
1 Institute of Physics, Acad em ia Sinica, Taipe i, Tai w an 11529, Repub lic of China
2 Argonne Na tionale Lab oratory, Argonne, Illinois 60439
3 Insti tut de Fis its d'A ltes Ener gies, Uni versitat Aut onoma de Ba rcelona, E-08193, Bellat era (Barcelon a), Spain
4 Bay lor Uni versity, W as hington, Texas 76798
5 Na zionale Ini ti o di Fis itica Nu cleare, Uni versita di Bol onia, I-40127 Bol onia, Italy
6 Brandeis Uni versity, Waltham, Massachusetts 02254
7 Univer sity of Cal iforn ia, Davis, Cal iforn ia 95616
8 Uni versity of Cal iforn ia, Los Angeles, Los Angeles, Cal iforn ia 90024
9 Uni versity of Cal iforn ia, San Diego, La Jolla, Cal iforn ia 92093
10 Uni versity of Cal iforn ia, San Di ego, La Jolla, Cal iforn ia 92093
11 Insti tut d'In sti tuta de Ci ties, Uni versit a de Ca ntabria, 39005 Santander, Spain
12 Carnegie Mel on Uni versity, Pitts堡, PA 15213
13 En ric Ferm i Insti tut, Uni versity of Ch icago, Ch icago, Illino is 60637
We describe a measurement of the W boson mass m_W using 200 pb$^{-1}$ of $p^+ p$ collision data taken with the CDF II detector. With a sample of 6.364×10^7 candidates and 5.128×10^6 candidates, we measure $m_W^\text{stat} = (80.413 \pm 0.034) \text{GeV}$ and $m_W^\text{sys} = 80.413 \pm 0.048 \text{GeV}$. This is the single most precise m_W measurement to date. When combined with other
I. INTRODUCTION

The discovery of the W and Z bosons in 1983 \cite{1} confirmed a central prediction of the unified model of electromagnetic and weak interactions \cite{2}. Initial W and Z boson mass measurements verified the tree-level predictions of the theory, with subsequent measurements probing the predicted $O (3 \text{ GeV}/c^2)$ radiative corrections to the mass. The current knowledge of these masses and other electroweak parameters constrains additional radiative corrections from unobserved particles such as the Higgs boson or supersymmetric particles. These constraints are however limited by the precision of the W boson mass m_W, making improved measurements of m_W a high priority in probing the masses and electroweak couplings of new hypothetical particles. We describe in this article the single most precise m_W measurement to date.

The W boson mass can be written in terms of other precisely measured parameters in the 'on-shell' scheme as \cite{2}:

$$m_W^2 = \frac{1}{2c^2} G_F (1 - \frac{2m_t^2}{m_W^2}(1 + r)),$$

where G_F is the electromagnetic coupling at the renormalization scale $Q = m_Z^2 c^2$, G_F is the Fermi weak coupling extracted from the muon lifetime, m_Z is the Z boson mass, and r includes all radiative corrections. Fermionic loop corrections increase the W boson mass by terms proportional to $\ln (m_Z^2 = m_t^2)$ for m_t, m_Z \cite{2}, while the loop containing top and bottom quarks (Fig.1) increases m_W according to \cite{2}:

$$\frac{r_{tb}}{c^2} = \frac{C}{8} \left(\frac{3 \alpha_2}{2} \ln \left(\frac{3 \alpha_2 m_W^2}{m_t^2} \right) \right) - \frac{m_t^2 + m_b^2}{2m_t^2} \frac{2m_t^2 m_b^2}{m_t^2 - m_b^2} \ln (m_Z^2 - m_t^2),$$

where the second and third terms can be neglected since $m_t < m_b$. Higgs loops (Fig.1) decrease m_W with a contribution proportional to the logarithm of the Higgs mass m_H. Contributions from possible supersymmetric particles are dominated by squark loops (Fig.2) and tend to increase m_W. Generally, the lighter the squark mass and the larger the squark weak doublet mass splitting, the larger the contribution to m_W. The total radiative correction from supersymmetric particles can be as large as several hundred GeV/c2 \cite{2}.

Table 1 \cite{3} shows the change in m_W for 1σ changes in the measured standard model input parameters and the effect of doubling m_H from 100 GeV/c2 to 200 GeV/c2. In addition to the listed parameters, a variation of ± 1 MeV/c2 on the prediction of m_W arises from two-loop sensitivity to s_q, e.g. via gluon exchange in the quark loop in Fig.1. Theoretical corrections beyond second order, which have yet to be calculated, are estimated to affect the m_W prediction by ± 4 MeV/c2 \cite{3}.

The uncertainties on the m_W prediction can be compared to the 29 MeV/c2 uncertainty on the world average from direct m_W measurements (Table 1).

\[W^* \quad \text{FIG. 1: The one-loop contribution to the } W \text{ boson mass from top and bottom quarks.} \]
which include results from four experiments, ALEPH [12], DELPHI [15], L3 [14], and OPAL [13], studying $s = 161$ GeV e^+e^- collisions at the Large Electron Positron collider (LEP), and from two experiments, CDF [16] and D [17, 18], studying $s = 1.8$ TeV pp collisions in Run I of the Fermilab Tevatron. The current experiment entails Δm uncertainty is a factor of two larger than the uncertainty from radiative corrections, excluding the H mass contribution (Table I). The H mass constraint extracted from the W boson mass is thus limited by the direct m_W measurement. The precision m_W measurement described in this article has a significant impact on the world average m_W.

II. OVERVIEW

A measurement of m_W at a pp collider [22] is complementary to that at an e^+e^- collider. Individual u (d) quarks inside the proton can interact with d (u) quarks inside the anti-proton (or vice versa), allowing single W^+ (W) boson production, which is not possible at an e^+e^- collider. In addition, pp colliders have higher center-of-mass energies and W boson production cross sections. This provides high statistics for the leptonic decays of the W boson, which are studied exclusively because of the overwhelming hadronic-jet background in the quark decay channels.

![Figure 2: Higgs one-loop contributions to the W boson mass.](image)

![Figure 3: One-loop squark contributions to the W boson mass.](image)

<table>
<thead>
<tr>
<th>m_H</th>
<th>m_W</th>
</tr>
</thead>
<tbody>
<tr>
<td>$+0.693$</td>
<td>-41.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>m_t</th>
<th>$+$18 GeV/c2</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.0</td>
<td></td>
</tr>
</tbody>
</table>

TABLE I: The effect on m_W of +1 standard deviations on the input parameters is shown in the uncertainty on the m_W prediction. Since the H boson mass has not been observed, we show the effect of doubling the H boson mass from 100 GeV/c2 to 200 GeV/c2.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>m_W (GeV/c2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALEPH [12]</td>
<td>80.440 +0.551</td>
</tr>
<tr>
<td>OPAL [13]</td>
<td>80.416 +0.553</td>
</tr>
<tr>
<td>L3 [14]</td>
<td>80.270 +0.555</td>
</tr>
<tr>
<td>DELPHI [15]</td>
<td>80.836 +0.567</td>
</tr>
<tr>
<td>CDF Run I</td>
<td>80.433 +0.579</td>
</tr>
<tr>
<td>D Run I</td>
<td>80.483 +0.584</td>
</tr>
<tr>
<td>LEP Average</td>
<td>80.476 +0.533</td>
</tr>
<tr>
<td>Tevatron Run I Average</td>
<td>80.456 +0.59</td>
</tr>
<tr>
<td>World Average</td>
<td>80.392 +0.499</td>
</tr>
</tbody>
</table>

TABLE II: Direct measurements of the W boson mass, the preliminary combined LEP average, the combined Tevatron Run I average, and the preliminary world average.

The leptonic decays of singly produced Z bosons provide important control samples, since both leptons from Z boson decay are well measured. The production and decay uncertainties on the measurement of m_W from pp and e^+e^- collider data are almost completely independent [22].

We present in this section an overview of W and Z boson production at the Tevatron, a description of the coordinate conventions and sym metrics, used for this measurement, and a broad discussion of our m_W measurement strategy.

A. W and Z Boson Production and Decay

W and Z bosons are produced in $p\bar{p} = 1.96$ TeV pp collisions primarily through s-channel annihilation of valence u and/or d quarks (Q_2, Q_1, Q_3) with a smaller $0 (20\%$) contribution from sea quarks. The quark (anti-quark) has a fraction x_F (x_{Q_F}) of the pro-
ton’s (antiproton’s) total momentum, producing a W or Z boson at center-of-mass energy \(\sqrt{s} \). The rate of production can be predicted from two component: (1) the center-of-mass fraction distributions of the quarks, \(f_i(x_i) Q^2 \) which are determined from world data \([23,24]\) and (2) a perturbative calculation of the \(q^p \) ! W or Z boson process \([25]\).

FIG. 4: Leading-order annihilation of a quark and antiquark inside the proton and antiproton, respectively, producing a W* or Z° boson. The quark (antiquark) has energy \(x_F E_p (x_F E_q) \), where \(E_p (E_q) \) represents the total proton (antiproton) energy. The production occurs at a partonic center-of-mass energy Q. The uu ! Z° and du ! W processes are similar.

W and Z bosons can decay to lepton or quark pairs. Decays to quark pairs are not observable given the large direct \(q^p \) background, and decays to + hadrons are not as precisely measured as boson decays to electrons or muons. For these reasons we restrict ourselves to the direct electron and muonic decays (W ! e, W ! ν, Z ! e, and Z ! ν), with the corresponding decays to ! leptons considered as backgrounds to these processes (Section V III). The branching ratio for each leptonic decay W ! l (Z ! l) is 11% (3.3%), and the measured cross section times branching ratio is (2749 174) pb \([2549 162]\) pb \([26]\).

B. Conventions

We use both Cartesian and cylindrical coordinate system s, in which + z points in the direction of the proton beam (east) and the origin is at the center of the detector. In the right-handed Cartesian coordinate system, + x points north (outward from the ring) and + y points upwards; in the cylindrical system, is the azimuthal angle and r is the radius from the center of the detector in the xy plane. The rapidity \(y = \frac{1}{2} \ln[(E + p_z c)/(E + p_z c)] \) is additive under Lorentz boosts along the z axis. For massless particles, this quantity is equal to the pseudorapidity \(= \ln[\tan(\frac{\theta}{2})] \), where \(\theta \) is the polar angle with respect to the z axis. A angles are quoted in radians unless otherwise indicated.

Because the interacting quarks’ longitudinal momenta \(p_u \) are not known for each event, we generally work with m om etna transverse to the beam line. The interacting protons and antiprotons have no net transverse m om etna. Electron energy (m um m om etna) \(E \) measured using the calorimeter (tracker) is denoted as \(E \), and the corresponding transverse m om etna \(E \) are derived using the measured track direction and neglecting particle m masses. The event calorimeter \(E \), excluding the lepton(s), is calculated assuming m assless particles using calorimeter tower energies (Section IIIA 2) and the lepton production vertex, and provides a measurement of the recoil momentum vector \(u_T \). The component of recoil projected along the lepton direction is denoted \(u_T \) and the orthogonal component is \(u_T \) (Fig. 5). The transverse m om etna balance in a W boson event is a measurement of the neutrino transverse m om etna \(p_\nu \) and is given by \(p_\nu = (p_T^1 + u_T) \), where \(p_T^1 \) is the measured charged lepton transverse m om etna.

When electromagnetic charge is not indicated, both charges are considered. We use units where \(c = 1 \) for the remainder of this paper.

C. Measurement Strategy

The measurement of the final state from W ! l decays involves a measurement of \(p_T^1 \) and the total recoil \(u_T \). The neutrino escapes detection and the unknown initial partronic \(p^0 \) precludes the use of \(p_T \) conservation in the measurement. The boson invariant mass is thus not reconstructable; rather, the 2-
where θ is the angle in the transverse plane between the leptons, whose masses are negligible. The t to the m_T distribution provides the statistically most precise m mass measurement of m_W.

The charged lepton, which can be measured precisely, carries most of the observable m mass information in the event. We calibrate the m mass on a momentum distribution using high statistics samples of the m decay $J=1$ and 0, which are fully reconstructable and have well-known masses. The results in a precise track m mass on the W boson of electrons from W boson decays. The accuracy of these calibrations is demonstrated by applying them to m mass events of the Z boson mass in the m and electron decay channels. We then incorporate the known Z boson mass as an additional calibration constraint.

The other directly measurable quantity needed for the calculation of m_W is the recoil transverse m mass on the W boson m_T. Since the W and Z bosons are produced at a similar Q^2, they have similar recoil distributions. We use the leptons from the Z boson decays to m measure the p_T of the Z boson. We then calibrate our m model of m_T by measuring the balance between the recoil and W boson p_T. The Z boson statistics are sufficient to perform a recoil calibration to 1% accuracy, which leads to a systematic uncertainty on m_W.

To accurately model the shape of the m_T distribution, we use a fast Monte Carlo simulation of the W process including the recoil and the detector response. This fast simulation allows flexibility in parameterizing the detector response and in separating the effects of the detector m model components. We use a binned likelihood to t the measured m_T distributions to templates (Section III), generated from the fast simulation, with m_W as the free parameter. All m_W and lepton energy scale tests are performed with this procedure.

Though less statistically precise, the p_T and m_T distributions provide additional information on the W boson mass and are used as important tests of consistency. We separately t these distributions for m_W and combine all ts in our final result.

During the measurement process, all W boson mass samples are set by a single unknown random number chosen from a t distribution in the range $[-100, 100]$ MeV. The final results were thus blinded to the authors until the analysis was complete [24]. The final measured m_W and its uncertainty have not changed since the random t set was removed from the results.

We give a brief overview of the template likelihood fitting procedure in Section III. Section III describes the detector and the fast detector simulation used in the analysis. The W boson mass measurement samples are described in Section V. We describe the precision in Section VI and VII, respectively. These sections include event selection, calibration, and resolution studies from the W boson and Z boson data samples. Mass measurement of the recoil response and resolution is presented in Section VIII. The backgrounds to the W boson sample are discussed in Section IX. Theoretical aspects of W and Z boson production and decay, including constraints from the current data sample, are described in Section X. We present the W boson mass fits and cross-checks in Section X. Finally, in Section XI we show the result of combining our measurement with previous measurements, and the corresponding implications on the predicted standard model Higgs boson mass.

D. Template Likelihood Fits

All the tests involving mass measurements and the energy scale (Sections V, VI, and VII) are performed with a template binned likelihood fitting procedure. A given distribution to be fit is generated as a discrete function of the t parameter, using the fast simulation. These simulated distributions are referred to as "templates." For each value of the t parameter, the simulated distribution is compared to the data distribution and the logarithm of a binned likelihood is calculated. The binned likelihood is the Poisson probability for each bin to contain the n_i observed data events given m_i expected events, multiplied over the N bins in the t range:

$$ L = \prod_{i=1}^{N} \frac{e^{m_i n_i} m_i^{n_i}}{n_i!}; $$

(4)

We calculate the logarithm of the likelihood using the approximation $\ln(n! \cdot (n + 1)! \cdot \ln(n + 1))$:}

$$ L = \sum_{i=1}^{N} \ln \left[n_i m_i \ln m_i \ln(n_i + 1) + n_i \right]; $$

(5)

The best-fit value of the parameter m maximizes the likelihood (or equivalently, minimizes $-\ln L$), and the t values are those that increase $-\ln L$ by 1/2. The
approximation for In! only a acts the shape of the likelihood about the minimum and not the position of the minimum. The procedure is validated by fitting simulated data ("pseudoexperiments") and no bias is found. We symmetrize the uncertainty by taking half the difference between the +1 and -1 values. For the E= p ts in the W boson sample, we reduce the effect of nine template statistics by fitting lnL to a parabola, and extracting the best-fit value and the uncertainty from this parabola.

III. DETECTOR AND MODEL

The CDF II detector [26,28] is well suited for the mW measurement. Its high-resolution tracker and calorimeter measure individual charged particle momenta from W and Z boson decays with a resolution of 2%. It has similar acceptance and resolution for central electrons and muons, giving the two channels similar weight in a combined mass measurement.

A. Detector Components

The CDF II detector (Fig. 6) is a multi-purpose detector consisting of an inner silicon tracker designed to measure the production vertex of charged particles with high precision; an outer tracking drift chamber to measure charged particle momenta from W and Z boson decays; a solenoid to provide a uniform 1.4 T magnetic field inside the tracker; electromagnetic calorimeters to contain and measure electron and photon showers; hadronic calorimeters for hadron energy measurements; and a muon system to detect muons escaping the calorimeters. The detector information is read out on-line and saved for later analysis when event topologies consistent with a particular physics process (or class of processes) are selected. The read-out decision is made with a fast three-level trigger system that has high efficiency for selecting the W and Z bosons to be used in the offline analysis.

1. Tracking System

The silicon tracker (Fig. 7) consists of three separate detectors: Layer 00, SVX II, and ISL. Layer 00 is a single layer of 300 μm thick sensors attached to the beam pipe at a radius of 1.3 cm. Five additional layers of sensors at radii ranging from 2.5 cm to 10.6 cm comprise SVX II. Surrounding these sensors are port cards, which transport deposited charge information from the silicon wafers to the readout system. The inner central silicon layers (ISL) are located at radii of 20.2 cm and 29.1 cm. The SVX II is segmented longitudinally into three barrels in the region jη < 45 cm. This covers the pp interaction region, which is well approximated by a Gaussian distribution with σ ≈ 30 cm. We do not use the silicon m measurement in this analysis, though we model the tracker's effects on leptons and photons (Section III B).

