The evolution of massive black hole seeds

Marta Volonteri1, Giuseppe Lodato2 & Priyam vada Nataraajan3

1 Department of Physics and Astronomy, University of Michigan, Ann Arbor, MI, USA
2 Department of Physics and Astronomy, University of Leicester, Leicester, LE1 7RH, UK
3 Department of Physics, Yale University, P.O. Box 208101, New Haven, CT 06511-208101, USA

ABSTRACT

We investigate the evolution of high redshift seed black hole masses at late times and their observational signatures. The massive black hole seeds studied here form at extremely high redshifts from the direct collapse of pre-galactic gas discs. Populating dark matter halos with seeds formed in this way, we follow the mass assembly of these black holes to the present time using a Monte-Carlo merger tree. Using this machinery, we predict the black hole mass function at high redshifts and at the present time; the integrated mass density of black holes and the luminosity function of accreting black holes as a function of redshift. These predictions are made for a set of three seed models with varying black hole formation efficiency. Given the accuracy of current observational constraints, all 3 models can be adequately discriminated between. Discrimination between the models appears prominent at the low mass end of the present day black hole mass function, which is not observationally well constrained. However, all our models predict that low surface brightness, bulgeless galaxies with large discs are least likely to be sites for the formation of accretion black hole seeds at high redshifts. The efficiency of seed formation at high redshifts has a direct influence on the black hole occupation fraction in galaxies at \(z = 0 \). This effect is more pronounced for low mass galaxies. This is the key discriminant between the models studied here and the Population III remnants of this model. We conclude that there exists a population of low mass galaxies that do not host nuclear black holes. Our prediction of the shape of the \(\dot{M}_{\text{bh}} \) relation at the low mass end is in agreement with the recent observational determination from the census of low mass galaxies in the Virgo cluster.

Key words:

1 INTRODUCTION

The demography of local galaxies suggests that most galaxies host a quiescent supermassive black hole (SM BH) at the present time and the properties of the black hole are correlated with those of the host spheroid. In particular, recent observational evidence points to the existence of a tight correlation between the mass of the central black hole and the velocity dispersion of the host spheroid [Tremaine et al. 2002; Ferrarese & Merritt 2000; Gebhardt et al. 2000] in nearby galaxies. This correlation strongly suggests coeval growth of the black hole and the stellar component via likely regulation of the gas supply in galactic nuclei [Silk & Rees 1998; Kauffmann & Haehnelt 2000; Kormendy 2003; Thomason et al. 2003].

Black hole growth is believed to be powered by gas accretion [Lynden-Bell 1963] and accreting black holes are detected as optically bright quasars. These optically bright quasars appear to exist out to the highest redshifts probed at the present time. Therefore, the mass build-up of SM BHs is likely to have occurred at extremely high redshifts \(z > 10 \). In fact, optically bright quasars have now been detected at \(z > 6 \) (e.g., Fan et al. 2004; Fan et al. 2006) in the Sloan Digital Sky Survey (SDSS). Hosts of high redshift quasars are often strong sources of dust emission [Omont et al. 2001; Cox et al. 2002; Carilli et al. 2003; Walter et al. 2003], suggesting that quasars were already in place in massive galaxies at a time when galaxies were undergoing vigorous star formation. The growth spurts of SM BHs are also seen in the X-ray waveband. The integrated emission from these X-ray quasars generates the cosmic X-ray background (XRB); and its spectrum suggests that most black-hole growth is obscured in optical wavelengths [Fabian & Rees 1992; Mushotzky et al. 2000; Haardt et al. 2001; Barret et al. 2001, 2002; Nandra et al. 2003]. There exist examples of obscured black-hole growth in the form of 'Type-2' quasars, but their detected numbers are fewer than expected from models of the XRB. However, there is recent tantalizing ev-
ience from infra-red (IR) studies that dust-obscured accretion is ubiquitous (Martínez-Sansigre et al. 2009). Current work suggests that while SM BHs seem to spend most of their lifetime in an optically dim phase, the bulk of mass growth occurs in the short-lived quasar stages.

The assembly of BH mass in the Universe has been tracked using optical quasar activity. The current phenomenological approach to understanding the assembly of SM BHs involves optical data from both high and low redshifts. These data are used as a starting point to construct a consistent picture that ts within the larger framework of the growth and evolution of structure in the Universe (Haehnelt et al. 1999, Blain & Loeb 1998, Kauffmann & Haehnelt 2000, 2002, Bower & Loeb 2002, Volonteri et al. 2003, DiMatteo et al. 2003).

