomenological features if one requires that the classical Lagrangian obeys an (approximate) dilatation symmetry of. A requirement that the classical Lagrangian exhibits a dilatation symmetry on classical level puts all dimensionless couplings of the theory (mass of the Higgs boson, in-aton, and masses of singlet fermions, and also \(h_1 \) and \(h_2 \)) to zero; in this case the origin of all masses in the SM must be related to the vacuum expectation value of the in-aton field. This (Coleman-Weinberg) scenario can only work if gets a non-trivial potential due to radiative corrections. Though possible for a speci c choice of \(f_{ij} \), the theory obtained cannot accommodate the theory (since \(f_{ij} \) is required to be of the order of one [101]) and thus too large density perturbations are generated and baryon asymmetry of the Universe (since \(f_{ij} \) must be of the order of one [101]) which leads these particles to a state at thermal equilibrium well above the electroweak scale), and, therefore, the requiremen of complete dilatation invariance should be abandoned. A way out is to break it by m in alm ears, and a possibility is to admit that it mass is not zero and negative. For a theory constructed in such a way the condensate of gives masses to singlet fermions and induces the EW symmetry breaking; the same field gives rise to in-ation. Moreover, the mass of must be smaller than the EW scale; if this is not the case the energy stored in the in-aton field right after in-ation will go dominantly into in-ation itself rather than to the Higgs field and eventually to other degrees of freedom of the SM. This would change the standard Big Bang scenario right above the EW scale and make baryogenesis in possible. In fact, to keep baryogenesis in place a stronger constraint \(m < 2H_{pl} \) must be satisfied.

Finite tunings and hierarchies. The \(\sqrt{\lambda} \) stand-alone SM or an extension of this model by a light in-aton is a theory with just one energy scale and thus it does not suffer from a re-tuning problem typical to the ell theory models containing two or more very distinct energy scales. Moreover, the masses of the singlet leptons are protected by the lepton number symmetry and thus the natural scheme will be small. In addition, due to the smallness of all extra constants of interaction the renormalization group behaviour of the SM couplings remain practically the same, and the interval does not change. Of course, this theory, as the SM, has a Landau pole problem, but it can presumably be avoided in a more complete theory that includes gravity, if this pole is situated above the Planck scale.

V. CRUCIAL TESTS AND EXPERIMENTS

As we argued, none of the arguments in favour of existence of the intermediate energy scale really requires it: gauge coupling unification and solution of the strong CP-problem can both occur at the Planck scale, whereas in-aton neutrino masses, dark matter and baryogenesis can all be explained by the particles with the mass below the electroweak scale.

The point of view that there is no intermediate energy scale between the weak and Planck scales and that the low energy effective theory is the SM which explains neutrino oscillations, dark matter and baryogenesis of the Universe is rather fragile. It predicts an outcome of a number of experiments, and if any of the predictions is not satisfied, this conjecture will be ruled out. Though most of these predictions were discussed elsewhere, we
present here for completeness.

N neutrino physics. Hierarchial structure of active neutrino masses with one of them smaller than 10^{-5} eV \cite{1,97}. Two other masses are fixed to be $m_3 = [4.2^{+0.5}_{-0.5}]$ eV and $m_2 = [9.5^{+0.2}_{-0.2}]$ eV ($4.7^{+0.5}_{-0.5}$) eV in the normal (inverted) hierarchy. A Majorana mass of electron neutrino is smaller than the atmospheric mass difference, $m_{ee} = 0.05$ eV \cite{103}. The SM is in conflict with the oscillation hypothesis of the LSND result and with the result of \cite{103} claiming that the neutrinoless double decay has been observed.

Dark matter searches. Negative result for the WIMP and axion searches. The existence of a narrow X-ray line due to two-body decays of the sterile dark matter neutrino. The position and the intensity of this line are quite uncertain, with a possible cosmological preference for a few keV energy range, though higher values are certainly allowed as well. The best choice of astrophysical objects to search for dark matter sterile neutrino is discussed in \cite{104}, and future experimental perspectives in \cite{105}. The laboratory searches of the dark matter sterile neutrino would require a precision study of kinematics of decays of tritium or other isotopes \cite{106}.

B-non-conservation. No signal of proton decay or neutron-antineutron oscillations.

Flavour physics. Existence of two almost degenerate weakly coupled singlet leptons which can be searched for in rare decays of Σ mesons or Σ and their own decays can be looked for in dedicated experiments discussed in \cite{10}. Though the masses of these particles cannot be precisely fixed, they must certainly be below M_{W} with a preference for small masses $\lesssim 1$ GeV \cite{103}. Visible lepton number non-conservation in N decays, with CP-breaking that can allow to x theoretically the sign and magnitude of the baryon asymmetry of the Universe. Possible existence of the light in axion \cite{3].

VI. ACKNOWLEDGMENTS

I thank Fedor Bezrukov, Alexey Boyarsky, Sergei Khlebnikov and Oleg Ruchayskiy for many helpful comments. This work was supported in part by the Swiss National Science Foundation.

\begin{thebibliography}{99}
\item N. V. Krasnikov, Yad. Fiz. 28 (1978) 549.
\item A. A. Starobinsky, JETP Lett. 30, 682 (1979) [Pisma Zh. Eksp. Teor. Fiz. 30, 719 (1979)].
\item V. A. Rubakov, M. V. Sazhin and A. V. Veryaskin,