An open-cell drift chamber, the central outer tracker (COT) [28], surrounds the silicon tracker and covers the region jη < 155 cm (j j = 1) and 40 cm < r < 137 cm. The COT consists of eight concentric "superlayers," separated azimuthally into cells. Each cell contains 12 sense wires to measure the ionization produced by a charged particle in the amblent argon-ethane gas mixture. The superlayers alternate between a purely axial ionization guration, with sense wires parallel to the beam line, and a small-angle stereo guration, with sense wires at a 2° angle relative to the z axis.

The sense wires are strung from end to end in z and held under tension at each aluminum endplate (Fig. 8). The wires are azimuthally sandwiched by e1 sheets, which provide a 1.9 kV/cm electric field. All cells are rotated at a 35° angle relative to a radial line, such that the ionized electrons travel azimuthally to the wire under the combined ionization produced by the local electric field and the global magnetic field from the solenoid.

Within a given cell, the sense wires are slightly o-center relative to the e1 sheets. In addition, the sense wires and e1 sheets sag under the influence of gravity, with the e1 sheets sagging more due to their larger mass. These effects cause a small electrostatic deflection of the sense wires toward a particular e1 sheet. To prevent the relative deflection of sense wires within a cell, a support rod connects the sense wires at the center of the detector. The support rod results in a small (2 mm) region at z = 0 cm where charged particles are not measured.

Between the solenoid and the COT is a time-of-flight system (TOF) consisting of scintillator bars that precisely measure the time of incidence of charged particles. From this measurement and the tracker information, a particle's velocity and mass can be inferred. The TOF is not utilized in this analysis.

2. Calorimeter System

The CDF calorimeter is segmented radially into electromagnetic and hadronic sections. The central
The central electromagnetic calorimeter (CEM) [30] has a thickness of 18 radiation lengths, consisting of 31 radial scintillator layers interleaved with 30 layers of lead-aluminum plates. At a radius of 184 cm, electromagnetic showers have traversed about six radiation lengths (including the solenoid coil) and have their maximum energy deposition. At this radius, a segment of a wire chamber strip and a forward calorimeter (CES) measure the energy deposition with a position resolution of 2 mm.

The local shower position in the azimuthal direction in the tower is denoted as CES z, which ranges from -24.1 cm to 24.1 cm. The wire chamber strips extend only to j j > 22.5 cm, and for j j > 23.1 cm no energy measurements are made. In this region wavelength shifts read out the light from the scintillator, and steel and foam separate the towers. Light follows a waveguide to a phototube positioned at the back end of the hadronic calorimeter.

Parallel to the beam line, the position at shower maximum is denoted CES z. The strip chamber extend from 6-239 cm in j j, and there is no scintillator for j j < 42 cm, where the two calorimeter barrels meet.

The central hadronic calorimeter [31] is separated into a central region (CHA, j j < 0.6) with 32 longitudinal layers of scintillator sandwiched with steel and a forward wall calorimeter (WHA, 0.6 < j j < 1.1) with 15 such layers. These calorimeter have thicknesses of 45 interaction lengths.

The plug calorimeter [32] has a comparable design to the central calorimeter with scintillator-lead electromagnetic calorimeters and scintillator-steel hadronic calorimeter com partments. The seg-
ment is 0.13 radians up to \(j = 2 \lambda \), and then broadens to 0.26 radians. The two farthest forward plug towers cover the \(j \) regions \(2 \lambda \) \(3 \lambda \) \(3 \lambda \) \(4 \lambda \), while the rem aining towers have a size = 0.1.

3. Muon Detectors

The muon systems relevant for the W mass measurement cover the region \(jj = 1 \). The central muon detector (CMU) and the central muon upgrade (CMP) cover \(j = 0.6 \), while the central muon extension (CMX) covers \(0.6 < j \leq 1 \).

The CMU detector [33] is located at the outer edge of the CHA, 347 cm from the z axis. It consists of eight drift chamber layers that cover 1.2\(\lambda \). The vertex drift time within a chamber is 800 ns, about twice as long as the 360 ns spacing between adjacent layers. CMU information must therefore be combined with reconstructed COT particle tracks to determine the appropriate pp crossing.

Because the total thickness of the central calorimeter is about 34 cm, which corresponds to 0.5\% of high-momentum pions, the CMU is used to reduce this background. The CMX detector is located behind an additional 60 cm of steel. The CMX has a similar construction to the CMU, with the exception that wider drift chambers are used to cover the same solid angle, resulting in a maximum drift time of 1.8 s rather than 800 ns.

The CMX detector [34] consists of eight drift chamber layers beyond both the calorimeter and the steel detector support structure (6 to 10 interaction lengths). The CMX regions used in this analysis are \(45 < \theta < 75 \) and \(105 < \theta < 225 \). New detectors for Run II cover much of the rem aining region, but were not fully commissioned for the data-taking period of this analysis. Scintillator detectors (CSX) at the inner and outer surfaces of the CMX provide timing information to the trigger to separate collision particles from other sources such as beam halo or cosmic rays.

4. Trigger System

The trigger consists of three stages with progressively greater sophistication of event reconstruction. The first stage is hardware-based, the second a mix of hardware and software, and the third a mix of processors performing full event reconstruction.

The first trigger stage, level 1, includes tracker, calorimeter, and muon reconstruction. The charged particle track reconstruction is performed with the extremely fast trigger (XFT) [35] based on the four axial COT superlayers. A track segment is reconstructed in a given superlayer at least 11 of the 12 sense wires [36] in a wide road have charge deposition above a given threshold (\#hits\(^*\)). The list of segments from the full trigger is compared to prescale group of events expected from charged particles above a given pattern of events wanted. When matches are found, track candidates are created and passed to the track extrapolator (XTRP) [37]. The XTRP determines the expected positions of the tracks in the calorimeter and muon detectors, for the purpose of forming electron and muon candidates.

The calorimeter reconstruction at level 1 does not separate electromagnetic and hadronic \"trigger towers\" as tower pairs adjacent in . The tower \(p_T \) is calculated assuming a collision vertex \(z = 0 \) and an electron candidate is formed if the ratio of hadronic to electromagnetic energy (Had/EM) in a trigger tower is less than 1/8. The high-momentum trigger is used in this analysis requires a level 1 trigger tower with electromagnetic \(p_T > 8 \text{ GeV} \) and track \(p_T > 8 \text{ GeV} \), and drops the Had/EM requirement for electromagnetic \(p_T > 14 \text{ GeV} \).

Level 1 muon reconstruction includes a \(p_T \) estimate within the CMU and CMX chambers from the relative timing of the hits in different layers. The CMU track segments are combined with reconstructed COT track segments to create \"CMUP\".

FIG. 7: End view of the silicon detector. The innermost layer (Layer 00) is attached to the beam pipe and is surrounded by ve concentric layers of silicon wafers (SVX II). The outermost layers are the intermediate silicon layers (ISL), which sit just inside the outer tracking chamber.
FIG. 8: End view of a section of a central outer tracker (COT) endplate. The COT consists of eight concentric 'superlayers,' separated azimuthally into cells, each containing 12 sense wires and sandwiched by field sheets. The endplates contain precision-machined slots where each cell's sense wires and field sheets are held under tension. The radius at the center of each superlayer is shown in cm.

muon candidates. For the majority of the data CMX candidates also require local CSX hits consistent with particles originating from the collision. For our W and Z boson samples we use a muon trigger that requires CMX or CMUP px > 6 GeV matched to an XFT track with px > 4 GeV (CMUP) or px > 8 GeV (CMX).

The level 2 calorimeter reconstruction uses a more sophisticated clustering algorithm for electromagnetic objects. This improves energy measurement and allows a higher threshold (pt > 16 GeV) to be applied. To reduce rates, the XFT track requirement for CMUP candidates was raised to pt > 8 GeV for most of the data-taking period.

At level 3, approximately 300 dual-processor computers allow full track pattern recognition, muon reconstruction, and calorimeter clustering. Variables used to select events at level 3 are the lateral shower pro, Lshr (Section IV B), and the distance between CES z and the z-position of the track extrapolated to the CES (z). The Lshr variable quantifies the difference between the measured energies of towers neighboring the electron in and the expected energies determined from electron test beam data. The trigger requirements of Lshr < 0.4 and j z j < 8 cm are 100% efficient for electrons from W and Z boson decays. The high-mom entum electron trigger also requires electromagnetic pt > 18 GeV and track pt > 9 GeV. For efficiency studies we use a separate trigger that requires electromagnetic pt > 25 GeV and pT > 25 GeV, but has no quality requirement on pt > 8 GeV (CMX).

The level 3 calorimeter cluster is defined as the negative of the vector sum of the transverse momenta in all calorimeter towers. The high-momentum muon trigger requires a COT track with pt > 18 GeV matched to a CMUP or CMX track segment.

5. Luminosity Detector

The small-angle Cherenkov luminosity counters (CLC) are used to measure the instantaneous and integrated luminosity of our data samples. The CLC consists of two modules installed around the beam pipe at each end of the detector, providing coverage in the regions 3.5 < j z j < 4.5. Each module contains 48 conical gas Cherenkov counters pointing to the collision region. Signals in both CLC modules coinciding in time with the bunch crossing are used to measure the instantaneous luminosity and to trigger collision events. Events collected with this trigger, known as minimum bias events, are used to study the detector response to generic inelastic pp collisions.
B. Detector Model

We use a parametrized model of the detector response to electrons, muons, and the hadronic recoil. The model is incorporated into a custom fast simulation that includes lepton and recoil reconstruction, event selection, and template generation. The simulation provides both flexibility in determining the effects of various inputs, and putting speed to allow frequent high-statistics studies. A sample of $O(10^3)$ events can be generated using a single-processor machine in one day. This is several orders of magnitude more than the $O(10^3)$ events that can be produced with the standard geant-based CDF simulation [43, 41].

We describe in this section the simulation of electrons and muons. Fits to the data to determine the values of some of the model parameters are described in Secs. VI and VII. The detector model of hadronic recoil response and resolution is described in Sec. VII.

The model components common to muons and electrons are: ionization energy loss and multiple scattering in the beam pipe and tracker volume; parametrized track hit resolutions and efficiencies; and track reconstruction. We describe these components in the muon simulation overview, and then discuss the electron- and photon-specific simulation.

1. Muon Simulation

Muon and electron tracks are reconstructed using only COT hit and beam position information (Section IV). Thus, the simulation of the silicon detector consists entirely of energy loss and multiple scattering. In the COT, hit resolutions and efficiencies are additionally simulated, and track reconstruction is performed. The total measured muon EM calorimeter energy is simulated by combining the minimum ionizing energy deposition with energy from non-stable photon radiation (Section VIII) and the recoil and underlying event [33]. Finally, the detector duality of muons is calculated using a map of the muon detector geometry as a function of and . The map is extracted from a full geant-based simulation of the CDF II detector [43, 41].

Ionization Energy Loss

The differential ionization energy loss of muons and electrons in the tracking system is simulated according to the Bethe-Bloch equation [11]:

$$\frac{dE}{dx} = \frac{K Z}{A} \left(1 - \frac{2m_e}{2T_{max}} \right)^2 \frac{1}{2} \frac{2m_e}{T_{max}^2} I^2 \left(\frac{1}{2} \right)^2,$$

where $K = 4 N_A \frac{Z^2}{A} m_e$, N_A is Avogadro’s number, r_e is the classical electron radius, $Z (A)$ is the atomic (mass) number, I is the particle velocity, I is the mean excitation energy, T_{max} is the maximum kinetic energy that can be transferred to a free electron in a single collision, and x is the material-dependent density as a function of x. When calculating the x of we take the material to be silicon throughout.

To calculate muon energy loss in the material upstream of the COT ($r < 40$ cm), we use a three-dimensional lookup table of the material properties of the beam pipe, the silicon detector, and the wall of the aluminum can at the inner radius of the COT. The lookup table detemines the appropriate $Z (A)$ and I values, along with the radiation length $X_0 (A)$, for each of 32 radial layers. Except for the inner and outer layers, the map is a linearly segmented longitudinally and in azimuth to capture the material variation in the silicon detector [43]. Inside the COT, we calculate the energy loss between each of the 96 radial sense wires.

The energy loss model is tuned using the data. We apply a global correction factor of 0.94 to the calculated energy loss in the material upstream of the COT in order to obtain a $J = \frac{1}{2}$ mass measurement that is independent of the mean inverse mom entum of the decay muons (Section V B 3).

Multiple Coulomb Scattering

Multiple Coulomb scattering in the beam pipe, silicon detector, and COT acts as the resolution of the reconstructed track parameters for low-angle track events. We model the scattering using a Gaussian distribution for 98% of the scatterers [43] with an angular resolution

$$\theta = \frac{135 \text{ mrad}}{p} x = X_0;$$

where x is the thickness of the layer and X_0 is the layer’s radiation length (Section VIII). Simulation of multiple scattering is implemented for each radial
layer of the three-dimensional lookup table and between each COT layer.

Based on the results of low-energy muon scattering data, we model the non-Gaussian wide-angle scattering by increasing by a factor of 3.8 for 2% of the scatters.

COT Simulation and Reconstruction

The charged track measurement is modeled with a full hit-level simulation of the charge deposition in the COT and a helical track. The parameter resolution of reconstructed tracks is affected by the individual hit resolution, and by the distribution of the number of hits \(N_{h.i.t.} \) used in the \(t \) \cite{42}.

We tune the COT hit resolution using the width of the mass distribution reconstructed with non-beam-constrained tracks. The tuned value of \(\sigma_{N_{h.i.t.}} \) is consistent with the 149 m RMS of the observed hit residual distribution for the muon tracks in Z data. We use a 150 m hit resolution for the simulation of the \(W \), and Z bosons.

We use a dual-resolution model to describe the narrower mass peak in the high-statistics \(J=1 \) sample, where the muons generally have lower momenta than the other samples. The \(J=1 \) mass peak width is particularly sensitive to multiple scattering and relative energy loss, and our hit-resolution model captures these effects in a way that others neglect. We end that a single-hit resolution of 155 m applied to 70% of the tracks and 175 m applied to the remaining 30% adequately describes the width and line shape of the \(J=1 \) mass peak.

To describe the \(N_{h.i.t.} \) distribution, we use a dual-hit efficiency model, the larger one applied to the majority of the tracks. The lower efficiency accounts for events with high COT occupancy, where fewer hits are attached to reconstructed tracks. The two parameters are tuned to match the mean and RMS of the data \(N_{h.i.t.} \) distributions. We independently tune these parameters for the \(J=1 \) sample, the same sample, and the \(W \) and \(Z \) boson sample.

COT hit positions from a charged track are used to reconstruct a helix with a \(z^2 \) minimization procedure. The axial helix parameters \([d_0, \phi, c, \text{azimuthal angle at closest approach to the beam}] \) and the curvature of the track, \(\rho \), are defined to be \((2R)^{-1} \), where \(R \) is the radius of curvature. The stereoscopic helix parameters are the longitudinal position at the closest approach to the beam, \(z_0 \), and the cotangent of the polar angle, \(\cot \). When optimizing resolution of lepton tracks from prompt resonance decays, we constrain the helix to originate from the location of the beam. The transverse size of the beam is 30 m at \(z = 0 \) cm and increases to 50 m at \(z = 40 \) cm \cite{43}.

For simplicity, we assume an average beam size of \([39, 3 \text{(stat)}] \) m, which is detuned from the beam to \(z = 0 \) m. The beam constraint in this work describes the intrinsic fractional momentum resolution by about a factor of three, to \(\sigma_p = 0.0005 \text{G eV} \).

We perform a track to our simulated hits in the same manner as the data. The hits are first to a helix without a beam constraint, and then with a beam constraint. This option is applied to prompt lepton tracks from \(W \) and \(Z \) boson decays, but not to tracks from \(J=1 \) decays, approximately 20% of which are not prompt. The prompt pt muons from decays are twice, both with and without the beam constraint, as a consistency check.

Calorimeter Response

Muons deposit ionization energy in the calorimeter. We simulate a muon energy deposition using a distribution taken from cosmogenic muons passing through the center of the detector, in events with no other track activity. An additional contribution comes from energy into the calorimeter from the underlying event. We model this energy using a distribution taken from \(W \) events, using towers separated in azimuth from the muon.

Muons with a CES z position within 1.5 cm of a tower boundary typically deposit energy in two calorimeter towers. We use this criterion in the simulation to apply the underlying event and non-photonic photon radiation (Section \(\text{VIB} \)) contributions for one or two towers. The simulated underlying event energy includes its dependence on \(u_{13} \) and \(u_{21} \) (Fig. 13), and on the tower position of the muon when it crosses the CES (Section \(\text{VIB} \))

Detector Fiduciality

The CMUP and CMX muon systems do not have complete azimuthal or polar angle coverage. We create a map of each muon detector's coverage using simulated \(W \) events with a detector geometry based on \(\text{geant} \). We use the map in the fast simulation to determine the fiduciality of a muon at
The effective correction for an electron of energy E_0 to radiate a photon of energy E is given by the screened Bethe-Heitler equation \(\frac{d}{dy} = \frac{A}{N_A X_0} \left(\frac{4}{3} + \frac{C}{y} \right) \) for most of the y spectrum. In terms of the material's radiation length X_0, the differential cross section for bremsstrahlung radiation is:

\[
\frac{d}{dy} = \frac{A}{N_A X_0} \left(\frac{4}{3} + \frac{C}{y} \right) \left(1 + \frac{y}{y_0} \right); \quad (8)
\]

where C is a small material-dependent correction (Appendix B). Figure 3 shows the integrated thickness of a material upstream of the COT, in terms of radiation lengths, traversed by the reconstructed electron tracks in the COT. The number of photons emitted per layer is given by:

\[
N = \frac{x}{X_0} \left(\frac{4}{3} + \frac{C}{y_0} \ln y_0 \right) \left(1 + \frac{y}{y_0} \right); \quad (9)
\]

where x is the thickness of the layer and y_0 is a lower threshold introduced to avoid infrared divergences. We use $y_0 = 10^4$ and determine $C = 0.6253$ using the silicon atom in the material.