Current modeling is grounded in the framework of the standard paradigm that involves the growth of structure via gravitational amplification of small perturbations in a CDM Universe, a model that has independent validation, most recently from Wilkinson Microwave Anisotropy Probe (WMAP) in measurements of the anisotropies in the cosmic microwave background (Spergel et al. 2003, Page et al. 2003). Structure formation is tracked in cosmic time by keeping a census of the number of collapsed dark matter halos of a given mass that form; these provide the sites for harboring black holes. The construction of the mass function of dark matter halos is done using either the Press-Schechter (Press & Schechter 1974) or the extended Press-Schechter theory (Lacey & Cole 1993), or Monte-Carlo realizations of merger trees (Kauffmann & Haehnelt 2000, 2002, Volonteri et al. 2003, Bower et al. 2004), or, in some cases, directly from cosmological N-body simulations (Di Matteo et al. 2003, 2005).

In particular Volonteri et al. (2003) have presented a detailed merger-tree based scenario to trace the growth of black holes from the earliest epochs to the present day. Monte-Carlo merger trees are created for present day halos and propagated back in time to a redshift of 20, with the merging history deduced in the early Universe. The resulting black hole mass function is accurately described using such models. Furthermore, these models predict that massive BHs will form in the early Universe. The mass function of these so-called Population III stars is derived from the Press-Schechter theory and the extended Press-Schechter theory. In particular, Volonteri et al. (2003) have shown that these models predict a significant number of massive BHs at high redshifts, which are consistent with observations of high-redshift quasars.

We focus on the growth of massive BHs in the Universe, which is the subject of this paper. The mass function of BHs is predicted to be strongly biased towards high masses, with a cutoff at a few hundred solar masses. This bias is a consequence of the mass function of dark matter halos, which is known to be strongly peaked at high masses. The mass function of BHs is derived from the mass function of dark matter halos using a simple model that takes into account the growth of BHs in dark matter halos.

In this paper, we will focus on the growth of massive BHs in the Universe, which is the subject of this paper. The mass function of BHs is predicted to be strongly biased towards high masses, with a cutoff at a few hundred solar masses. This bias is a consequence of the mass function of dark matter halos, which is known to be strongly peaked at high masses. The mass function of BHs is derived from the mass function of dark matter halos using a simple model that takes into account the growth of BHs in dark matter halos.

2 BH SEED FORMATION MODEL

In this paper, we will focus on the growth of massive BHs in the Universe, which is the subject of this paper. The mass function of BHs is predicted to be strongly biased towards high masses, with a cutoff at a few hundred solar masses. This bias is a consequence of the mass function of dark matter halos, which is known to be strongly peaked at high masses. The mass function of BHs is derived from the mass function of dark matter halos using a simple model that takes into account the growth of BHs in dark matter halos.

In this paper, we will focus on the growth of massive BHs in the Universe, which is the subject of this paper. The mass function of BHs is predicted to be strongly biased towards high masses, with a cutoff at a few hundred solar masses. This bias is a consequence of the mass function of dark matter halos, which is known to be strongly peaked at high masses. The mass function of BHs is derived from the mass function of dark matter halos using a simple model that takes into account the growth of BHs in dark matter halos.

In this paper, we will focus on the growth of massive BHs in the Universe, which is the subject of this paper. The mass function of BHs is predicted to be strongly biased towards high masses, with a cutoff at a few hundred solar masses. This bias is a consequence of the mass function of dark matter halos, which is known to be strongly peaked at high masses. The mass function of BHs is derived from the mass function of dark matter halos using a simple model that takes into account the growth of BHs in dark matter halos.
distribution of spin parameters for dark matter halos measured in numerical simulations is well by a lognormal distribution in $\ln p$, with $\mu = 0.05$ and standard deviation $\sigma = 0.5:

$$
p(\ln p) = \frac{1}{\sigma \sqrt{2\pi}} \exp \left[\frac{-(\ln p - \mu)^2}{2\sigma^2} \right] ;
$$

(1)

This function has been shown to provide a good γ to the N-body results of several investigations (e.g., Warren et al. 1992; Cole & Lacey 1996; Bullock et al. 2000, van den Bosch et al. 2001).

If the virial temperature of the halo $T_{VIR} > T_{gas}$, the gas collapses and forms a rotationally supported disk. For low values of the spin parameter, the resulting disk can be compact and dense and is subject to gravitational instabilities. This occurs when the stability parameter Q of the disk is near below approaches unity:

$$
Q = \frac{c_s}{G} = \frac{1}{2} \frac{c_s V_h}{G R} ;
$$

(2)