For each layer of the silicon or COT material, we use a Poisson distribution with mean N to determine the number of photons radiated in that layer. For each radiated photon, we calculate y from the spectrum in Eq. (9). To correct for inaccuracies of the screened Bethe-Heitler equation at the ends of the y spectrum, we apply a suppression factor if $y < 0.005$ or $y > 0.8$.

For radiation of high-momentum photons ($y \approx 0.8$), the approximation of complete screening of the nuclear electromagnetic field by the atomic electrons breaks down. In this region, the full Bethe-Heitler equation for incomplete screening must be used. We implemented this correction by removing generated photons in the high-y region such that we match the reduced cross section from incomplete screening.

Two effects reduce the cross section for low-momentum photon radiation: multiple scattering and Compton scattering. Multiple Coulomb scattering suppresses long-distance interactions, and the resulting LPM suppression in low-momentum radiation can be expressed in terms of the Bethe-Heitler cross section:

\[
S_{LPM} \frac{dLPM}{dy} = \frac{S_{BHE}}{E_0} \left(\frac{1}{y} \right); \quad (10)
\]
where E_{LPM} depends on the material. We use $E_{\text{LPM}} = 72$ TeV, appropriate for silicon, and apply the suppression when $S_{\text{LPM}} < 1$.

Radiated photons scatter the atomic electrons, and destructive interference of low-momentum photons suppresses this radiation [53]. The suppression factor is:

$$S_{\text{Compton}} = \frac{y^2}{y^2 + E_p^2/E_e^2};$$ \hspace{1cm} (11)

where $E_p = 2.4$ MeV for a 40 GeV electron in silicon, using the silicon plasma frequency f_p, and is the Lorentz factor.

In any given simulated event, the product of S_{LPM} and S_{Compton} provides the probability that a photon generated from the screened Bethe-Heitler equation with $y = 0.05$ survives the low-momentum suppression. For a 40 GeV electron radiating a 20 MeV (8 MeV) photon, the suppression factors are $S_{\text{LPM}} = 0.95 (0.60)$ and $S_{\text{Compton}} = 0.99 (0.92)$. Our simulated y spectrum from W boson decay electrons reproduces the spectrum obtained by a geant [40] simulation.

Photon Conversion

Photons can convert to an electron-positron pair by interacting with the tracker material. The differential cross section for a photon of energy E & 1 GeV to convert into an electron with energy E_e is given by the screened Bethe-Heitler equation [48]:

$$\frac{d}{dy} = \frac{A}{N_A X_0} \left[1 \times (4 \times \text{C}) y(1 + y) \right];$$ \hspace{1cm} (12)

where $y = E_e/E$. Integrating over y and multiplying by $x N_A X_0$ gives the total cross section, from which we obtain the following conversion probability at high photon energy:

$$P \times e \times (E > 1) = 1 - e^{(7 \times \text{C}) + x \times y};$$ \hspace{1cm} (13)

We parametrize the cross section as a function of photon energy using the tables for photon cross sections in silicon given in [52]. We apply the ratio shown in Fig. 10 to the high-energy cross section when calculating the conversion probability.

For each radiated photon upstream of the COT, we integrate the material between the radiation point and the COT inner can. If the photon converts, we take the conversion point to be halfway between the radiation point and the inner can. If the photon does not convert before the COT, we integrate the material in the COT and take a converting photon to convert halfway through the COT.

Compton Scattering

The cross section for a low-momentum photon to scatter an electron is similar to that of conversion into an γe pair. The differential cross section with respect to the photon fractional energy loss y can be approximated as (Appendix A):

$$\frac{d}{dy} / 1 = y + y;$$ \hspace{1cm} (14)

Using a lower bound of $y = 0.001$, this spectrum approximates the Compton energy loss distribution for photons radiated from electrons from W boson decays.

We calculate the total cross section in terms of the pair production cross section using the tables for photon interactions in silicon in [52]. The ratio of cross sections as a function of energy is parametrized as (Fig. 10):

$$R_{\text{Compton}} \frac{1 - e^{-y(E)}}{e^{-y(E)}} = e^{F(E)};$$ \hspace{1cm} (15)
Energy Loss in Solenoid

After exiting the tracker electrons and photons travel through the time-of-light (TOF) system and the solenoid. These systems have thicknesses of 10% and 85% of a radiation length, respectively. With this much material it becomes prohibitive to model individual radiative processes, and we instead use a parametrized energy-loss model determined from a Geant simulation. The energy loss is defined as the difference in energy of a single particle entering the TOF and the total energy of particles exiting the solenoid.

Figure 11 shows the mean energy loss as a function of log_{10}(p_T = GeV) of the incoming particle for both photons and electrons. Electrons lose more energy than photons due to their ionization of the material. Since electrons with p_T > 400 M eV curve back to the center of the detector before exiting the solenoid, we do not parametrize energy loss in this energy region.

The energy loss distribution at a given particle p_T is reasonably described by an exponential. We use this distribution, with a mean determined by Fig. 12, to model the energy loss of a given particle passing through the TOF and solenoid.

Calorimeter Response and Fiduciality

The calorimeter simulation models the response of the electromagnetic calorimeter as a function of each particle's energy and position, and the fraction of shower energy leaking into the hadronic calorimeter. The electromagnetic calorimeter response, or the average energy measured divided by the true particle energy entering the calorimeter, can depend on each particle's energy. Possible sources of this dependence are variations in light yield as a function of calorimeter depth, attenuation in the light guide from the scintillator to the phototube, or leakage of showering particles into the hadronic calorimeter. The mean fractional energy leakage into the hadronic calorimeter for particles exiting the tracker, determined using the Geant calorimeter simulation, is shown as a function of log_{10}(p_T = GeV) in Fig. 13.

For a low-p_T particle exiting the tracker, the distribution of energy loss into the hadronic calorimeter is adequately described by an exponential. For high-p_T particles (> 10 GeV), the distribution has a peak at non-zero values of energy loss. In this energy region we model the hadronic energy loss fluctuations with the distributions shown in Fig. 13. Because a non-negligible fraction of electrons lose a significant amount of energy (5% to 10%) in the hadronic calorimeter, it is important to model the energy loss spectrum in addition to the mean hadronic energy loss.
To correct for any unaccounted dependence of the response on incoming particle energy, we use an empirical model of response that increases linearly with particle p_T:

$$R_{EM} (p_T) = S_E [1 + (p_T \text{GeV}) 39];$$

(17)

We determine the slope parameter $\alpha = [6.7\text{stat}] 10^{-5}$ using fits to the electron $E=\pi$ distribution as a function of p_T in $W \rightarrow eZ \rightarrow eee$ events (Section IV). The inclusive $E=\pi$ distribution from $W \rightarrow eee$ events is used to calibrate the absolute response S_E. Since electrons in this sample have a mean p_T of 39 GeV, the tted value for S_E and are uncorrelated. The parameter α describes the "non-linearity" of the calorimeter response.

Light attenuation in the scintillator results in non-uniform response as a function of distance from the wavelength-shifting light guides. The attenuation function was measured using test beam data at construction, and aging effects are measured individually using electrons from W boson decays. The function is parametrized as a quadratic function of the CES x position within a tower and corresponds to a reduction in response of 10% at the edge of the tower. We simulate the light attenuation by reducing the energy deposited by each particle according to this function, evaluated at the particle's CES x position.

To improve measurement resolution in data, we correct for attenuation effects by applying the inverse of the quadratic attenuation function to the measured EM energy. We match this procedure in the simulation.

The EM calorimeter response drops rapidly as a particle crosses the edge of the scintillator and into the dead region between towers [36]. We take the calorimeter to have zero response for any particle with $|E_{CES}z| > 23\text{ cm}$ or $|E_{CES}x| < 42\text{ cm}$. For the m_μ measurement, we only use high-energy electrons far from the dead regions (Section IV B).

We apply the following smearing to the calorimeter energy:

$$E = E_\mu - 0.135^2p_T + 2;$$

(18)

where the constant term is determined to be $0.09 \pm 0.06\text{stat} \pm 0.13\text{sys}$ from a fit to the width of the electron $E=\pi$ peak in W boson decays [35].

We further energy smearing is necessary to model the multi-particle energy clusters populating the high $E=\pi$ region. When a simulated W or Z decay electron radiates in the tracker, we apply an additional fractional resolution of $\delta E / E = [3.5 \pm 2.2(\text{stat})\%]$ to each radiated particle. This smearing contributes 1.3% to the effective constant term, and is determined from the width of the Z boson mass peak reconstructed from radiative electrons ($E=\pi > 1.06$).

The tail contribution to the electron cluster energy comes from the underlying event [39] and additional pp interactions. As with muons, we measure this energy distribution in W boson data as a function of u_T, p_T, and the electron tower (Section IV B). These measurements are incorporated in the simulation.

IV. W BOSON SELECTION

The W boson samples are collected with triggers requiring at least one central (jjj, l) lepton candidate in the event. A narrow kinematic region is defined for W boson selection: $30 \text{ GeV} < \text{lepton } p_T < 55 \text{ GeV}$; $30 \text{ GeV} < p_T < 55 \text{ GeV}$; $60 \text{ GeV} < p_T < 100 \text{ GeV}$.
or 6 cm of the CMU, CMP, or CMX track segment to the background to the muon detector. CO T track extrapolation to the side detectors with partial isolation < 0.1. Calorimeter isolation is defined as the calorimeter depth in an event using the muon calorimeter towers, divided by the muon track p_T. For events with one identified W decay muon and a second muon candidate passing the loose criteria, the identified W decay muon must also have isolation < 0.1 for the event to be rejected from the W boson sample. The full W boson sample, after kinematic selection and Z boson rejection, contains 51,128 events in the 81 - 101 GeV range. The fraction of probe W muon candidate selection criteria is shown in Fig. 14 as a function of net recoiling energy along the muon direction (u_3). The observed dependence is parametrized as:

$$a = a_0 + b_0 u_3 + c_0 u_3^2$$ \hspace{1cm} (18)

where a is a normalization factor that does not affect the measurement and $b_0 = [1.2, 0.040 \pm 0.06]$. c_0 is the same as b_0 in simulated data and for the m_T, p_T, and E_T mass, respectively, of $m_W = 1.6$ and 32 GeV.

A W muon candidate must have a track segment in either the CMU and CMP detectors, or the CMX detector. CO T tracks extrapolated to these detectors must have positions that match with those of the CMU, CMP, or CMX track segment positions, respectively.

The $Z = \gamma$ process presents a significant background to the W sample. We reduce this background by removing events with a second opposite-charge muon candidate passing the above selection, or passing the following loose set of criteria: an opposite-charge track with $p_T > 10$ GeV, $\not{p}_T < 100$ GeV; and $u_T < 15$ GeV. This selection results in low background while retaining events with precise m_W information. Additional background rejection is achieved through event selection targeting the removal of Z boson decays to leptons. To minimize bias, lepton selection criteria are required to have high efficiency or to be explicitly modeled by our fast simulation.

A. W ! Selection

Muons are identified based on their reconstructed CO T track quality and production vertex. m_W muon identification energy deposition in the calorimeter, and the consistency of the track segments reconstructed in the muon chambers with the CO T tracks.

All charged lepton candidates from W and Z boson decay are required to have fully-facial central ($j_0 < 60$ cm) CO T tracks with at least 5 hits on each of 3 axial superlayers and 3 small-angle stereo superlayers. For muon candidates we remove background from decays of long-lived hadrons to muons (decays in flight) by requiring the track in the parametric region to be small ($j_0 < 1$ mm) and the track quality to be good ($\varphi_{dof} < 3$). After this initial selection, the CO T track parametric regions are updated with an additional constraint to the transverse position of the beam, which has a size of 30 m in the luminosity region. The beam constraint results in a factor of 3 in proven ent in m cm entropy resolution for muons from W boson decays.

Each muon candidate's CO T track is extrapolated to the calorimeter and its energy deposition in the electron and hadronic calorimeters is separately measured. Muons near a tower edge in the z direction cross two calorimeter towers, and those tower energies are combined to determine the muon's total energy deposition. We require the muon's electron and hadronic energy deposition E_{EM} to be less than 2 GeV and its hadronic energy deposition E_{HAD} to be less than 6 GeV.

A full W muon candidate must have a track segment in either the CMU and CMP detectors, or the CMX detector. CO T tracks extrapolated to these detectors must have positions that match within 3.5, or 6 cm of the CMU, CMP, or CMX track segment positions, respectively.

B. W ! Selection

Electron identification uses information from the CO T track quality and production vertex, the matching of the track to the calorimeter energy and position, and the longitudinal and lateral calorimeter energy profiles.

An electron candidate's CO T track has the same duality and hit usage requirements as a W muon candidate track, and utilizes the same beam-constrained track t. The track is required to have $p_T > 18$ GeV, a kinematic region where the trigger efficiency has no p_T dependence. The clustering of showers in the CES produces an energy-weighted position in the electron beam axis. We require the CES cluster to be well-separa-
Electrons are di-exerted from hadrons by their high fraction of energy deposited in the electromagnetic calorimeter. The electron's EM energy is measured in two neighboring towers, while the energy collected in the hadronic calorimeter is measured in three towers. The ratio, $E_{\text{EM}}/E_{\text{had}}$, is required to be less than 0.1. Only the EM calorimeter measurement is used to determine the electron's p_T.

An electron shower will typically be confined to a single tower, with a small amount of energy coming into the nearest tower. We define the energy-weighted difference between the observed and expected energies in the two towers neighboring the electron in the direction E_{adj}

$$L_{\text{sh}} = 0.14 \left(\frac{E_{\text{adj}}}{E_{\text{exp}}} \right)$$

$$= \frac{0.14^2 E_{\text{adj}} + (E_{\text{exp}})^2}{0.14 E_{\text{adj}} + (E_{\text{exp}})^2}$$

where E_{adj} is the energy in a neighboring tower, E_{exp} is the expected energy contribution to that tower, E_{adj} is the RMS of the expected energy, and the sum is over the two neighboring towers. We require $L_{\text{sh}} < 0.3$, consistent with the trigger criterion (Section IIIA.3).

The Z ee background is highly suppressed by the $p_T < 15$ GeV requirement for the W boson sum-ple. Residual background results from electrons passing through dead calorimeter regions, which reduces p_T and increases θ. We remove events from the W sample if a track with $p_T > 20$ GeV and $\theta < 0.3$ cm extrapolates to a calorimeter region with reduced response ($\theta < 22$ cm or $\theta < 6$ cm), and the track's calorimeter isolation is < 0.1 (Section IIIA.4). The full W/e selection results in a sample of 63,964 candidate events in (218.1 ± 12.5) pb$^{-1}$ of integrated luminosity.

The track selection in the single-electron trigger (Section IIIA.4) results in an η-dependent trigger efficiency for reconstructed electrons (Fig. 15). We study this efficiency using W events selected with a trigger where the track momentum is replaced by $p_T > 2$ m.m. Electrons crossing this region at track $\eta = 0$ are not included in the efficiency plot, since we only measure electrons with $\theta < 9$ cm. Thus, at $\eta = 0$ there is no electron due to the dead COT region, and the measured efficiency increases.

We measure the u_{ij} dependence of the electron identification efficiency (Fig. 16) using Z ee events, selected with one electron passing the W electron candidate criteria and a second probe electron identified as an EM energy cluster with $p_T > 30$ GeV, an associated track with $p_T > 18$ GeV, and $E = p < 2$. Since the probe electron identification includes
FIG. 16: The electron identification efficiency measured in Z \(\rightarrow \) ee data as a function of the recoil component in the direction of the electron (\(u_{jj} \)). Background is subtracted using the number of like-charge lepton events observed at a given \(u_{jj} \). The \(E^{-p} < 2 \) requirement is not included in this efficiency measurement.

\[\text{Identification efficiency}/6 \text{ GeV} = 0 \]

We vary \(b \) by \(3 \) in pseudoexperiments and assume a linear variation of \(m_y \) with \(b \) to derive uncertainties of \(m_y = 3.5 \) and \(16 \text{ MeV} \) for the transverse momentum, and \(p_t \) respectively. Since \(b \) is measured with different data samples for the electron and muon channels, there is no correlation between the corresponding systematic uncertainties.

V. TRACK MOMENTUM MEASUREMENT

Muon momentum is determined from helical strips to tracks reconstructed using COT information. The momentum resolution of prompt muons is improved by constraining the helix to originate from the transverse beam position. A given muon's transverse momentum is determined by the Lorentz equation,

\[m v^2 = e B \]

\[p_t = e B (2 j) \]

where \(B \) is the magnetic field, \(R \) is the radius of curvature, \(c \) is the speed of light, and \(q = (2 R) \) is the curvature of the helix, and \(q \) is the muon charge. The a priori momentum scale is determined by the measured values of the magnetic field and the radius of the tracker. At CDF, \(eB = 2 \times 1.593 \times 10^3 \text{ GeV/cm} \), where \(B \) is measured using an NMR probe at a COT endplate. Measurements of the local magnetic field and tracker geometry were performed during construction and installation and were used to determine the positions of individual track hits. We find that these measurements provide an a priori momentum scale accuracy of 0.15%.

We perform the momentum scale calibration with data. Using reconstructed cosmic-ray muon tracks, we align the relative positions of the tracker wires. Track-level corrections derived from wide-angle data reduce relative curvature bias between positive and negative particles. Finally, we perform an absolute calibration of the momentum scale using high-statistics data samples of \(J= \), \(Z \) boson decays to muons. The final calibration is applied as a relative moment scale correction \(p^{-p} \) to the wide-angle data and has an accuracy of 0.02%.