where R is the cylindrical radial coordinate, c_s is the surface mass density, c_s is the sound speed, V_h is the epicyclic frequency, and V_h is the circular velocity of the disk (mostly determined by the dark matter gravitational potential). We have also assumed that at the relevant radius $r < 10^2$, the rotation curve is well described by a Keplerian profile. We consider here the earliest generations of gas disks, which are of pristine composition with no metals and therefore can cool only via hydrogen. In thermal equilibrium, if the formation of a molecular hydrogen is suppressed, these disks are expected to be nearly isothermal at a temperature of a few thousand Kelvins (see Lodato & Natarajan 2006). However, molecular hydrogen is present can cool these disks further down to temperatures of a few hundred Kelvins. The stability parameter Q is essentially determined when the disk is unstable to gravitational collapse. The value of Q essentially determines how stable the disk is, with lower Q implying a more stable disk. It is well known since Kom rok (1964) proposed this stability criterion, that for an isothermal thin disk to be stable against fragmentation, $Q = 1$ for axially equitable disturbances. The exact value of Q in reality is not well determined. Finite thickness effects tend to destabilize the disk (reducing Q_c), while on the other hand non-axisymmetric perturbations are in reality more unstable (enhancing Q_c). Global, three-dimensional simulations of Keplerian disks (Lodato & Rice 2004, 2006) have shown that such disks settle down in a quasi-equilibrium configuration with Q remarkably close to unity, implying that the critical value $Q_c = 1$. In this paper, we take Q_c to be a free parameter and evaluate our results for a range of values.

If the disk becomes unstable it develops non-axisymmetric spiral structures, which are an effective redistribution of angular momentum, thus feeding a growing seed black hole in the center. This process stops when the amount of mass transferred to the center, M_{BH}, is enough to make the disk marginally stable. This can be computed easily from the stability criterion in eqn. (2) and from the disk properties, determined from the dark matter halo mass and angular momentum (Mo et al. 1998). In this way we obtain that the mass accumulated in the center of the halo is given by:

$$
M_{BH} = \begin{cases} \frac{m_d M}{1 + \frac{3}{m_d Q_c - 1} \left(\frac{M_{BH}}{M_{BH}}\right)^{1/2}} & < m_{ax} \\ 0 & \geq m_{ax} \end{cases}
$$

(3)

where

$$
m_{ax} = \frac{m_d Q_c - 8(m_d - 1)}{1 + \frac{3}{m_d Q_c - 1} \left(\frac{T_{VIR}}{T_{gas}}\right)^{1/2}}
$$

(4)

is the maximum halo spin parameter for which the disk is gravitationally unstable. Note that while $Q_c = 1$ provides the benchmark for the onset of instability, non-axisymmetric metric and global instabilities can cause the disk to become unstable for larger values of Q_c. For this reason we investigate models with $1 < Q_c < 6.3$.

The process described above provides a means to transport matter from a typical scale of a few hundred parsecs down to radii of a few AU. If the halo-disk system already possesses a massive black hole seed from a previous generation, then this gas can provide a large fuel reservoir for its further growth. Note that while the accretion rates implied by the above model are of the order of $0.01M_{\odot}$, and are therefore sub-Eddington for seeds with masses of the order of $10^8 M_{\odot}$ or so. If, on the other hand no black hole seed is present, then this large gas in can form a seed anew. The ultimate fate of the gas in this case at the smallest scales is uncertain. One possibility, if the accretion rate is sufficiently large, has been described in detail by E egeln et al. 2003. The infalling material likely forms a quasar-like core, the core of which collapses and forms a BH, while the quasar-like core accretes and grows in mass at a rate which would be super-Eddington for the central BH. Alternatively, the gas might form a super-massive star, which would eventually collapse and form a black hole (Shapiro & Shibsata 2003). There are no quantitative estimates of how much gas would ultimately end up collapsing in the hole. Thus, the black hole seed mass estimates based on eqn. (3) should be considered as upper limits.

For large halo mass, the internal torques needed to redistribute the excess baryonic mass become too large to be sustained by the disk, which then undergoes fragmentation. This occurs when the virial temperature exceeds a critical value T_{max}, given by:

$$
T_{gas} > \left(\frac{4}{m_d - 1 + M_{BH}}\right)^{2/3} ;
$$

(5)

where c_s is a dimensionless parameter determined ensuring the critical gravitational torque above which the disk fragments (Rich et al. 2004).

To summarize, every dark matter halo is characterized by its mass M (or virial temperature T_{VIR}) and by its spin parameter Q. The gas has a temperature $T_{gas} = 5000K$. If $Q < Q_{crit}$ (see eqn. (3)) and $T_{VIR} < T_{max}$ (eqn. (5)), then we assume that a disk BH of mass M_{BH}, given by eqn. (3), forms in the center. The remaining relevant parameters are $Q = 0.05$, $c_s = 0.06$, and we consider three different values for $Q_c = 1.5$, 2, 3, which will be referred to as (i) $Q_{ode}A$, (ii) $Q_{ode}B$, and (iii) $Q_{ode}C$. We then investigated this paper on possible constraints/insights that
the measured mass function of supermassive black holes at $z = 0$ can provide on the onset of instability and therefore on the efficiency of seed formation at extremely high redshifts.

To give an idea of the efficiency of BH seed formation at high z within the present model, we plot in Fig. 1 as an example, the probability of forming a BH (of any mass) at $z = 18$, as a function of halo mass, for the three models. It can be seen that typically up to 10% of the halos in the right-most mass range can form a central seed BH, the percentage rising to a maximum of 25% for the high efficiency model C (highly unstable disks), and dropping to a maximum of 4% for the high stability and therefore low efficiency case (model A).

3 The Evolution of Seed Black Holes

We follow the evolution of the MBH population resulting from the seed formation process delineated above in a CDM Universe. Our approach is similar to the one described in Volonteri, Haardt & Madau (2003). We simulate the merger history of present-day halos with masses in the range $10^{11} < M < 10^{15} M_{\odot}$ starting from $z = 20$, via a Monte Carlo algorithm based on the extended Press-Schechter formalism.

Every halo entering the merger tree is assigned a spin parameter according to eqn. [4]. Recent work on the fate of halo spins during mergers in cosmological simulations has led to concerning results: Völk et al. (2002) suggest that the spin parameter of a halo increases after a major merger, and the angular momentum decreases after a long series of minor mergers; D'Onghia & Navarro (2007) noted instead no significant correlation between spin and merger history. Given the unsettled nature of this matter, we adopt Crocce’s razor to guide us, and assume that the spin parameter of a halo is not modified by its merger history.

When a halo enters the merger tree we assign seed MBHs by determining if the halo meets all the requirements described in Section 2 for the formation of a central mass concentration. As we do not self-consistently trace the metal enrichment of the intergalactic medium, we consider here a sharp transition threshold, and assume that the MBH formation scenario suggested by Lodato & Natarajan ceases at $z = 15$ (see also Sesana et al. 2007; Volonteri 2007). At $z > 15$, therefore, whenever a new halo appears in the merger tree (because its mass is larger than the mass resolution), or a pre-existing halo modifies its mass by a merger, we evaluate if the gaseous component meets the conditions for efficient transport of angular momentum to create a large inflow of gas which can either form a MBH seed, or seed one if already present.

The efficiency of MBH formation is strongly dependent on critical value of the Toomre parameter Q_c, which sets the frequency of formation, and consequently the number density of MBH seeds. We investigate the influence of this parameter in the determination of the global evolution of the MBH population. Figures 2 shows the number density of seeds formed in three models, with $Q_c = 1.5$ (low efficiency model A), $Q_c = 2$ (intermediate efficiency model B), and $Q_c = 3$ (high efficiency model C). The solid histograms show the total mass function of seeds formed by $z = 15$ when this formation channel ceases, while the dashed histograms refer to seeds formed at a specific redshift slice at $z = 18$. The number of seeds changes by about one order of magnitude from the least efficient to the most efficient model, consistent with the probabilities shown in Fig. 1.

We assume that, after seed formation ceases, the $z < 15$ population of MBHs evolves according to a ‘merger driven scenario’, as described in Volonteri et al. (2008). We assume that during major mergers MBHs accrete gas mass amounting to the fourth power of the circular velocity (or equivalently the velocity dispersion σ) of the host halo (Ferrarese 2002). We thus set the minimal mass of the MBH at the end of the accretion episode to 90% of the mass predicted by the M$_{\text{BH}}$-σ correlation, assuming that the scaling does not evolve with redshift. Major mergers are defined as mergers between two dark matter halos with mass ratio between 1 and 10. BH mergers contribute to the mass increase of the remaining 10%.

In order to calculate the accreting black hole luminosity function and to follow the black hole mass growth during each accretion event, we also need to calculate the rate at which the mass, as estimated above, is accreted. This is assumed to scale with the Eddington rate for the MBH, and is based on the results of simulations, which heuristically track accretion onto central MBHs. The time spent by a given sub-
interval is approximated by \(\text{Hopkins et al. (2005b)} \) as:

\[\frac{dL}{dt} = \frac{j f_0 L}{10^3 L} \]

(6)

where \(j = 8.95 \times 10^9 \) yr, and \(f_0 = 0.095 + 0.92 \log(L_{\text{peak}} = 10^9 L) \).