A. COT ALIGNMENT

The COT contains 30,240 sense wires for measuring the positions of charged particles passing through the detector. The position measurements rely on an accurate knowledge of the wire positions throughout the chamber. We determine these positions using a combination of alignment survey, computer modeling, and cosmic-ray muon data. Any remaining biases in track-parameter measurement are studied with \(J= \) and \(W \) wide-angle data, from which track-level corrections are derived.

A fixed construction of the COT endplates, the position of each 12-wire cell was measured with an accuracy of 13 μm using a coordinate measuring machine. The effect of the load on the wire plane and lid sheets was monitored with a finite-element analysis (FEA) and found to cause an endplate bend towards \(z = 0 \) cm with a maximum bend of 6 mm in the first superlayer [29]. An equivalent load was applied to the detector and further measurements found the FEA to be accurate to within 20%. The FEA results were scaled to match the measurement, and the positions determined from the FEA were set as the directly-determined cell positions.

While each cell position determines the average position of its 12 sense wires within the chamber, several effects create a non-linear wire shape as a function of \(z \). Gravity has the most significant effect, causing each wire to sag 260 μm in \(y \) at \(z = 0 \).
Electrostatic deflection towards the nearest e+ sheet occurs for cells where the sense wire is not centered between the e± sheets. By construction, the wires are slightly offset within a cell; in addition, the gravitational sag of the e± sheets is larger than that of the sense wires, resulting in an electrostatic deflection that partially counteracts the sag of the sense wires. Combined, the electrostatic effects cause a dependent wire shift that has a maximum of 74 mm at $= 145^\circ$ and $z = 0$ cm. The gravitational and electrostatic effects were combined to determine the best a priori estimate of the wire shapes.

Starting from the predicted cell and wire positions, we develop in situ corrections based on cosmic-ray muon data taken during pp crossings with the single muon trigger. The data are selected by requiring exactly two reconstructed tracks in the event, eliminating events from overlapping hits from collision-induced particles. Since the tracks on opposite sides of the COT result from a single cosmic-ray muon, we use both tracks to a single helix and determine hit residuals with respect to this helix [57]. For each cell, we use the residuals to determine a tilt correction about its center, and a shift correction along the global azimuth (Fig. 13). We show the tilt and shift corrections for the inner superlayer of the west endplate in Fig. 14, after removing global corrections. We apply these corrections to each cell of each superlayer in each endplate. In addition, we measure a relative east-west shift and include it in each cell’s correction.

We combine the cell-based corrections with wire-based corrections for the shapes of the wires between the endplates. We measure these corrections as functions of z and radius R using the differences in the measured d_0 and curvature parameters for the helixs on opposite sides of the COT for a cosmic-ray muon. The corrections are applied as additional offsets of the wires at $z = 0$ cm, with a parabolic wire shape as a function of z. The corrections include a radial dependence,

$$\Delta d_0 = 160 + 380(R = 140) - 380(R = 140);$$ \hspace{1cm} (22)

where R is measured in cm and d_0 in m. Figure 13 shows the gravitational and electrostatic shifts of a wire as a function of z at $= 145^\circ$, as well as the data-based correction at $R = 130$ cm (the outer superlayer).

The cell- and wire-based corrections are implemented for the track-nudging and fitting stage, and re-
duce the measured hit resolution for high-momentum muons from 180 m to 140 m. Final track-based corrections are applied to the measured track curvature, which is inversely related to the transverse momentum [Eq. (21)]. Expanding the measured curvature \(\phi \) as a function of the true curvature \(\phi_0 \) in a Taylor series around zero,

\[
c = 1 + (1 + \frac{\phi}{\phi_0})c_0 + 3c_0^2 + 4c_0^3 + \cdots \tag{23}
\]

the terms even in \(c_0 \) cause biases in positive tracks relative to negative tracks, which tend to cancel when the two are averaged. The term linear in \(c_0 \) scales the true curvature and is determined by the momentum calibration. The \(4c_0^3 \) term is the first to directly affect mass measurements and is suppressed by the \(c_0^4 \) factor at low curvature (high momentum).

Conversions for high-momentum tracks from \(W \) and \(Z \) decay particles are determined using the difference in \(E/p \) for \(e^+ \) and \(e^- \) from \(W \) decays, which should be zero in the absence of misalignments. This difference can be used to constrain the first term in the Taylor expansion. Figure 22 shows the differences in \(E/p \) as functions of \(\cot \theta \), before and after corrections of the following form:

\[
c = a_1 + a_1 \cot \theta + a_2 \cot^2 \theta + b_3 \sin(\theta + 0.1) + b_3 \sin(3\theta + 0.5) \tag{24}
\]

The terms can be interpreted as arising from the following physical effects: a relative rotation of the outer edge to the inner edge of each endplate (\(a_1 \)); a relative rotation of the east and west endplates (\(a_2 \)); and a mass measurement of the beam position (\(b_3 \)). The measured values of the parameters \(a_1, a_2, b_1, b_2, \) and \(b_3 \) are shown in Table III. Varying \(a_1 \) by 3% in pseudorandom and assuming linear variation of the momentum scale with \(a_2 \), we find the uncertainty results in a relative momentum scale uncertainty of 0.07 \(10^{-3} \) for \(W \) and \(Z \) boson mass measurements. The other parameters uncertainties, as well as residual higher-order terms, have a negligible impact on the momentum scale for the \(W \) mass measurement.

B. J= \(\pi \) Calibration

With a measured BR of 163\(_{+3}^{+3} \) nb \[28\], \(J= \pi \) mesons are the Tevatron's most prolific source of resonant decays to muon pairs. In addition to
TABLE III: The parameters used to correct the track curvature of electrons and muons from W and Z boson decays. The values and statistical uncertainties are determined from Fits to the E-p difference between positions and electrons.

<table>
<thead>
<tr>
<th>Parameter Value (10^{-7} cm^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
</tr>
<tr>
<td>a_2</td>
</tr>
<tr>
<td>a_3</td>
</tr>
<tr>
<td>b_1</td>
</tr>
<tr>
<td>b_2</td>
</tr>
</tbody>
</table>

its high statistics, the J= m precisely known mass (m_{\text{J=0}} = 398.88 \text{MeV}[59]) and narrow width (J= 0.9384 \pm 0.0021 \text{MeV}[11]) make it a key component of the track momentum correction. We perform momentum fits of the J= m mass as a function of event inverse momentum p_T to determine the momentum scale correction and extrapolate to the high-p_T region relevant for W and Z boson decays.

1. Data Sample

The J= m data sample is collected with a Level 1 trigger requiring one p_T > 15 GeV XFT track with a matching CM U track segment, and a second p_T > 15 (2) GeV XFT track with a matching CM U (CM X) segment. At Level 3, the two corresponding COT tracks must have opposite charge and consistent z vertex positions (j_z < 5 cm), and must form an invariant mass between 2.7 and 4 GeV. The resolution on the invariant mass measurement degrades at high momentum, so to avoid trigger bias the mass range is extended to 2 GeV < m < 5 GeV when the p_T of the m uon pair is greater than 9 GeV.

Candidate events are selected online by requiring two COT tracks, each with p_T > 2 GeV, j_z < 0.3 cm, and 7 hits on each of the eight superlayers. The tracks must originate from a common vertex (j_z < 3 cm) and form an invariant mass in the range (295;321) GeV.

A significant fraction (20%) of the J= m mesons in our data sample result from decays of B hadrons, which have an average proper decay length of 0.5 mm. The m uons from the J= m decay can thus originate outside the beam radius. Therefore, we apply a beam constraint in the COT track of muon candidates from J= m decays.

The total sample consists of 606,701 J= m candidates in (194;113) pb^{-1} of integrated luminosity.

2. Monte Carlo Generation

We use pythia[59] to generate J= m events, from which templates are constructed to fit the data for the m momentum scale. The shape of the m distribution from J= m decays is dominated by the p_T-dependent detector resolution. We therefore model the p_T^2^{m} distribution as well as the p_T and relative p_T of the m uons in a J= m decay. To obtain an adequate model, we empirically tune the generated J= m kinematics to describe the relevant data distributions for the J= m mass.

To tune the p_T^2^{m} distribution, we boost the J= m momentum by changing its rapidity (y_{m}) along its direction of motion p_{T_m}. In 50% of the generated events we multiply y_{m} by 1.215, and in the other 50% we multiply it by 1.535. The decay angle in the J= m rest frame relative to p_{T_m} is tuned by multiplying cot by 1.3. A further tuning, the simulation matches the relevant background-corrected data distributions, as shown in Fig. [21].

The pythia event generator does not include energy loss due to final-state photon radiation from the m uons in J= m decays. To simulate this effect, we scale each m uon’s momentum by a factor x determined from the following leading-log probability distribution for soft photon radiation [53, 60]:

\[f(x) = (1 - x)^{\alpha}; \quad (25) \]

with

\[x = \frac{E_{\gamma}}{E_{\gamma} + m_{\text{J=0}}}; \quad (26) \]

and Q^2 = m_{\text{J=0}}^2.

3. Momentum Scale Measurement

The m momentum scale is calibrated using J= m decays by fitting the dimuon mass as a function of event inverse p_T of the two m uons, and then extrapolating to high p_T (p_T > 0 GeV^{-1}). This procedure results in a track m momentum calibration accuracy of 0.025%.

The m momentum scale calibration requires an accurate modeling of the m uon ionization energy loss in the tracker. Each m uon passing through the silicon and COT detectors loses energy on average 9 MeV at normal incidence. The combined effect on the reconstructed m is about 0.6% of m_{J=0}, a factor of 20 larger than our total uncertainty. Since the ionization energy loss E_{\gamma} varies only logarithmically with p_T (Section [III.B.1]), the relative effect on the reconstructed...
mass is:

\[
\frac{m}{E_t} = \frac{E_r}{2p_T} + \frac{E_t}{2p_T} = \frac{E_t}{p_T^1} \quad : \quad (27)
\]

Thus, in a linear t of \(m = m \) as a function of \(m \) mean inverse \(p_T \), a non-zero slope approximately corresponds to \(E_r \). Since we model the ionization energy loss based on the known detector material, this slope should be zero. We however nd that we need to scale down the ionization energy loss from the detector parameterization (Section \(III B \)) by 6% to achieve a zero slope. We show the result of this tuning in Fig. 22, replacing \(m = m \) on the y-axis with the relative moment correction \(p-p \) to the data in order to measure \(m_J^- = 3096 \pm 88 \) MeV. The tuning is based on a \(p_T^1 \) region of \((0.1; 0.5) \) GeV \(^{-1} \), divided into eight bins. We end a scale correction of \(p-p = [\pm 1.64 \pm 0.06(\text{stat})] \times 10^3 \) from a linear t to \(p-p \) as a function of \(p_T^1 \).

Each \(p-p \) value in Fig. 22 is extracted via a binned likelihood fit to the \(p-p \) distribution for each \(p_T^1 \) bin. Since the mass resolution varies significantly with \(p_T^1 \), the \(J^- \) ranges are adjusted from 3080 0.13 GeV for \(p_T^1 = (0.1; 0.5) \) GeV \(^{-1} \) to 3080 0.08 GeV for \(p_T^1 = (0.45; 0.5) \) GeV \(^{-1} \). The background is modeled as a linear function of \(m \), with normalization and slope determined from upper and lower sideband regions whose combined width is equal to that of the mass window. The results of the fits in the \(p_T^1 = (0.15; 0.2) \) GeV \(^{-1} \) and \(p_T^1 = (0.25; 0.3) \) GeV \(^{-1} \) ranges are shown in Fig. 23.

The \(J^- \) momentum calibration includes corrections to the curvature \(c \) derived from the measured dimuon mass as a function of \(\cot \) between the positive and negative dimuons from the \(J^- \) decay. Biases linear in \(\cot \) are removed with a curvature correction linear in \(\cot \):

\[
\frac{c}{c} = \left[\frac{7}{1} \right] \times 10^{-3} \cot ; \quad (28)
\]

where the uncertainty is statistical only. Biases quadratic in \(\cot \) are removed with the following correction to the absolute length scale of the COT along the \(z \) axis (statistical uncertainty only):

\[
\cot = \left[\frac{3.75}{1.20} \right] \times 10^{-3} \cot ; \quad (29)
\]
4. Momentum Scale Uncertainties

Systematic uncertainties on the momentum scale correction extracted from $J = 1$ decays (Table IV) are dominated by the incompleteness of the QED and energy loss models. At low muon p_T (high p_T^e), the mass terms become increasingly sensitive to QED and energy loss modeling because of the better mass resolution and higher statistics. Since we only model the mean ionization energy loss, our modeling of the mass region below the peak is imperfect. Additionally, our neglect of higher-order QED corrections affects the modeling of this region. We study possible bias from our incomplete modeling by changing the Q2 value in the photon radiation probability function [Eq. (25)] such that the 2 of the inclusive m is minimized. We find that this changes the $p=0.2$.

If there is a relative tilt between the solenoid and the tracker axes, the extracted momentum scale correction will have a linear dependence on cot. In addition, incomplete corrections of the magnetic field nonuniformities near the ends of the solenoid can cause a quadratic cot variation. We study the cot dependence of $p=0$ using $J=1$ decays where both muons are measured in the same cot region ($j < 0.1$). We find that if we correct for the observed quadratic dependence, the extracted p changes by 0.1 10^3.

The uncertainty on the material correction propagates to a momentum scale uncertainty of 0.56 10^3 when extrapolated to high momentum, as shown in Fig. 22. An additional statistical uncertainty of 0.5 10^3 on the scale is determined by fitting the material correction and timing for the scale.

The statistical uncertainties on the $J=\text{alignment}$ corrections [Eq. (25) and (29)] have a 0.05 10^3 eect on p. We test our model of the line shape by changing the t range by 20%, and nd a 0.05 10^3 change in p.

We apply the same p_T thresholds as in the trigger for muons with CMU segments. Since we do not model a p_T-dependent trigger efficiency, any inefficiency could cause a bias in the reconstructed mass. We investigate this possibility by varying the p_T thresholds by 5%, and nd a $p=0$ variation of 0.04 10^2.

The quality of the t is highly sensitive to the hit resolution model, but the momentum scale correction is not. Changing the simulated COT hit resolution by 10 m, which corresponds to a > 10 statistical variation, results in a 0.03 10^3 change in p. We include this in our systematic uncertainty estimate.
A 0.03 \times 10^3 \text{ uncertainty on } p=p \text{ from the background model is determined by changing its linear dependence on } m \text{ to a constant. Finally, the world-average } J= m \text{ mass value used in this measurement contributes } 0.01 \times 10^3 \text{ to the uncertainty on } p=p.

The nominal scale correction derived from \(J= m \text{ data is:} \)

\[
p=p = (1.54 \times 0.25) \times 10^3 \quad (30)
\]

C. Calibration

The bb resonance provides a componentary momentum scale calibration tool to the \(J= m \) model. Its precisely measured mass \(m = (9460 \pm 0.26 \text{ MeV}) \text{ is three times larger than that of the } J= m, \text{ so any momentum scale calibration is less sensitive to the material and energy loss model than that of the } J= m. \text{ Because the bb resonances are the highest mass mesons, long-lived hadrons do not decay to the } p=\mu, \text{ and the muons from decay effectively originate from the collision point. We improve the accuracy of the muon measurement by constraining their tracks to the beam position, which is the same procedure applied to the } W \text{ and } Z \text{ decay lepton tracks.}

The data sample is based on the same Level 1 trigger as the \(J= m \) sample (Section 5.1.1). The Level 3 requirements are: one reconstructed track with } p_T > 4 \text{ GeV} \text{ and matching CMU and CMP track segments (CM UP), a second track with opposite charge to the first, } p_T > 3 \text{ GeV} \text{, and a matching CMU or CMX track segment; and a reconstructed mass of the two tracks between } 8 \text{ and } 12 \text{ GeV.}

The } p_T \text{ thresholds are increased to } 4.2 \times (3.2) \text{ GeV for the track with a CMUP (CMU or CMP) track segment, and each track must have } j_\theta \text{ and } j_\phi < 0.3 \text{ cm and at least } 5 \text{ hits in at least } 3 \text{ axial and } 3 \text{ stereo superlayers. The two tracks are required to have a common vertex } (j_\theta < 3 \text{ cm}).

We model production and decay using pythia, to which we apply the same tuning procedure as for \(J= m \) generation. The data } p_T \text{ distribution is matched in simulation by boosting the rapidity of each decay muon by } 0.07 \text{ along } \phi, \text{ where } \gamma \text{ is the rapidity. Radiation of photons from the final-state muons is simulated using the probability distribution of Eqsns. 25 and 26. The } p_T \text{ distribution is shown in Fig. 24 after subtracting background from the data.}

We test any possible beam-constraint bias by separately reconstructing charged muon tracks from decays with and without incorporating the beam constraint. For the sample with beam-constrained tracks we fit for } m \text{ in the region } 9.25 \text{ GeV} < m < 9.58 \text{ GeV, while for the sample with non-beam-constrained tracks we fit the region } 9.25 \text{ GeV} < m < 9.61 \text{ GeV. In } (190.8 \pm 11.1) \text{ pb}^\text{1} \text{ of integrated luminosity, we have } 34,618 \text{ candidates with beam-constrained tracks and } 35,622 \text{ candidates with non-beam-constrained tracks. The two momentum scale measurement results are shown in Fig. 23 and are consistent at the } 2 \text{ level when correlations are taken into account.}

We deduce the result to be the mean of the two values, and take half their difference } (p=p = 0.06 \times 10^3) \text{ as a systematic uncertainty on the measurement.}

The remaining systematic uncertainties on the momentum scale measurement with decays are common to those of the measurement with } J= m \text{ decays. We use the same procedures as with the } J= m \text{ calibration to estimate the sizes of the uncertainties, with one exception. Since the sample has } < 10\% \text{ of the statistics of the } J= m \text{ sample, the QED and energy loss}
model cannot be tested with \(^2\) of the mass. Instead, we change \(Q\) in the photon radiation probability by the amount estimated for the J= system atic uncertainty (Section V.B.4). We nd that this variation affects \(p=p\) by \(0.13 \times 10^{-3}\) in the calibration.

The nal result of the calibration is:

\[p=p = (1.44 \pm 0.21) \times 10^{-3}; \quad (31) \]

We have veri ed that this result has no time dependence, at the level of the statistical precision of \(0.13 \times 10^{-3}\). When combined with the momentum scale correction from the J= calibration, we obtain:

\[p=p = (1.50 \pm 0.19) \times 10^{-3}; \quad (32) \]

D. Z ! Calibration

Given the precision on momentum scale calibration from the J= and decays, we measure the Z boson mass and compare it to the world-average value \(m_Z = (911875 \pm 2.1) \text{ MeV} \) \(\text{[1]}\). We then use the world-average \(m_Z\) to derive an additional \(p=p\) calibration and combine it with that of the J= and decays.

The systematic uncertainties of the \(m_Z\) measurement are correlated with those of the \(m_W\) measurement, so a momentum scale calibration with Z bosons can reduce systematic uncertainties on the \(m_W\) measurement. However, the statistical uncertainty from the Z! sample is signi cantly larger than the calibration uncertainty from J= and decays. Thus, the main purpose of the \(m_Z\) measurement is to confirm the momentum scale calibration and test our systematic uncertainty estimates.

The Z boson data sample is selected using the same single-muon trigger and one-muon selection as for the \(W\) boson sample (Sections H.4 and IV.A), with the exception that we remove the requirement of a track segment in a muon detector for one of the muons from the Z boson decay. Removing this requirement signi cantly reduces detector acceptance while negligibly affecting the background. Z boson candidates are de ned by 66 GeV < \(m < 116 \text{ GeV}\), \(p_T < 30 \text{ GeV}\), \(j_T < 5 \text{ ns}\), and oppositely charged muons. A muon track's \(j_T\) is de ned as the time between the pp bunch crossing and the muon's production, and should be \((0 \pm 1) \text{ ns}\) for Z production and decay. The track \(j_T\) is measured using the time information from the track hits in the COT by incorporating \(j_T\) into the helical \(t\). The \(j_T < 3 \text{ ns}\) requirement effectively removes cosmic muons passing through the detector. Additional cosmic ray identi cation algorithm \(\text{[5]}\) reduces this background to a negligible size. After applying all selection criteria, the Z sample contains 4,960 events in \((190 \pm 11) \text{ pb}\) of integrated lumi-nosity.

The model Z boson production and decay using the resbos \(\text{[6]}\) event generator and a next-to-leading order QED calculation of photon radiation from the initial-state muons \(\text{[7]}\) (Section IX). For \(m\) near the Z boson resonance, the photon propagator and Z = interference make small contributions to the shape of the \(m\) distribution. We separately simulate these components and include them as xed "background" to the Z lineshape. We measure \(m_Z\) using a binned likelihood template to the data in the range \(83 \text{ GeV} < m < 99 \text{ GeV}\) (Fig. 28). Our measurement of \(m_Z = (91.184 \pm 0.143 \text{(stat)}) \text{ GeV}\) is

<table>
<thead>
<tr>
<th>Source</th>
<th>(J= (10^{-3}))</th>
<th>(m= (10^{-3}))</th>
<th>Com m on</th>
<th>(m= (10^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>QED and energy loss model</td>
<td>0.20</td>
<td>0.13</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Magnetic field nonuniformities</td>
<td>0.10</td>
<td>0.12</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Beam constraint bias</td>
<td>N/A</td>
<td>0.06</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ionizing material scale</td>
<td>0.06</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>COT alignment corrections</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Fit range</td>
<td>0.05</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Trigger efficiency</td>
<td>0.04</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>Resolution model</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Background model</td>
<td>0.03</td>
<td>0.02</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>World-average mass value</td>
<td>0.01</td>
<td>0.03</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Statistical</td>
<td>0.01</td>
<td>0.06</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.25</td>
<td>0.21</td>
<td>0.17</td>
<td></td>
</tr>
</tbody>
</table>

\(\text{TABLE IV: Uncertainties on the momentum scale correction derived from the } J= \text{ and } m \text{ measurements.}\)
in good agreement with the world-average value of $m_Z = (91.188 \pm 0.002)\,\text{GeV}$.

Systematic uncertainties on m_Z are due to the momentum scale calibration (17 MeV), alignment correction uncertainties (7 MeV), and incomplete modeling of higher-order QED corrections (14 MeV). The combined statistical and systematic uncertainty is 49 MeV.

Given the precise world-average measurement of m_Z, we use the Z boson resonance as an additional calibration input to $p\bar{p}$. We find that adding the m_Z information reduces $p\bar{p}$ and its uncertainty by less than 0.01×10^3 each.

Incorporating the alignment uncertainty (Section V.A) into $p\bar{p}$ from Eqn. 32 gives the momentum scale correction applicable to the W boson sample:

$$p\bar{p} = (1.50 \pm 0.21) \times 10^3 : (33)$$

The corresponding uncertainty on the m_Z is in the muon channel is 17 MeV.

VI. ELECTRON ENERGY MEASUREMENT

An electron’s energy is measured from its shower in the electromagnetic calorimeter. We perform an initial data calibration by scaling the measured energy such that a Gaussian to the reconstructed dielectron mass in a region dominated by Z decays (86-98 GeV) gives a mean of 91 GeV. This is slightly below the world-average m_Z because the Gaussian is biased by the energy lost to final-state photon radiation (Section IX.D). This initial data calibration is accurate to 0.15%.

To model the data, the simulated calorimeter energy is scaled to match the measured $E=\vec{p}$ distribution of electrons in $W \rightarrow e$ events. A calibrated data measurement would result in an $E=\vec{p}$ of unity for electrons that do not radiate before entering the calorimeter, and deposit all of their energy in the EM calorimeter. We verify that the $E=\vec{p}$ calibration is unbiased by using it to measure m_Z in dielectron events. Given consistency of the measured m_Z with the world-average value, we incorporate the m_Z into the calibration. The final calibration has an accuracy of 0.037%.

![Image of the page with diagrams and text]
A. $E=\mu$ Calibration

We transfer the precise tracker calibration to the calorimeter using the ratio of electron calorimeter energy to track momentum, $E=\mu$. The material from the beam pipe to the inner COT wall causes bremsstrahlung that acts on the measured position of the $E=\mu$ peak, and this material is scaled such that the simulation matches the data in the high $E=\mu$ region. The non-linearity of the energy scale is removed by applying a correction to the simulation scale as a function of the calorimeter energy p_C [Eq. (17)]. Finally, corrections are applied to the data to improve uniformity in response as a function of detector tower and time. A fit to the complete set of corrections and simulation calibrations, the simulation energy scale S_{μ} is determined from a maximum likelihood template fit to the $E=\mu$ peak region.

The shape of the $E=\mu$ distribution has a strong dependence on the material upstream of the COT. Bremsstrahlung in this material reduces the measured electron momentum in the tracker while leaving the measured calorimeter energy unchanged, since photons are radiated collinearly with the electron and deposit their energy in the same calorimeter tower as the electron. Thus, the effect of bremsstrahlung is to shift the measured $E=\mu$ to values >1. If the material were not well modeled, the energy scale calibration would be biased to compensate for this modeling.

A detailed accounting of the silicon and COT tracker material was performed at installation. In the early data-taking period, the radial distribution of photon conversions was compared between data and a full-gate simulation. The amount of copper was increased by a few percent of X_0 in the full-gate simulation to correct observed discrepancies, and the three-dimensional lookup table of material properties (Section III B) was produced from this corrected full-gate simulation.

For a final material tuning, we compare our parametrized simulation to the data in the high $E=\mu$ region ($1.19 \leq E=\mu < 1.85$) of electrons from W boson decays. Using the region $0.25 \leq E=\mu < 1.25$ for normalization, we perform a maximum likelihood fit to the $1.19 \leq E=\mu < 1.85$ region in two bins (Fig. 27) and measure a radiation length multiplicative correction factor of $S_{\mu,\text{at}} = 1.904 \pm 0.003\text{(stat)} \pm 0.005\text{(syst)}$. As a further consistency check of the material lookup table, we determine $S_{\mu,\text{at}}$ as a function of tower j and find no statistically significant dependence on j.

Our simulation of electron interactions in the tracker and calorimeter accounts for most of the energy dependence of the energy scale. Any residual non-linearity is incorporated as a per-particle correction in the simulation (Section III B). To measure this non-linearity, we fit the $E=\mu$ peak region ($0.93 \leq E=\mu < 1.11$) for the energy scale in bins of measured electron calorimeter energy p_C (Fig. 28). The resulting energy scale measurement are χ as a linear function of p_C, with the scale to 1 at the W boson candidate's $p_T \equiv 39$ GeV. The error-weighted average, $\langle \chi(\mu) \rangle = 1\sigma$, of the energy scale fits was used in Eq. (17). The linear χ for each candidate from the W and Z boson samples is listed in Table III. The linear χ is where the simulation includes this correction, show a constant energy scale.

To improve the energy resolution of the data, we apply time-dependent and tower-dependent calibration derived from low-energy EM clusters. At level 3 the relevant trigger requires calorimeter and track p_T greater than 8 GeV each, as well as electron identification based on track-calorimeter matching and calorimeter shower shape properties. A fit to the candidates required to have $H_{\text{vis}} < 0.05$ and $E+p > 22$ GeV to remove any trigger bias. Using the mean of the $E=\mu$ range 0.8–1.25, we apply relative corrections of 0% to remove variations as functions of tower and time.

Because of bremsstrahlung radiation in the tracker, the mean $E=\mu$ correction has a small bias that depends on the electron path length. Since the path length increases as j increases, we perform a relative dependence on the data. Using the same $E=\mu$ peak region of the W and Z boson samples, we derive a relative correction for each bin. This calibration removes 2% residual variation in the calorimeter energy response.
FIG. 28: The energy scale as a function of measured electron calorimeter p_T for W (top) and Z (bottom) boson decays. The fast simulation incorporates a per-particle non-linear response correction [Eq. (17)]. The combination of the linear t to results in no energy dependence of the energy scale.

With the complete set of corrections applied to the data and simulation, we calibrate the simulation energy scale using $W \rightarrow e\nu$ events. The t for S_Z [Eq. (17)] to the $E=p$ peak region (Fig. 29) has a statistical uncertainty of 0.025%. Including systematic uncertainties due to $S_{m,\text{at}}$ (0.011%) and the tracker momentum scale (0.021%), we obtain a total uncertainty of 0.034% on the $E=p$ calibration of the electron energy scale.

The $E=p$ calibration requires an accurate simulation of electron radiation in the tracker. We test the track simulation by measuring m_Z (Section VIB) using electron track information only. The measurement is a binned likelihood t to the region $75 \text{ GeV} < m_{ee} < 99 \text{ GeV}$ (Fig. 30), with m_Z as the t parameter. Because of the significant radiated energy loss, the test is less precise than the measurement using the calorimeter (Fig. 31). Nevertheless, we obtain good consistency with the world-average m_Z, verifying that we do not have any significant modeling of electron radiation in the tracker.

B. $Z \rightarrow ee$ Calibration

Using the $E=p$-based calorimeter energy calibration, we measure the Z boson mass from its decay.
to two electrons. After combining consistency of the result with the world-average mass, we use \(m_Z \) to this value and produce a combined calibration from the electron \(E=\mu \)-based method and \(Z \): ee mass measurement.

We select Z bosons using the same single-electron trigger and one-electron selection as for the W boson sample (Sections IIIA.4 and IVB), and define candidates as oppositely-charged electrons with 66 GeV < \(m_{ee} \) < 116 GeV and \(p_T^{ee} < 30 \) GeV. The Z boson sample contains 2,919 events in (218±124) pb\(^{-1}\) of data.

The sample includes a small component of multijet and W + jet background. From a comparison of the data with like-sign electrons to a prediction of the full geometric simulation, we estimate the background fraction to be 0.5%. Since \(m_{ee} \) of the background is 2 GeV less than that of the Z boson sample in the \(m_{Z} \) region, we estimate any corresponding bias on the measured \(m_Z \) to be 10 M GeV.

The model for Z boson production and decay to electrons is the same as for the muon decay channel (Section VD). We use the resbos [61] event generator and a next-to-leading order QED calculation of photon radiation from the final-state electrons [62] (Section IX). We include the virtual photon exchange and \(Z \) interference contributions as xed backgrounds to the Z boson lineshape, and determine \(m_Z \) from a binned likelihood to the data in the range 81 GeV < \(m_{ee} < 101 \) GeV (Fig. 31).

Systematic uncertainties on the \(m_Z \) measurement result from the \(E=\mu \) calibration (29 M GeV), calorimeter non-linearity \(m_Z \) measurement (23 M GeV), and higher-order QED radiation (14 M GeV). The measured \(m_Z = [91190 \pm 67] \) (stat) GeV is consistent with the world-average value \(m_Z = [91188 \pm 002] \) GeV [11], given the total uncertainty of 78 M GeV on the measurement.

The uncorrelated uncertainties in the combination of the \(m_Z \) and \(E=\mu \) calibrations are the uncertainty on the non-linearity parameter, the statistical uncertainty on the \(m_Z \) measurement (0.073%), and the uncertainty on the \(E=\mu \) calibration (0.034%). Since the \(m_W \) relies predominantly on the shape of the Jacobian edge of the \(m_T \) distribution, the relevant electron transverse energies are in the range of 40-45 GeV. The uncertainty on the energy dependence of the scale from the Z boson mass is negligible, as the \(h_{ee} \) is about 42 GeV in this sample. The \(E=\mu \)-based calibration involves an extrapolation from \(h_{ee} = 39 \) GeV, so it receives an additional uncertainty contribution of 23 M GeV to the \(m_W \) measurement from the non-linearity parameter. Combining the two calibrations, we obtain a total electron energy \(m_Z \) measurement uncertainty of 30 M GeV on the \(m_W \) measurement in the electron channel. Of this uncertainty, we take 17 M GeV to be 100% correlated with the muon channel through the momentum scale uncertainty.

VII. RECOIL MEASUREMENT

The recoil \(p_T \) (Fig. 31) in a W boson event results from quark or gluon radiation in the initial state, and from photon radiation in the initial and final states. A quark or gluon typically fragments into multiple hadrons, which are detected in the calorimeter. Additional energy from the underlying event is also measured in the calorimeter and obscures the recoil measurement. Rather than rely on detailed modeling of the underlying event, we develop an empirical model of the recoil \(p_T \) using Z boson events, where the four-momentum of the Z boson is measured precisely using its leptonic decays. The model of the recoil energy \(m_Z \) measurement is tuned with these decays and applied to W boson events.

We measure the recoil energy using all calorimeter towers except those with ionization or shower energy from the charged leptons. To reduce potential bias and facilitate our model parameters, we correct the measured energy in each tower for acceptance differences resulting from an uncentered beam. In addition, we improve the measurement resolution by correcting for response differences between the central and plug calorimeter
This correction is determined using events collected by a minimum bias trigger, which requires evidence of an inelastic pp collision (Section V A 3).

The relative energy scale between the central and forward calorimeters is initially determined from the calibration of high-\(p_T \) hadronic jets. The relative response has a significant energy dependence, however, and the initial calibration is not optimized for the low \(p_T \) particles relevant to the W boson recoil measurement. Using the E=\(p \) distribution of charged pions from minimum bias events, we find that a relative energy scale of 12% between central and forward calorimeters is appropriate for particles with \(p_T \) \(\geq \) 2 GeV, the momentum region of a typical recoil particle. To maintain the mean recoil energy scale, we scale the central (forward) calorimeter tower energies up (down) by 5% (7%). This calibration improves the recoil resolution, and thus the statistical precision of the \(E_W \) fit. It also minimizes the sensitivity of the recoil energy to differences in phase space sampled by the selected W and Z boson decays.

B. Lepton Tower Removal

The recoil \(E_W \) is measured as the sum of corrected \(p_T \) in all calorimeter towers (Sec. V A 3), excluding the towers in which the lepton(s) deposit energy. The exclusion of these towers also removes some recoil energy from the measurement, thus causing a bias in \(u_{ij} \). We estimate this bias from the data and incorporate it in the simulation.

An electron shower typically distributes energy to two calorimeter towers, but can also contribute to a third tower if the electron is near a tower edge. We remove each tower neighboring the electron's tower, as well as the corner towers closest to the electron's CES position (Fig. 33). A muon near a tower edge can cross two towers, so we remove the two towers in neighboring the muon's tower (Fig. 33). The tower window definitions are motivated by the presence of excess energy in a given tower above the background energy from the underlying event.

We estimate the recoil energy flow into the excluded towers, denoted by \(u_{ij} \), using equivalent windows separated in from the lepton in W+\(l \) events. When simulating a W or Z boson event, we correct the simulated \(E_W \) by a \(u_{ij} \) taken from the measured distribution. The simulated \(u_{ij} \) incorporates the measured dependence on \(E_W \), the lepton \(p_T \), and lepton \(\phi \). These dependencies are shown for W and Z events in Fig. 33 and similar functions are needed for electrons. The incorporation of these functions preserves \(u_{ij} \), which is 269 M eV for electrons and 112 M eV for muons (with negligible statistical uncertainty).