Here \(L_{\text{peak}} \) is the luminosity of the AGN at the peak of its activity. \(\text{Hopkins et al. (2006)} \) show that approximating \(L_{\text{peak}} \) with the Eddington luminosity of the M BH at its natal mass (i.e., when it sits on the M BH - c relation) can improve the fit compared to using the peak luminosity with eqn. (6) above gives the same result and in fact, the difference between these two cases is negligible. \(\text{Volonteri et al. (2007)} \) derive the following simple differential equation to express the instantaneous accretion rate (\(f_{\text{edd}} \) in units of the Eddington rate) for a M BH of mass M BH in a galaxy with velocity dispersion \(c \):

\[\frac{df_{\text{edd}}(t)}{dt} = \frac{\dot{E}_{\text{edd}}(t)}{j f_0} \left(\frac{M_{\text{edd}} c^2}{10^9 L} \right) \]

(7)

where here \(t \) is the time elapsed from the beginning of the accretion event. Solving this equation gives us the instantaneous Eddington ratio for a given M BH at a specific time, and therefore we can self-consistently evolve the M BH mass. We set the Eddington ratio \(f_{\text{edd}} = 10^{-3} \) at \(t=0 \). This same type of accretion is assumed to occur, at \(z > 15 \), following a major merger in which a M BH is not fed by disc instabilities.

In a hierarchical Universe, where galaxies grow by mergers, M BH mergers are a natural consequence, and we trace their contribution to the evolving M BH population (cf. \(\text{Sevana et al. (2007)} \) for details on the dynamical modeling). During the final phases of a M BH merger, emission of gravitational radiation drives the orbital decay of the binary. Recent numerical relativity simulations suggest that merging M BH binaries might be subject to a large “gravitational recoil”: a general-relativistic effect \(\text{Fitzgerald (1983)} \), \(\text{Redmount & Rees (1989)} \) due to the non-zero net linear momentum carried away by gravitational waves in the coalescence of two unequal mass black holes. Radiation recoil is a strong effect that depends on the lack of symmetry in the system. For merging M BHs and black holes, in particular orbital considerations, the recoil velocity can be as high as a few thousands of kilometer per second. \(\text{Campanelli et al. (2007a, b)} \), \(\text{Gonzalez et al. (2007)} \), \(\text{Herrmann et al. (2007)} \), \(\text{Schnittman (2007)} \). Here, we aim to determine the characteristic features of the M BH population deriving from a specific seed scenario, and its signature in present-day galaxies, we study the case without gravitational recoil. We discuss this issue further in section 4.

4 RESULTS

Detection of gravitational waves from seeds merging at the redshift of formation (\(\text{Sevana et al. (2007)} \)) is probably one of the best ways to discriminate among formation mechanisms. On the other hand, the imprint of di erent formation scenarios can also be sought in observations at lower redshifts. The various seed formation scenarios have distinct consequences for the properties of the M BH population at \(z = 0 \). Below, we present theoretical predictions of the various seed models for the properties of the local SM BH population.

4.1 Supermassive black holes in dwarf galaxies

The repercussions of di erent initial seed scenarios for seed formation for the overall evolution of the M BH population stretch from high-redshift to the local Universe. Obviously, a higher density of M BH seeds implies a more numerous population of M BHs at later times, which can produce observational signatures in statistical samples. More subtly, the formation of seeds in a CDM scenario follows the cosmological bias. A consequence, the progenitors of massive galaxies (or clusters of galaxies) have a higher probability of hosting M BH seeds (cf. \(\text{Madau & Rees (2001)} \)). In the case of low-bias systems, such as isolated dwarf galaxies, very few of the high-z progenitors have the deep potential wells needed for gas retention and cooling, a prerequisite for M BH formation. We can read directly from Fig. 1 the average number of massive progenitors required for a present-day galaxy to host a M BH. In model A, a galaxy needs of order \(25 \) massive progenitors (mass above \(10^7 M \)) to ensure a high probability of seeding with the most massive star. In model C, instead, the requirement drops to \(4 \) massive progenitors.
increasing the probability of MBH formation in lower bias halos.

The signature of the efficiency of the formation of MBH seeds will consequently be stronger in isolated dwarf galaxies. Fig. 3 (bottom panel) shows a comparison between the observed MBH relation and the one predicted by our models (shown with circles), and in particular, from left to right, the three models based on the Lodato & Natarajan (2006, 2007) seed masses with $Q_c = 15, 2$ and 3, and a fourth model based on lower mass Population III star seeds. The upper panel of Fig. 3 shows the fraction of galaxies that do not host any massive black holes for different velocity dispersion bins. This shows that the fraction of galaxies without a MBH increases with decreasing halo masses at $z = 0$. A larger fraction of low mass halos are devoid of central black holes for lower seed formation efficiencies. Note that this is one of the key discriminants between our models and those seeded with Population III remnants. As shown in Fig. 3, there are practically no galaxies without central BHs for the Population III seeds.

It is interesting to note that our seed models predict that below a transition galaxy mass ($\sim 10^{10} M$) a central massive black hole seems to be replaced by a nuclear star cluster. Although no definite proof that Virgo dwarfs are indeed MBH-less, the above results imply that MBHs are more common in large galactic systems. Our models also indicate that a minimum velocity dispersion exists, below which the probability of finding a central object is very low.