To estimate the systematic uncertainty associated with modeling the tower removal, we study the varia-
FIG. 33: The average energy collected in the electromagnetic (top) and hadronic (bottom) calorimeters in the vicinity of the electron shower in W boson decays. The differences and are signed such that positive differences correspond to towers closest to the electron position at shower maximum. The central seven towers inside the box are rem oved from the reco il measurement. Statistical uncertainties on the values outside the box are 0.1 MeV.

FIG. 34: The average energy collected in the electromagnetic (top) and hadronic (bottom) calorimeters in the vicinity of the muon in W boson decays. The differences and are signed such that positive differences correspond to towers closest to the muon position at the shower maximum. The central three towers inside the box are rem oved from the reco il measurement. Statistical uncertainties on the values outside the box are 0.1 MeV.

tion of u_{jj} in the data as a function of the separation from the lepton of the equivalent tower window. We take half the variation as a systematic uncertainty: 8(5) MeV for rem oved electron (muon) towers. To con�� our estimate of this uncertainty, we rem ove an additional window azimuthally opposite to the lepton ($=\pi$), incorporate its model into the simulation, and compare the resulting simulation and data u_{jj} distributions. We nd the differences to be consistent within our quoted uncertainties.

C. Recoil Model Parameterization

The reco il consists of three separate components: radiation in the W or Z boson production; radiation from the spectator partons; and energy from additional pp collisions in a given bunch crossing. We use the resbos generator to predict the net p_T distribution of radiation in the W or Z boson production, and minimum bias data for the p_T distribution from spectator partons and additional interactions. The parameters for the detector response to the reco il are measured in Z boson events.

To facilitate tuning of the reco il model, we de ne axes such that quark and gluon radiation lies predom inantly along one axis, denoted as the \"axis (Fig. 35). This axis is chosen to be the angular bisector of the two leptons, whose angles are precisely measured. The orthogonal axis is denoted as the \"axis.

1. Recoil Energy Scale

We tune the simulation to match the observed detector response to the reco il radiation. The reco il...
response is defined as \(R = u_\text{true} = u_\text{meas} \), where \(u_\text{true} = p_T^2 \) is the generated net \(p_T \) of the initial state radiation, and \(u_\text{meas} \) is the reconstructed vector of the transverse moment of the \(\mu \) from the data.

To simulate the measured recoil, we parametrize the response as

\[
R (A; B) = A \ln (u_T^{\text{true}} + B) - \ln (15 + B) \tag{35}
\]

where \(u_T^{\text{true}} \) is in units of GeV, and \(A \) and \(B \) are constants determined from the data. Figure 36 shows \(u_\text{meas} = p_T \), which approximates \(R \) for \(Z \) boson decays to muons. The response \(R \) is less than 1 due to calorimeter energy loss from particles passing through calorimeter cracks, and non-linearity of the hadronic calorimeter response.

Projecting the lepton momentum and the recoil along the axis to obtain \(p_T^2 \) and \(u \), the sum \(p_T^2 + u \) is sensitive to \(R \). This sum is zero for \(R = 1 \), and positive for \(R < 1 \). We measure \(A = 0.635 \pm 0.007 \) (stat) and \(B = 6.68 \pm 1.04 \) (stat) by minimizing the combined 2 of the electron and muon \((p_T^2 + u) \) distributions as a function of \(p_T^2 \) (Fig. 38). We determine the \(A \) and \(B \) with the \((p_T^2 + u) \) distribution rather than the distribution of Fig. 37 because \((p_T^2 + u) \) is well defined as \(p_T^2 > 0 \) GeV, while \(R \) is not. The parameters \(A \) and \(B \) are statistically uncorrelated by construction. We apply \(R (A; B) \) to the generated recoil \(u \) to simulated \(W \) and \(Z \) boson events.

2. Spectator and Additional pp Interactions

The net \(p_T \) from spectator quarks and additional interactions is negligible due to \(m \) cm events. However, detector resolution causes its measurement to generally be non-zero. The resolution is predominantly determined by the energy summing in the calorimeter, and we expect \(p_T \) to increase as the square root of the scalar sum \(p_T \) of the calorimeter tower \(p_T \). We plot the width of the \(p_T \) distribution, projected along the x and y axes, as a function of the \(p_T \) in minimum bias data. We parametrize the dependence as a power law, with the

FIG. 35: The scales applied to the energy in the three momentum towers in the simulation (solid lines), as functions of \(u_T \) (top), \(u_T \) (middle), and \(u_T \) (bottom). The points show the scales measured using towers separated in from the muon in \(W \) data. The scaling functions for remeasured electron towers have similar shapes.

FIG. 36: The definitions of the \(x \) and \(y \) axes in \(Z \) boson events. The quark and gluon radiation from the boson production points predominantly in the \(y \) direction.
but is one of a data. In our simulation, we draw a value of \(p_T \) with constants obtained from a fit to the minimum bias data. In our simulation, we draw a value of \(p_T \) from this distribution, for the fraction of events containing at least one pp collision beyond that producing the \(W \) or \(Z \) boson. This fraction is calculated from the average instantaneous luminosity of 24.37 (2014) \(10^{33} \text{ cm}^2 \text{ s}^{-1} \) for \(W \) and \(Z \) boson data in the muon (electron) channel, and the assumed instantaneous luminosity per additional collision (33 \(10^{33} \text{ cm}^2 \text{ s}^{-1} \)).

The observed \(p_T \) from spectator partons in the pp ! W or Z boson interaction is modeled from the minimum bias data, which correspond to one or more pp collisions. We deconvolute the \(p_T \) spectrum of Eqn. 36 with the distribution of the number of collisions in minimum bias data to derive the following single-collision \(p_T \) distribution \(P_{1 \text{ col}} \): applicable to \(W \) or \(Z \) production (Fig. 38):

\[
X = \frac{X}{0.345} \frac{P_{1 \text{ col}}}{P_T} e^{-\sum p_T^{1427}}; \quad (38)
\]

where \(P_T \) is denoted in units of GeV. The distribution of \(p_T \) from additional interactions, denoted \(P_{M \text{ col}} \), is parametrized as (Fig. 38):

\[
X = \frac{X}{0.125} \frac{P_{M \text{ col}}}{P_T} e^{|p_T|^{19.98}}; \quad (37)
\]

The observed \(p_T \) from spectator partons in the pp ! W or Z boson interaction is modeled from the minimum bias data, which correspond to one or more pp collisions. We deconvolute the \(p_T \) spectrum of Eqn. 36 with the distribution of the number of collisions in minimum bias data to derive the following single-collision \(p_T \) distribution \(P_{1 \text{ col}} \): applicable to \(W \) or \(Z \) production (Fig. 38):

\[
X = \frac{X}{0.345} \frac{P_{1 \text{ col}}}{P_T} e^{-\sum p_T^{1427}}; \quad (38)
\]

The \(p_T \) produced in a single minimum bias collision can be different from that produced by the spectator partons in \(W \) or \(Z \) boson production. In order to allow for a difference, we scale the \(p_T \) drawn from the single-collision spectrum by a parameter \(N_{W,Z} \), which we tune on the \(Z \) boson data.

With this model, the \(p_T \) in a simulated event is obtained by adding the contributions from the spectator partons and the additional interactions. The corresponding recoil resolution is generated according to Eqn. 36, with a single tunable parameter \(N_{W,Z} \).

3. Recoil Energy Resolution

The measurement of the quark and gluon radiation is affected by detector energy resolution, which in
turn a event the measured recoil direction. We model the recoil angular resolution as a Gaussian distribution with $\theta = 0.14 \pm 0.01$ (stat), determined from the (true p_T^μ) distribution in Z boson events (Fig. 43). Since the lepton directions are precisely measured, the width of the peak at $\theta = 0$ is dominated by the recoil angular resolution.

The energy resolution of the quark and gluon radiation is predominantly determined by stochastic fluctuations in the hadronic calorimeter, which motivate the functional form $\theta_{\text{true}} = \theta_{\text{true}}(\theta)$. We measure the proportionality constant θ_{hard} using Z boson data.

To tune θ_{hard} and W_{μ}^μ, we project the momentum in balance $p_T^\mu + u^\mu_\ell$ along the and axes in Z boson decays (Fig. 41). The width of these projections as a function of p_T^μ provides information on W_{μ}^μ and θ_{hard}. At low p_T^μ the resolution is dominated by W_{μ}^μ, with the θ_{hard} contribution increasing as the boson p_T^μ increases. We compare the widths of the data and simulation projections as a function of p_T^μ and compute the χ^2. Minimizing this χ^2, we obtain $W_{\mu}^\mu = 1167 \pm 200$ (stat) and $\theta_{\text{hard}} = [0.028 \pm 0.028$ (stat)] GeV. The tuning is performed such that the statistical uncertainties on these parameters are uncorrelated.

D. Recoil Model Cross-Checks

The full recoil model, with parameters tuned from Z boson events, is applied to the simulated W boson sample. We compare the data to the predictions of distributions that can affect the mass measurement: the projections of the recoil along (u_ℓ, u_j) and perpendicular to (u_ℓ) the charged lepton; and the total recoil u_T.

The u_T distribution is directly affected by the measurement of lepton efficiency as a function of u_T (Figs. 14 and 16) and the modeling of lepton tower recombination (Figs. 15 and 17). The u_T is also sensitive to the boson p_T (Sec. X B) and decay angular distributions, and to the recoil response and resolutions. Since u_T is much less than the charged lepton p_T for our event selection, $p_T = q + u_T$; $1 + u_j$; $2p + u_j$; (39)

To a good approximation, any bias in u_T directly en-
The mean of the u_T distribution is sensitive to the parameters as a bias in the m_T. We compare the u_{jj} distributions in data and simulation u_{jj} in Fig. 42 and observe no evidence of a bias at the level of the data statistics and simulation systematics derived from the recoil model parameters. All backgrounds (Section VIII) are included in the comparison, except $W \rightarrow \mu\nu$, which has similar distributions to the other W lepton decays.

The u_T distribution is dominated by the recoil resolution, with a smaller contribution from the recoil response. The simulation models this distribution well for both $W \rightarrow e\nu$ and $W \rightarrow \mu\nu$ samples (Fig. 43).
VIII. BACKGROUNDS

The event selection criteria (Section IV) result in \(W \) boson samples with high purity. However, the small residual backgrounds affect the distributions used for the \(m_W \) vs. \(u_T \) samples. Both the \(W \to e \) and \(W \to \mu \) samples receive contributions from \(Z=\gamma \) and the recoil response and the boson \(p_T \), and is affected to a lesser extent by the resolution. The reverse is the case for the RMS of the \(u_T \) distribution. Both are modeled well by the simulation for both \(W \to e \) and \(W \to \mu \) samples (Fig. 44).

The uncertainties on the \(m_W \) vs. \(u_T \) from the recoil parameters (Table IV) are determined by varying each parameter by \(\pm 3 \) and assuming linear variation of the \(m_W \) with the parameter. Since all uncertainties are uncorrelated, we add them in quadrature to obtain total recoil model uncertainties of 12, 17, and 34 MeV on \(m_W \) from the \(m_T \), \(p_T \), and \(p_{3/4} \) ts, respectively. The uncertainties are the same for both the electron and muon channels, since the recoil parameters are obtained from combined \(u_T \) and \(Z=\gamma \) data. The uncertainty on the \(p_T \) that arises predominantly from the modeling of the \(u_T < 15 \) GeV threshold used to select \(W \) boson events (Section IV).
where one lepton is not detected; W ! ee backgrounds using events generated with pythia [59] and simulated with a full geant-based detector simulation [40,41]. The full simulation models global detector efficiencies and is thus more appropriate for predicting background normalizations than the custom fast simulation. The multijet background is estimated using a data-based approach.

In the standard model the branching ratio for W ! ee is the same as for W ! μ! μ, neglecting lepton masses. Measurements from LEP [19] test this prediction with a precision of 2.9%, and a slight discrepancy from the standard model is observed with a significance of 2.6. In estimating the W ! ee background, we assume the standard model prediction and determine the ratio of W ! ee events from the ratio of acceptances of these two processes, as determined by the full geant-based detector simulation. We include an uncertainty of 2.9%, corresponding to the statistical precision of the tests of this assumption. We estimate the W ! ee background to be (0.93 ± 0.03)% of the W ! ee candidate sample.

The Z ! ee background is determined from the ratio of Z ! ee to W ! ee acceptances determined from the geant-based detector simulation, multiplied by the corresponding ratio of cross sections times branching ratios. The ratio $BR(Z \rightarrow ee)/BR(W \rightarrow ee)$ has been calculated in the standard model to be 10.59 ± 0.08 [25,26], and measurements are consistent with this value [28,63]. We take an uncertainty of 0.43 on this value from the CDF Run I measurement, and estimate the Z ! ee background in the W ! ee candidate sample to be (0.24 ± 0.01)%.

Multijet backgrounds enter the signal data sample when a hadronic jet is misreconstructed as an electron and a second jet results in large p_T, through energy mismeasurement or the semileptonic decay of a hadron. To estimate this background, we remove the p_T threshold in our signal event selection to include the background-dominated kinematic region of low p_T. We then fit the observed p_T spectrum to the combination of the hadronic jet W ! ee, Z ! ee, and W ! μ! μ components, entering only the hadronic jet shape normalization (Fig. 45).

In this t, the shapes and normalizations for the W ! ee, Z ! ee, and W ! μ! μ components are determined from the geant-based simulation. The shape of the p_T spectrum of the hadronic jet background is determined from the single-electron events that pass our anti-electron identification requirement based on a neural network discriminant [64]. The discriminant is determined by combining the electron quality variables (Section IV E) into a neural network [66] trained with single-electron data events, using p_T to separate signal from background.

Electron candidates in the W ! ee sample with low NN values have a high probability to be jets.

Table V: Signed shifts in the m_W due to 1 increases in the recoil model parameters.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>m_T</th>
<th>p_T</th>
<th>γ_T</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>N_W</td>
<td>5</td>
<td>0</td>
<td>22</td>
</tr>
<tr>
<td>s_{hard}</td>
<td>5</td>
<td>3</td>
<td>21</td>
</tr>
</tbody>
</table>

FIG. 45: The p_T distribution of the W ! ee candidate sample (triangles) and prediction (solid), with the p_T and m_T selection cuts removed. A fit for the normalizations of the hadronic jet background (dotted) after binning the normalization of the W ! ee distribution (dashed) in the peak. Not shown are the Z ! ee and W ! μ! μ backgrounds, whose relative normalizations are fixed from the simulation.
m is reconstructed as electrons. Events with such candidates provide a p_T distribution characteristic of hadronic jet production. We apply a small correction to this distribution to account for the expected contribution from $W^+ e^-$ decay electrons with low $N N$ values.

This method relies on the assumption that the hadronic jet background has a p_T distribution that is independent of the electron identification variables. As a test of this assumption, we perform the same test for the jet background normalization, using only the isolation variable (Section IV A) instead of the $N N$ to select a hadronic jet subsample. We take a weighted average of the two-tailed background normalizations, and assign an uncertainty that covers the range of the two results. The resulting background estimate is $(0.25 \pm 0.15)\%$ of the $W^+ e^-$ sample.

The m_T, p_T, and p_T^* distributions are obtained from the generator-based simulation for W and Z boson backgrounds, and from events in the $W^+ e^-$ sample with low-$N N$ electron candidates for the hadronic jet background. We use these distributions (Fig. 45) and include their shapes and relative normalizations in the m_W template. The uncertainties on the background estimates result in uncertainties of 8, 9, and $7 \, \text{MeV}$ on m_W from the m_T, p_T, and p_T^*, respectively (Table V).

<table>
<thead>
<tr>
<th>% of m_W (MeV)</th>
<th>Background $W^+ e^-$ data m_T</th>
<th>p_T</th>
<th>p_T^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W^+ e^-$</td>
<td>0.93</td>
<td>0.03</td>
<td>2</td>
</tr>
<tr>
<td>Hadronic jets</td>
<td>0.25</td>
<td>0.15</td>
<td>8</td>
</tr>
<tr>
<td>$Z = ! ee$</td>
<td>0.24</td>
<td>0.01</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>1.42</td>
<td>0.15</td>
<td>8</td>
</tr>
</tbody>
</table>

TABLE V: The percentages of the various backgrounds in the $W^+ e^-$ data set, and the corresponding uncertainties on the m_T, p_T, and p_T^* for m_W.

B. $W^+ e^-$ Backgrounds

The $W^+ e^-$ and $Z = \! ee$ backgrounds are modeled using events generated with *pythia* [55] and simulated with the *geant* [40] based detector simulation. We use the data to estimate backgrounds from cosmic rays, multijets, and hadrons decaying in flight to X.

Backgrounds from $W^+ e^-$ and $Z = \! ee$ to the $W^+ e^-$ sample are modeled in the same manner as for the $W^+ e^-$ sample (Section V III A). We determine the ratio of the acceptance for $W^+ e^-$.
or $Z = 1$ events to the acceptance for W events using the geant-based detector simulation. We assume equal branching ratios for the two W boson decay modes, and use the ratio $BR(Z = 1) = BR(W = 1) = 10 \pm 9\%$ (Section VII.A).

We estimate the fraction of W events in the W event candidate sample to be $(0.89 \pm 0.02\%)$ (Section V). The $Z = 1$ background is large because our event selection does not identify muons with $j < 1.2$. The tracker and muon detectors have incomplete or no coverage in the forward rapidity region, and the muons deposit only a few GeV of energy in the calorimeter. Thus, a $Z = 1$ event with one central and one forward muon is measured as a single-muon event with large p_T.

Cosmic-ray muons passing close to the beam line are a source of background to the W event sample when the muon track is reconstructed on only one side of the COT. The cosmic-ray identification algorithm searches for un-reconstructed tracks and removes cosmic rays with high efficiency. The residual cosmic-ray background is estimated using the reconstructed interaction time t_0 and impact parameter d_0 from the COT track. Figure D.7 compares the t_0 distributions of the W event candidate sample, $Z = 1$ candidates, and identified cosmic rays. The cosmic-ray fraction is obtained by minimizing the sum of the $Z = 1$ and cosmic-ray distributions with respect to the W event distribution. We obtain an alternative background estimate by comparing the d_0 distribution of identified cosmic rays to the d_0 distribution of W event candidates with the d_0 selection cut removed. The high-momentum event region of the W boson sample is enriched with cosmic rays, and is used to estimate the cosmic-ray background within the selection region $p_T < 1 \mathrm{GeV}$. We take the cosmic-ray background to be $(0.05 \pm 0.05\%)$, where the uncertainty covers the range of results from the two estimations.

Decay of a long-lived meson to a muon can result in a reconstructed track with high-momentum and large event p_T. A low-momentum pion or kaon (10 GeV) that decays in the tracking chamber can be reconstructed as a high-momentum muon if the decay is in an azimuthal direction opposite the meson’s curvature (i.e., a kink in the trajectory). Such misreconstruction typically results in a poor COT track and a large in-impact parameter. For each of these quantities we obtain a prompt muon distribution from Z boson decays and a muon decay-in-impact distribution from the W boson sample by requiring either high COT track or high in-impact parameter. We use the background fraction by summing the prompt muon distribution with the decay-in-impact distribution, and minimize the t_0 with respect to the W boson distribution from the W boson sample. We obtain a background fraction of $(0.3 \pm 0.2\%)$, where the uncertainty covers the range of the estimates obtained using the COT track and impact parameter distributions.

A separate class of hadronic background results from high-momentum muons from short-lived hadronic decays, or energetic hadrons penetrating the calorimeter to the muon detectors. These background muon candidates are typically associated with sign and energy due to an associated hadronic jet, and can be separated using a muon isolation variable. Two such variables are determined using either calorimeter energy or track on the eta in an angle of 0.4 surrounding the muon candidate. Using the low-p_T region to select a jet-dominated sample, we select the track and calorimeter isolation distributions of the W boson candidate sample to the sum of the expected distributions from Z events and jet-dominated events. As a third method, we select the p_T distribution, using muon candidates with high-isolation values to provide the p_T distribution of the hadronic jet. From the range of results of the three methods, we obtain a jet background estimate of $(0.1 \pm 0.3\%)$.

The distributions for the m_W variables are obtained from the geant-based simulation for W and Z boson backgrounds, from identified cosmic-ray events.
for the cosmic-ray background, and from events in the $W^+\!$ sample with high-2 isolation muons for the decay-in-flight (hadronic jet) background. Including uncertainties on the shapes of the distributions, the total uncertainties on the background estimates result in uncertainties of 9,19, and 11 MeV on m_W from the m_T, p_T, and p_t^h ts, respectively (Table VII).

<table>
<thead>
<tr>
<th>Background</th>
<th>% of</th>
<th>m_W (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>m_T</td>
</tr>
<tr>
<td>$Z^+!$</td>
<td>6.6</td>
<td>0.3</td>
</tr>
<tr>
<td>$W^+!$</td>
<td>0.89</td>
<td>0.02</td>
</tr>
<tr>
<td>Decays in flight</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Hadronic jets</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Cosmic rays</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Total</td>
<td>7.9</td>
<td>0.4</td>
</tr>
</tbody>
</table>

TABLE VII: The percentages of the various backgrounds in the $W^+\!$ data set, and the corresponding uncertainties on the m_T, p_T, and p_t^h ts for m_W.

IX. PRODUCTION AND DECAY MODELS

The measurement of the W boson mass relies on a complete model of W and Z boson production and decay. The production process is described by perturbative QCD and a parametrization of non-perturbative QCD effects, with parameters determined from global fits to hadron-hadron and lepton-hadron collision data. W and Z boson decay are modeled using a next-to-leading-order electroweak calculation and includes QCD corrections for the lepton angular distributions, as a function of boson p_T. The most important process in the decay is photon radiation of the final-state charged lepton, which has been calculated at next-to-leading order [62].

A. Parton Distribution Functions

The longitudinal momentum of the produced W or Z boson depends on the momenta of the interacting partons. These momenta, generally expressed in terms of the fractions x_i of the colliding (anti-)proton energies, are not known on an event-by-event basis. The x_i parton distribution functions (PDFs) are however well constrained by hadron-hadron and lepton-hadron collision data. The distributions have been parametrized as simple functional forms for the quarks, antiquarks, and gluons inside a proton. Two
transverse mass is only weakly sensitive to the W boson transverse
entum p_T distribution. However, the decay lepton p_T spectra
more signi cantly affect the p_T distribution.

At the Tevatron, the p_T spectra of W and Z bosons
peak at a few GeV (Fig. 43), where the shapes are
pronouncedly determined by non-perturbative QCD
interactions. We model the distribution with the
resbos generator [63], which uses the Collins-Soper-
Stemman (CSS) 63] resummation formalism and a
parametrized non-perturbative form factor. In this
formalism, the cross section for W boson production
is written as:

$$\frac{d}{d^2p_T} W = \frac{1}{2} \left(g_{\mu} \right) \int \frac{d^2k}{(2\pi)^2} \frac{d^2k}{(2\pi)^2}$$

where x_i are the parton energy fractions of the (anti-)
proton, $y = 0.5 \ln(x_p=x_r)$ is the boson rapidity, b is
the relative impact parameter of the partons in the
collision, and W can be separated into its perturbative
and non-perturbative components. We use the
Brock-Landy-Nadolsky-Yuan (BLNY) form for the
non-perturbative component:

$$W^{NP} = e^{\frac{1}{2} \ln(100x_p) - \ln(100x_r)} b^2$$

where $Q_0 = 1 \sigma G e V$ and g_i are parametrized
suggested by the CSS formalism to be universal to processes
with initial state quarks and colorless objects in the
initial state [61].

The g_i parameter affects the position of the most
probable p_T^2 and is the most relevant for the W
production at p_T. We use $g_i = 0.21 \text{ GeV}^2$, $g_0 = 0.08 \text{ GeV}^2$, and $g_0 = 0.05$, which are
determined from $t\bar{t}$ global data [63]. We verify the
applicability of these values to our data by
tting the p_T distribution (Fig. 49) for g_i. We
ensure that the uncertainty of $g_i = 0.048 \text{ GeV}^2$
results in uncertainties of all W boson p_T distributions.
Varying g_i by 3 in pseudoexperiments and
taking the $t\bar{t}$ mass to be linearly dependent on g_i,
we ensure that the uncertainty of $g_i = 0.048 \text{ GeV}^2$
results in uncertainties of all W boson p_T values.
These uncertainties are the same as those in the
central value and 2σ bands. Neglecting correlations
between the central and 2σ bands, we ensure that
between the Z and W bosons, since g_i is
not specified in the $t\bar{t}$ distribution (Section V ID).

C. W Boson Decay

The W boson production is sensitive to the charged
lepton decay angle relative to the boson p_T. The
modelling of this angle can bias the projection of the
 recoiling along the lepton (u_T), which in turn aects
the W boson measured from the $t\bar{t}$ mass (Section V ID).
The angular distributions are defined in the Collins-Soper rest frame of the W boson. In this frame, the z-axis is defined to bisect the angle between the proton momentum and the opposite of the antiproton momentum.

The angular component of the differential cross section can be written as [71],

\[
\frac{d \sigma}{d \phi} = \frac{1}{1 + \cos^2 \phi} + \frac{1}{2} A_0 (1 + 3 \cos \phi)
\]

+ \frac{1}{2} A_2 \sin^2 \cos 2

+ A_3 \sin \phi \cos \phi + A_4 \cos \phi + A_5 \sin^2 \phi \sin \phi

+ A_6 \sin \phi \cos 2 \sin \phi + A_7 \sin \phi \sin \phi

\]

where the \(A_i \) have been calculated to NLO in \(s \). Because of the V-A structure of the electroweak interaction, leading-order valence quark interactions all \(A_i \) are zero except \(A_4 = 2 \). The \(A_i \) can be determined experimentally through a momentum analysis [72] of the lepton angle in the Collins-Soper frame.

We have performed a momentum analysis to extract the \(A_i \) from the resbos generator, and compared the results to those obtained [72] from the dyrad event generator [73], which produces \(W + \text{jet} \) events to order \(\frac{s}{2} \). The two generators give consistent results in the overlapping region \(15 \text{ GeV} < p_T^W < 100 \text{ GeV} \).

D. Photon Radiation

The quarks, the W boson, and charged lepton have non-zero electromagnetic charge and can radiate photons in the \(W \) boson production process. Radiation from the initial-state quarks and the W boson propagator have a negligible effect on the invariant mass distribution of the W boson. Radiation of the final-state charged lepton reduces the measured transverse mass (relative to the W boson mass) and must be accurately modeled.

We study photon radiation using the \texttt{wgrad} event generator [64], which models the full next-to-leading-order (NLO) electroweak physics. The generator allows an independent study of photon radiation from the initial-state quarks (ISR), the W boson propagator, and the final-state charged lepton (FSR). Interference between the contributing diagrams can also be studied independently. We verify that the initial-state, propagator, and interference effects do not affect the measured W boson mass within the 5 MeV statistical uncertainty of the simulation.

We simulate final-state photon radiation in our resbos-generated W and Z boson events by generating a photon for each charged lepton. The energy and angular spectra are taken from the \texttt{wgrad} generator using the appropriate boson mass. To avoid the infrared divergence that arises when the photon momentum goes to zero, we require \(E > s \frac{2}{5} = 2 \), where \(s = 10^4 \). We find that increasing \(s \) to \(10^3 \)
The energy of a photon in a given event is calculated from the fraction $y = E/E_1$. The photon angle $R = \frac{p}{E} \sqrt{ (\frac{1}{y})^2 + (\frac{1}{y})^2 }$ is taken with respect to the charged lepton. To improve the phase space sampling, we sample from a two-dimensional distribution of the variables R and $y^{-1.5}$ when selecting a photon. The individual distributions of these variables are shown in Fig. 50.

We evaluate our photon simulation by fitting a sample of events generated with FSR using w_{grad} to ten plates generated with leading-order w_{grad} and photons simulated according to our model. We extend our FSR model to be consistent with that of w_{grad} at the level of the 5 MeV statistical precision of the test. The total effect of including FSR is shown in Table VII. Since FSR reduces the charged lepton momentum, the shift is largest for the p_2 and smallest for the p_1 and y. The effects are smaller for electrons than for muons because the electron calorimeter energy measurement recovers much of the energy of FSR photons.

We approximate the effect of next-to-leading-order FSR by increasing the photon's momentum fraction (y) by 10%, consistent with the results of a study of higher-order photon radiation [74]. We take half the correction as a systematic uncertainty to account for higher-order QED effects.

The total uncertainty due to photon radiation is the quadratic sum of uncertainties on ISR, interference between ISR and FSR, and radiation of the propagator (5 MeV); uncertainty due to the infrared cutoff of the FSR photon (5 MeV); the FSR model (5 MeV); and uncertainties on higher-order FSR corrections (7 MeV for the electron and 8 MeV for the muon $m_+ \tau$). The total uncertainties are 12 (11), 13 (13), and 10 (9) MeV, for the electron ($m_+ \tau$), p_2, and y, respectively.

X. W Boson Mass Fits

We fit the W boson data distributions to a sum of background and simulated signal ten plates of the $m_+ \tau$, p_2, and y distributions, using the normalization of the sum to the number of data events. The fit minimizes the negative log likelihood (Section 11D) as a function of the ten plate parameter m_W, which is defined by the relativistic Breit-Wigner mass distribution [11]:

$$
\frac{d}{dm} \frac{m^2}{(m^2 - m_W^2)^2 + m^2 \frac{\Gamma_w^2}{m_W}} ;
$$

where m is the invariant mass of the propagator. The

Table VIII: The mass shifts obtained by fitting events generated with our simulation of single-photon radiation to ten plates generated without final-state photon radiation. The shifts are for the W boson $m_+ \tau$, p_2, and y, and for the Z boson m_W. The shifts have statistical uncertainties of 7 MeV each.

<table>
<thead>
<tr>
<th>$F \bar{F}$</th>
<th>m_W</th>
<th>$m_+ \tau$ (MeV)</th>
<th>m_W</th>
<th>$m_+ \tau$ (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_τ</td>
<td>-158</td>
<td>-138</td>
<td>p_2</td>
<td>-206</td>
</tr>
<tr>
<td>p_2</td>
<td>-206</td>
<td>-186</td>
<td>y</td>
<td>-196</td>
</tr>
<tr>
<td>m_W</td>
<td>-196</td>
<td>-215</td>
<td>p_1</td>
<td>-166</td>
</tr>
<tr>
<td>$m_+ \tau$</td>
<td>-166</td>
<td>-185</td>
<td>y</td>
<td>-196</td>
</tr>
</tbody>
</table>

FIG. 50: The cube root of the fraction of an event (solid) or muon (dashed) momentum contained in the radiated photon (top), and the square root of the angle R (bottom) between the radiated photon and the electron (solid) or muon (dashed).
The likelihood is calculated in \(m_W \) steps of 1 MeV. We use the standard model \(W \) boson with \(m_W = 2.094 \) GeV, which has an accuracy of 2 MeV and is calculated for \(m_W = 80.393 \) GeV. Using pseudoexperiments, we find the input \(m_W \) acts on \(m_W \) according to the relation \(dm_W = c m_W = 0.14 \). 0.04.

A. Fit Results

The results of the \(m_\tau \) fits are shown in Fig. 51 and Table X gives a summary of the 68% confidence level uncertainties associated with the fits. We fit for \(m_W \) in the range 65 GeV < \(m_W < 90 \) GeV, where the \(\tau \) range has been chosen to minimize the total uncertainty on \(m_W \). The \(p_T \) and \(p_\tau \) distributions are in the range 32 GeV < \(p_T < 48 \) GeV (Figs. 52 and 53, respectively) and have uncertainties shown in Tables X and XI, respectively. We show the individual \(\tau \) results in Table XII and the negative log-likelihoods of all fits in Fig. 54.

\[
\chi^2 / \text{dof} = 59 / 48
\]

\[
\chi^2 / \text{dof} = 86 / 48
\]

FIG. 51: The simulation (solid) and data (points) \(m_\tau \) distributions for \(W \) boson decays to \(\mu \nu \) (top) and \(e \nu \) (bottom). The simulation corresponds to the best-fit \(m_W \), determined using events between the two arrows. The uncertainty is statistical only. The large \(\chi^2 \) for the electron \(\tau \) is due to individual bin fluctuations (Fig. 55) and does not bias the \(\tau \) result, as evidenced by the small change in the \(m_W \) when the \(\tau \) window is varied (Fig. 58).

\[
m_W = (80349 \pm 54) \text{ MeV}
\]

\[
m_W = (80493 \pm 48) \text{ MeV}
\]

TABLE X: Uncertainties in units of MeV on the transverse mass \(m_\tau \) for \(m_W \) in the \(W \) ! and \(W \) ! e samples.

<table>
<thead>
<tr>
<th>Source</th>
<th>(W) !</th>
<th>(W) ! e</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracker Momentum Scale</td>
<td>17</td>
<td>17</td>
<td>100%</td>
</tr>
<tr>
<td>Calorimeter Energy Scale</td>
<td>0</td>
<td>25</td>
<td>0%</td>
</tr>
<tr>
<td>Lepton Resolution</td>
<td>3</td>
<td>9</td>
<td>0%</td>
</tr>
<tr>
<td>Lepton Efficiency</td>
<td>1</td>
<td>3</td>
<td>0%</td>
</tr>
<tr>
<td>Lepton Tower Removal</td>
<td>5</td>
<td>8</td>
<td>100%</td>
</tr>
<tr>
<td>Recoil Scale</td>
<td>9</td>
<td>9</td>
<td>100%</td>
</tr>
<tr>
<td>Recoil Resolution</td>
<td>7</td>
<td>7</td>
<td>100%</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>9</td>
<td>8</td>
<td>0%</td>
</tr>
<tr>
<td>PDFs</td>
<td>11</td>
<td>11</td>
<td>100%</td>
</tr>
<tr>
<td>W Boson (p_\tau)</td>
<td>3</td>
<td>3</td>
<td>100%</td>
</tr>
<tr>
<td>Photon Radiation</td>
<td>12</td>
<td>11</td>
<td>100%</td>
</tr>
</tbody>
</table>

Statistical 54 48 0%

Total 60 62 -

We combine results from the \(W \) ! and \(W \) ! e fits using the Best Linear Unbiased Estimator (BLUE) [27]. The BLUE algorithm defines a procedure for constructing a complete covariance matrix using the derivative of \(m_W \) with respect to each model parameter [18]. We construct this matrix assuming each source of systematic uncertainty is independent of any other source of uncertainty. The resulting covariance matrix (Table XIII) is then used to combine all six \(m_W \) fits. When combining any subset of the fits, the appropriate smaller covariance matrix is used.

The result of combining the \(m_W \) fits to the \(m_\tau \) distribution in the \(W \) ! and \(W \) ! e channels is

\[
m_W = 80.417 \pm 0.048 \text{ GeV} \quad (46)
\]

The \(\chi^2 / \text{dof} \) of the combination is 3.2/1 and the probability that two \(m_W \) measurements of the same quantity would have a \(\chi^2 / \text{dof} \) at least as large as this is 7%.