We make quantitative predictions for the local occupation fraction of MBHs. Our model A predicts that below $\sim 60 \, \text{km} \, \text{s}^{-1}$ the probability of a galaxy hosting a MBH is negligible. With increasing MBH formation efficiencies, the minimum mass for a galaxy that hosts a MBH decreases, and it drops below our simulation limit for model C. On the other hand, models based on lower mass Population III star remnant seeds, predict that massive black holes might be present even in low mass galaxies.

We note here that in our investigation we have not included any mechanism that could further lower the occupation fraction of MBHs (e.g., gravitational recoil, three-body MBH interactions). For any value of Q_c, the occupation fraction computed above is therefore an upper limit.

A though there are degeneracies in our modeling (e.g., between the minimum redshift for BH formation and instability criterion), the BH occupation fraction, and the masses of the BHs in dwarf galaxies are the key diagnostics. In local observations, the clearest signatures of massive seeds com-
pared to Population III remnants, would be a lower limit of order the typical mass of seeds (Fig. 2) to the mass of MBHs in galaxy centers, as shown in Fig. 3. An additional caveat worth mentioning is the possibility that a galaxy is devoid of a central MBH because of dynamical evolutions (due to either the gravitational recoil or three-body scattering). The signatures of such dynamical interactions should be more prominent in dwarf galaxies, but ejected MBHs would leave observational signatures on their hosts (Gultekin et al. in prep.). On top of that, Schnittman et al. (2007) and Volonteri et al. (2007) agree in considering the recoil a minor correction to the overall distribution of the MBH population at low redshift (cf. figure 4 in Volonteri, 2007).

Additionally, as MBH seed formation requires halos with low angular momentum (low spin paramaters), we envisage that low surface brightness, bulgeless galaxies with high spin parameters (i.e. large discs) are system where MBH seed formation is less probable. Furthermore, bulgeless galaxies are believed to preferentially have quieter merger histories and are unlikely to have experienced any major merger, which could have brought in a MBH from a companion galaxy. The possible absence of a MBH in M33 hence arises naturally (e.g. Meranze, Ferrarese & Joseph, 2001; Gebhardt et al., 2001) in our model.

2 This prediction is pertinent to all models relying on gravitational instabilities triggered in low spin parameters halos.

4.2 The luminosity function of accreting black holes

Turning to the global properties of the MBH population, as suggested by Yu & Tremaine (2002) the mass growth of the MBH population at $z < 3$ is dominated by the mass accreted during the bright epoch of quasars, thus washing out most of the imprint of initial conditions. This is evident when we compute the luminosity function of AGN. Clearly the detailed shape of the predicted luminosity function depends most strongly on the accretion prescription used. With our assumption that the gas mass accreted during each merger episode is proportional to V_c^2, we are that distinguishing between the various seed models is difficult. As shown in Fig. 4, all 3 models reproduce the bright end of the observed bolometric LF (Hopkins et al, 2007) at higher redshifts (marked as the solid curve in all the panels), and predict a fairly steep faint end that is in agreement with observations. All models face well below at low redshift, shown in particular at $z = 0.5$. This could be due to the fact that we have used a single accretion prescription to model growth through epochs. On the other hand, the decline in the available gas budget at low redshifts (since the bulk of the gas has been consumed by this epoch by star formation activity) likely changes the efficiency of the system. Besides, observations suggest a sharp decline in the number of actively accreting black holes at low redshifts across wavelength, produced by changes in the accretion rate of the nuclear regions of galaxies. In fact, all of our models predict the slope at the faint end. Therefore, there are three other effects that could cause this attenuation of the LF at the faint end at low redshift: (i) not having taken into account the fate of on-going mergers and the fate of satellite galaxies; (ii) the number of realizations generated and tracked is insufficient for statistics, as evidenced by the system actually larger errors and (iii) the one in港t, it is unclear if a merger-driven accretion is indeed the trigger of BH fueling in the low redshift universe. We note that the 3 massive seed models and Population III seed models cannot be discriminated by the LF at high redshifts. MBHs B and C are also in agreement with the predicted BH mass function at $z = 6$ (see Fig. 2), even assuming a very high efficiency (up to 20%), while models A might not be less severe assumptions, in particular for BH mass larger than $10^5 M$.

4.3 Comoving mass density of black holes

Since during the quasar epoch MBHs increase their mass by a large factor, signatures of the seed formation mechanism are likely more evident at earlier epochs. We compare in Fig. 5 the integrated comoving mass density in MBHs to the expectations from solar-type arguments (P. Haardt, private communication), assuming that quasars are powered by radiatively efficient B stars (for details, see Yu & Tremaine, 2002; Elvis et al, 2002; Marconi et al, 2004). While during and after the quasar epoch the mass densities in models A, B, and C differ by less than a factor of 2, at $z > 3$ the differences become more pronounced.

A very efficient seed MBH formation scenario can lead to a very large BH density at high redshifts. For instance, the highest efficiency model C with $Q_c = 3$, the integrated
Figure 5. Integrated black hole mass density as a function of redshift. Solid lines: total mass density locked into nuclear black holes. Dashed lines: integrated mass density accreted by black holes. Models based on BH remnants of Population III stars (lowest curve), $Q_c = 1.5$ (middle lower curve), $Q_c = 2$ (middle upper curve), and $Q_c = 3$ (upper curve). Shaded area: constraints from Soltan-type arguments, where we have varied the radiative efficiency from a lower limit of 6% (applicable to Schwarzschild BHs, upper envelope of the shaded area), to about 20% (Wang et al. 2006). All models assume seed formation models are consistent with the mass density obtained from integrating the optical luminosity functions of quasars.

MBH density at $z = 10$ is already 25% of the density at $z = 0$. The plateau at $z > 6$ is due to our choice of scaling the accreted mass with the $z = 0$ BH velocity dispersion relation. Since in our models we let MBHs accrete a mass which scales with the $z = 0$ power of the circular velocity of the host, the accreted mass is a small fraction of the MBH mass (see the discussion in Marnier et al. 2008), and the overall growth remains small, as long as the mass of the seed is larger than the accreted mass, which, in our assumed scaling, happens when the mass of the host is below a few times $10^5 M_\odot$. The evolution in mass density, an integral constraint, is reasonably well determined out to $z = 3$ but is poorly known at higher redshifts. All models appear to be satisfactory and consistent with current observational limits (shown as the shaded area).

4A Black hole mass function at $z = 0$

One of the key diagnostics is the comparison of the measured and predicted BH mass function at $z = 0$ for our 3 models. In Fig. 6 we show (from left to right, respectively) the mass function predicted by models A, B, and for Population III remnants seeds compared to that obtained from measurements. The histograms show the mass function obtained with our models (where the upper histogram includes all the black holes while the lower one only includes black holes found in central galaxies of halos in the merger-tree approach). The two lines are two different estimates of the observed black hole mass function. In the upper one, the measured velocity dispersion function for nearby late and early-type galaxies from the SDSS survey (Barmier et al. 2003; Sheh et al. 2003) has been convolved with the measured M_{BH} relation. We note here that the scatter in the M_{BH} relation is not explicitly included in this treatment, however the inclusion of the scatter is likely to preferentially act the high mass end of the M_{BH}, which provides stronger constraints on the accretion histories rather than the seed masses. It has been argued (e.g., Tundo et al. 2007; Barmier et al. 2007; Lauer et al. 2007) that the BH mass function differs if the bulge mass is used instead of the velocity dispersion in relating the BH mass to the host galaxy. Since our models do not trace the formation and growth of stellar bulges in detail, we are restricted to using the velocity dispersion in our analysis.

The lower dashed line is an alternate theoretical estimate of the BH mass function derived using the Press-Schechter formalism from Jenkin et al. (2003) in conjunction with the observed M_{BH} relation. Selecting only the central galaxies of halos in the merger-tree approach adopted here (lower histogram) is shown to be fairly equivalent to this analytical estimate, and this is clearly borne out as evident from the plot. We include black holes in satellite galaxies (upper histogram, cfr. the discussion in Volonteri, Haardt & Madau 2003) the predicted mass function moves toward the estimate based on SDSS galaxies. The higher efficiency models clearly produce more BHs. At higher redshifts, for instance at $z = 6$, the mass functions of active BHs predicted by all models are in very good agreement with the BH mass function higher than $10^5 M_\odot$, as it is the growth by accretion that dominates the evolution of the population. At the highest mass end ($> 10^8 M_\odot$) our models lag behind models B and C, although we stress once again that our assumptions for the accretion process are very conservative.

The relative differences between models A, B, and C at the low mass end of the mass function, however, are genuinely related to the MBH seeding mechanism (see also Figs. 1 and 3). In model A, the p value, fewer galaxies host a MBH, hence reducing the overall number density of black holes. Although our simplified treatment does not allow robust quantitative predictions, the presence of a "bump" at $z = 0$ in the MBH mass function is consistent with this model at which the peak of the seed mass function (cfr. Fig. 2) is a sign of high-e2icient formation of massive seeds (i.e., much larger mass with respect, for instance, Population III remnants). The higher the efficiency of seed formation, the more pronounced is the bump p (note that the bump p is most prominent for model C). Since current measurements of MBH masses extend barely down to $M_{BH} = 10^6 M_\odot$, this feature cannot be observationally tested with present data but future campaigns, with the Galletian Telescope or JWST, are likely to extend the mass function measurement to much lower black hole masses.