The combination of the \(m_\tau \) fits to the \(p_\tau \) distribution yields

\[
m_W = 80.388 \pm 0.059 \text{ GeV} \quad (47)
\]
The simulation (solid) and data (points) p_T distributions for W boson decays to μ (top) and e (bottom). The simulation corresponds to the best-fit m_W, determined using events between the two arrows. The uncertainty is statistical only.

with a χ^2/dof of 1.8/1 and an 18% probability for the two measurements to obtain a χ^2/dof 1.8.

The results of the t_s to the p_T distribution gives

$$m_W = 80.34 \pm 0.65 \text{ GeV}$$

with a 43% probability of obtaining a χ^2/dof at least as large as observed (0.6/1).

Combining the m_T, p_T, and ϕ_T t_s within the individual decay channels gives $m_W = 80.352 \pm 0.060$ GeV with a χ^2/dof of 1.4/2 for the $W \rightarrow \mu$ channel and $m_W = (80.477 \pm 0.62)$ GeV with a χ^2/dof of 0.8/2 for the $W \rightarrow e$ channel.

We combine the six t_s's with the BLUE procedure to obtain our final result of

$$m_W = 80.413 \pm 0.048 \text{ GeV}$$

which has statistical and systematic uncertainties of 34 MeV each. The statistical correlations between the t_s, determined from simulation pseudoexperiments, are shown in Table X IV. The relative weights of the t_s are 47.7% (32.3%), 3.4% (8.9%), 0.9% (6.8%) for the m_T, p_T, and ϕ_T distributions, respectively, in the muon (electron) channel. The combination establishes an a priori procedure to incorporate all the information from individual t_s, and yields a χ^2/dof of 4.8/5. The probability to obtain a

<table>
<thead>
<tr>
<th>Source</th>
<th>$W \rightarrow \mu$</th>
<th>$W \rightarrow e$</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracker p_T Scale</td>
<td>17</td>
<td>17</td>
<td>100%</td>
</tr>
<tr>
<td>Calorimeter Energy Scale</td>
<td>0</td>
<td>25</td>
<td>0%</td>
</tr>
<tr>
<td>Lepton Resolution</td>
<td>3</td>
<td>9</td>
<td>0%</td>
</tr>
<tr>
<td>Lepton Efficiency</td>
<td>6</td>
<td>5</td>
<td>0%</td>
</tr>
<tr>
<td>Lepton Tower Removal</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Recoil Scale</td>
<td>17</td>
<td>17</td>
<td>100%</td>
</tr>
<tr>
<td>Recoil Resolution</td>
<td>3</td>
<td>3</td>
<td>100%</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>19</td>
<td>9</td>
<td>0%</td>
</tr>
<tr>
<td>PDFs</td>
<td>20</td>
<td>20</td>
<td>100%</td>
</tr>
<tr>
<td>W Boson p_T</td>
<td>9</td>
<td>9</td>
<td>100%</td>
</tr>
<tr>
<td>Photon Radiation</td>
<td>13</td>
<td>13</td>
<td>100%</td>
</tr>
<tr>
<td>Statistical</td>
<td>66</td>
<td>58</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>77</td>
<td>73</td>
<td>-</td>
</tr>
</tbody>
</table>

Table X: Uncertainties in units of MeV on the charged lepton transverse momentum for m_W in the $W \rightarrow \mu$ and $W \rightarrow e$ samples.

<table>
<thead>
<tr>
<th>Source</th>
<th>$W \rightarrow \mu$</th>
<th>$W \rightarrow e$</th>
<th>Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tracker p_T Scale</td>
<td>17</td>
<td>17</td>
<td>100%</td>
</tr>
<tr>
<td>Calorimeter Energy Scale</td>
<td>0</td>
<td>25</td>
<td>0%</td>
</tr>
<tr>
<td>Lepton Resolution</td>
<td>5</td>
<td>9</td>
<td>0%</td>
</tr>
<tr>
<td>Lepton Efficiency</td>
<td>13</td>
<td>16</td>
<td>0%</td>
</tr>
<tr>
<td>Lepton Tower Removal</td>
<td>10</td>
<td>16</td>
<td>100%</td>
</tr>
<tr>
<td>Recoil Scale</td>
<td>15</td>
<td>15</td>
<td>100%</td>
</tr>
<tr>
<td>Recoil Resolution</td>
<td>30</td>
<td>30</td>
<td>100%</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>11</td>
<td>7</td>
<td>0%</td>
</tr>
<tr>
<td>PDFs</td>
<td>13</td>
<td>13</td>
<td>100%</td>
</tr>
<tr>
<td>W Boson p_T</td>
<td>5</td>
<td>5</td>
<td>100%</td>
</tr>
<tr>
<td>Photon Radiation</td>
<td>10</td>
<td>9</td>
<td>100%</td>
</tr>
<tr>
<td>Statistical</td>
<td>66</td>
<td>57</td>
<td>0%</td>
</tr>
<tr>
<td>Total</td>
<td>80</td>
<td>79</td>
<td>-</td>
</tr>
</tbody>
</table>

Table XI: Uncertainties in units of MeV on the missing transverse momentum for m_W in the $W \rightarrow \mu$ and $W \rightarrow e$ samples.
Fig. 53: The simulation (solid) and data (points) p_T distributions for W boson decays to $\nu \mu$ (top) and νe (bottom). The simulation corresponds to the best-fit m_W, determined using events between the two arrows. The uncertainty is statistical only.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
Distribution & m_W (GeV) & χ^2/dof \\
\hline
m_T (e;) & 80.493 & 0.048 & 0.039 & 86/48 \\
p_T (e) & 80.451 & 0.058 & 0.045 & 63/62 \\
p_T (\mu) & 80.473 & 0.057 & 0.054 & 63/62 \\
\hline
m_T (e;) & 80.349 & 0.054 & 0.027 & 59/48 \\
p_T (e) & 80.221 & 0.066 & 0.040 & 72/62 \\
p_T (\mu) & 80.396 & 0.066 & 0.046 & 44/62 \\
\hline
\end{tabular}
\caption{The results of the fits for m_W to the m_T, p_T, and p_T distributions in the electron and muon decay channels. The first uncertainty is statistical and the second is systematic.}
\end{table}

Fig. 54: The negative log of the likelihood ratio L/L_0, where L_0 is the maximum likelihood, as a function of m_W for the m_T (solid), p_T (dashed), and p_T (dotted) fits in the electron (top) and muon (bottom) channels.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
 & m_T (e;) & m_T (;) & p_T (e) & p_T () & p_T () \\
\hline
m_T (e;) & 64 & 27 & 61 & 27 & 61 & 28 \\
p_T (e) & 75 & 35 & 51 & 32 \\
p_T (;) & 77 & 32 & 53 \\
p_T (e) & 81 & 43 \\
p_T (;) & 81 \\
\hline
\end{tabular}
\caption{The complete covariance matrix for the m_T, p_T, and p_T fits in the electron and muon decay channels, in units of MeV$. The matrix is symmetric.}
\end{table}

2 at least as large as this is 44%.

B. Cross-Checks

Figures 55-57 show the differences between data and simulation, divided by the statistical uncertainties on the predictions, for the m_T, p_T, and p_T distributions. Figures 58-60 show the variations...
TABLE XIV: The statistical correlations between the
\(m_T \), \(p_T \), and \(p_T/\beta \) in the electron and muon decay channels.

<table>
<thead>
<tr>
<th></th>
<th>(W \rightarrow W)</th>
<th>(W \rightarrow W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(m_T)</td>
<td>70%</td>
<td>68%</td>
</tr>
<tr>
<td>(p_T)</td>
<td>72%</td>
<td>63%</td>
</tr>
<tr>
<td>(p_T/\beta)</td>
<td>38%</td>
<td>17%</td>
</tr>
</tbody>
</table>

We have performed a measurement of the \(W \) boson mass using 200 \(pb^{-1} \) of data collected by the CDF II detector at \(\sqrt{s} = 1.96 \) TeV. From \(m_T \), \(p_T \), and \(p_T/\beta \) distributions of the \(W \rightarrow W\) and \(W \rightarrow W\) data.

The largest systematic uncertainty in this difference arises in the muon channel from the uncertainty on the alignment parameters \(a_0 \) and \(a_2 \) (Table X). The uncertainties on the mass difference due to these parameters are 49 MeV and 56 MeV, respectively, for a total uncertainty of 75 MeV. Any bias in these parameters acts the positive and negative lepton sets in opposite directions, and thus has a negligible net effect when the two are combined.

XI. SUMMARY

We have performed a measurement of the \(W \) boson mass using 200 \(pb^{-1} \) of data collected by the CDF II detector at \(\sqrt{s} = 1.96 \) TeV. From \(m_T \), \(p_T \), and \(p_T/\beta \) distributions of the \(W \rightarrow W\) and \(W \rightarrow W\) data.
FIG. 57: The difference between the data and simulation, divided by the statistical uncertainty on the data points, for the p_T distributions in the muon (top) and electron (bottom) channels. The arrows indicate the t region.

TABLE XV: Differences of m_W in the p_T bins between positively and negatively charged leptons, leptons in the upper and lower halves of the detector, and early and late data. The units are MeV.

<table>
<thead>
<tr>
<th>m_W (I')</th>
<th>m_W (I)</th>
<th>m_W (Mar, 2002-Apr, 2003)</th>
<th>m_W (Apr, 2003-Sep, 2003)</th>
</tr>
</thead>
<tbody>
<tr>
<td>286</td>
<td>152</td>
<td>257</td>
<td>117</td>
</tr>
<tr>
<td>0</td>
<td>133</td>
<td>116</td>
<td>117</td>
</tr>
<tr>
<td>75</td>
<td>135</td>
<td>107</td>
<td>117</td>
</tr>
</tbody>
</table>

Combining this result with the Run I Tevatron measurements using the method in [76], we obtain a CDF Run I/II combined result of

$$m_W = 80.418 \pm 0.042 \text{ GeV} ;$$ \hspace{1cm} (51)

and a combined Tevatron result of

$$m_W = 80.429 \pm 0.039 \text{ GeV} ;$$ \hspace{1cm} (52)

In these combinations, we take the uncertainties due to PDFs and photon radiation to be fully correlated between our measurement and the previous Tevatron measurements. In the BLUE combination method [75], each uncertainty source contributes its covariance matrix, and all covariance matrices are summed.
to obtain the total covariance matrix. We evaluate an individual contribution to the uncertainty on our result by ignoring its respective covariance matrix and repeating the six-fold combination of our individual electron and muon channel m_T, p_T and $\not{p_T}$ ts. The difference in quadrature between the total uncertainty, including and excluding a given covariance matrix contribution, is taken to be the uncertainty due to that source. Following this procedure, we obtain the systematic uncertainty contributions due to PDFs and QED radiative corrections to be 12.6 MeV and 11.6 MeV respectively (Table XV), for a combined uncertainty of 17.2 MeV.

Assuming no correlation between the Tevatron and LEP measurements, we obtain a new world average of

\[m_W = 80.398 \pm 0.025 \text{ GeV} \quad (53) \]

Our measurement reduces the world uncertainty to 31 parts in 10^5, and further constrains the properties of the Higgs boson and other new particles coupling to the W and Z bosons. Within the context of the standard model, this made high energy precision electroweak data in 2006 gave $m_W = 85^{+28}_{-28} \text{ GeV}$, with $m_W < 166 \text{ GeV}$ at the 95% confidence level [19]. The values used for the top quark and W boson masses in these t-s were $m_t = (171.4 \pm 2.1) \text{ GeV}$ and $m_W = (80.392 \pm 0.029) \text{ GeV}$, respectively. Updating these
TABLE XV: Systematic uncertainties in units of MeV on
the combination of the six ts in the electron and muon
channels. Each uncertainty has been estimated by rem-
oving its covariance and repeating the six-fold combina-
tion.

<table>
<thead>
<tr>
<th>Source</th>
<th>Uncertainty (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lepton Scale</td>
<td>23.1</td>
</tr>
<tr>
<td>Lepton Resolution</td>
<td>4.4</td>
</tr>
<tr>
<td>Lepton Efficiency</td>
<td>1.7</td>
</tr>
<tr>
<td>Lepton Tower Removal</td>
<td>6.3</td>
</tr>
<tr>
<td>Recoil Energy Scale</td>
<td>8.3</td>
</tr>
<tr>
<td>Recoil Energy Resolution</td>
<td>9.6</td>
</tr>
<tr>
<td>Backgrounds</td>
<td>6.4</td>
</tr>
<tr>
<td>PDFs</td>
<td>12.6</td>
</tr>
<tr>
<td>W Boson pt</td>
<td>3.9</td>
</tr>
<tr>
<td>Photon Radiation</td>
<td>11.6</td>
</tr>
</tbody>
</table>

The most recent world average values of $m_e = (170.9 \pm 1.5)$ GeV and $m_W = (80.398 \pm 0.025)$ GeV
[Eq. (53)], and using the methods and data described
in [19] and [77], gives $m_W = 76_{-24}^{+33}$ GeV, with $m_W < 144$ GeV at the 95% confidence level. The effect of
the new m_W value alone is to reduce the predicted value of the standard model Higgs boson mass by 6
GeV.

We anticipate a significant reduction in the uncertainty of future CDF m_W measurement using larger
available data sets. The dominant uncertainties on this measurement are due to W boson statistics and
to the lepton energy scale calibration (Table XV),
and will be reduced with increased statistics in the
W boson and calibration data samples.

APPENDIX A: ELECTRON AND PHOTON INTERACTIONS

The simulation of electrons and photons (Section
HIB2) uses the Bethe-Heitler differential cross
sections for electron bremsstrahlung and photon
conversion [48]. Defining y as the final state energy
divided by the initial state energy, the bremsstrahlung
cross section is:

$$\frac{d\sigma}{dy} = 4 \varepsilon_{EM} \frac{r_0^2}{3 \alpha} \frac{4}{3\gamma} + \frac{4}{3\gamma} + y = \frac{1}{1+y} + \frac{z(z)}{y} \; ;$$ \hspace{1cm} (A1)

where:

$$ z(Z) = \frac{Z^2}{2} \ln(184.15Z^{1/3}) \; \frac{f}{Z \ln(11942Z^{2/3})} \; ;$$ \hspace{1cm} (A2)

$$ f = a^2(1 + a^2)^{1/2} + 0.20206 \; 0.03692 + 0.00834 \; 0.0024 \; ;$$

and $a = \varepsilon_{EM} Z$. We define the material's radiation
length X_0 according to [53]:

$$ X_0 = \frac{4 \varepsilon_{EM} \varepsilon^2 N_A}{i(Z)} = 1 ;$$ \hspace{1cm} (A3)

where ε is the density of the material. In terms of
the radiation length, the cross section is:

$$\frac{d\sigma}{dy} = \frac{A}{N_A X_0} \frac{4}{3} + C \frac{1}{y} + \frac{1}{1+y} \; ;$$ \hspace{1cm} (A4)

where

$$ C = \frac{z(z)}{i(Z)} \; ;$$ \hspace{1cm} (A5)

The conversion cross section takes a similar form, since the relevant Feynman diagram is a rotation of the
bremsstrahlung process [48]:

$$\frac{d\sigma}{dy} = \frac{A}{N_A X_0} \frac{1}{1+y} \; [1 + (y+1) \ln(1+y)] \; ;$$ \hspace{1cm} (A6)

The Compton scattering cross section as a function of scattering angle is given by the Klein-Nishina
formula [54]:

$$\frac{d\sigma}{d\theta} = \frac{r_0^2}{2} \frac{1 + \cos^2 \theta}{[1 + k(1 - \cos \theta)]^2} + \frac{k^2(1 - \cos \theta)^2}{[1 + k(1 - \cos \theta)]^2} \; ;$$ \hspace{1cm} (A7)

where $k = E/m_e$. The scattering angle is kinetically related to the energy loss by [54]:

$$ y = k^2 = [1 + k(1 - \cos \theta)]^2 \; ;$$ \hspace{1cm} (A8)

where k^2 is the energy of the photon after scattering,
in units of m_e. Using this equation, the differential
cross section with respect to y can be written as [48]:

$$\frac{d\sigma}{dy} \; /1 = y + y \; ;$$ \hspace{1cm} (A9)
ACKNOWLEDGMENTS

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A.P. Sloan Foundation; the Bundesministerium für Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucléaire et Physique des Particules/CNRS; the Russian Foundation for Basic Research; the Comisión Internacional de Ciencia y Tecnología de España, Spain; the European Community Human Potential Programme; the European Community under the Marie Curie Programme; the Slovak R&D Agency; and the Academy of Finland.

[22] There is in principle a correlation due to final-state photon radiation and the W boson width, but these are sufficiently small that they are ignored when combining m_{\mu} measurements.
[27] In order to obtain thesis results, two of the authors must overlay the blinded data set at two different points in the analysis. Access to these thesis was denied to all authors outside of the University of Toronto.
The radial distribution of the hits has a small impact on the parameter resolution, with the importance depending on the parameter. We do not attempt to model the radial hit distribution.

The radial distribution of the hits is divided into 33 longitudinal and 120-1000 azimuthal sections, with the number of azimuthal sections increasing as radius increases.

Increasing y from 10^5 to 10^7 has about a 50 M eV eect on the E-p calibration for electrons from W boson decays; reducing it to 5 10^5 has less than a 5 M eV eect.

The statistical significance of the slope in the W boson sample is 0.5. Averaging with the W boson sample results in zero slope.

The statistical significance of the slope in the Z boson sample is 0.5. Averaging with the W boson sample results in zero slope.

The statistical significance of the slope in the Z boson sample is 0.5. Averaging with the W boson sample results in zero slope.

The statistical significance of the slope in the Z boson sample is 0.5. Averaging with the W boson sample results in zero slope.

The statistical significance of the slope in the Z boson sample is 0.5. Averaging with the W boson sample results in zero slope.