4B Black hole mass function at $z = 10$

In this paper, we have investigated the role that the choice of the initial seed black hole mass function at high redshift ($z = 18$) plays in the determination of observed properties of
Evolution of massive black hole seeds

Figure 6. Mass function of black holes at $z=0$. Histograms represent the results of our models, including central galaxies only (lower histogram with errorbars), or including satellites in groups and clusters (upper histogram). Left panel $Q_c = 1.5$, middle-left panel $Q_c = 2$, middle-right panel $Q_c = 3$, right panel: models based on BH remnants of Population III stars. Upper dashed line: mass function derived from combining the velocity dispersion function of Sloan galaxies (Sheth et al. 2003, where we have included the late-type galaxies extrapolation), and BH mass-velocity dispersion correlation (Tremaine et al. 2002). Lower dashed line: mass function derived using the Press-Schechter formalism from ion correlation (e.g., Tremaine et al. 2002). Lower dashed line: model with velocity dispersion of Sloan galaxies (Sheth et al. 2003, where we have included the late-type galaxies extrapolation), and BH mass-velocity dispersion correlation (Tremaine et al. 2002). Lower dashed line: mass function derived using the Press-Schechter formalism from ion correlation (Tremaine et al. 2002). Lower dashed line: model with velocity dispersion of Sloan galaxies (Sheth et al. 2003, where we have included the late-type galaxies extrapolation), and BH mass-velocity dispersion correlation (Tremaine et al. 2002).

local quiescent SM BHs. While the errors on mass determinations of local black holes are large at the present time, de nie trends with host galaxy properties are observed. The highest correlation appears to be between the BH mass and the velocity dispersion of the host spheroid. Starting with the ab-initio black hole seed mass function proposed in the context of direct formation of central objects from the collapse of pre-galactic discs in high redshift halos, we follow the assembly history of host galaxies using a Monte-Carlo merger tree approach. Key to our calculation of the evolution and build-up of mass is the prescription that we adopt for determining the precise mass gain during a merger. Motivated by the phenomenological observation of M_{BH}/V_c^5 (e.g., Tremaine et al. 2002), we assume that this proportionality carries over to the gas mass accreted in each step. With these prescriptions, a range of predictions can be made for the mass function of black holes at high and low z, and the integrated mass density of black holes, all of which are observationally determined.

We evolve 3 models, designated model A, B and C, which correspond to increasing e-parameters with the aim of seeds at high redshift. These models are compared to one in which the seeds are remnants of Population III stars.

It is important to note here that one major uncertainty prevents us from making more concrete predictions: the unknown mass enrichment history of the Universe. Key to the implementation of our models is the choice of redshift, at which a massive seed can be quenched. The direct seed formation channel described here ceases to operate once the Universe has been enriched by metals that have been synthesized after the latest generation of stars have gone supernova. Once metals are available in the Inter-Galactic Medium, gas cooling is much more efficient and hydrogen in either atomic form or molecular form is no longer the key player. In this work we have assumed this transition redshift to be $z = 15$. The efficacy of seed formation and the transition redshift are somewhat degenerate (e.g., a model with $Q = 15$ and enrichment redshift $z = 12$ is halfway between model A and model B); if other constraints on this redshift were available we could considerably tighten our predictions.

Below we list our predictions and compare how they fare with respect to current observations. The models investigated here clearly differ in predictions at the low mass end of the black hole mass function. With future observational sensitivity in this domain, these models can be distinguished.

Our model for the formation of relatively high-mass black hole seeds in high-z halos has direct impact on the fraction of black hole occupation in galaxies at $z = 0$. This effect is more pronounced for low mass galaxies. The sign that a significant fraction of low-mass galaxies might not have a nuclear black hole. This is in very good agreement with the shape of the M_{BH} relation determined recently from the Sloan Digital Sky Survey (SDSS) survey of low-mass galaxies in the Virgo cluster reported by Ferrarese et al. (2006).

The models studied here (with different black hole seed formation efficiency) are distinguishable at the low mass end of the BH mass function, while at the high mass end the effect of initial seeds appears to be sub-dominant. While current data in the low mass regime is scant (e.g., Barth et al. 2006), future instruments and surveys are likely to probe this region of parameter space with significantly higher sensitivity.

All our models predict that low surface brightness, bulge-less galaxies with high spin parameters (typically large discs) are systems where M BH formation is least probable.

One of the key caveats of our picture is that it is unclear if the differences produced by different seed models on observables at $z = 0$ might be expected or masked by BH fueling models at earlier epochs. There could be other channels for BH growth that dominate at low redshifts like minor mergers, dynamical instabilities, accretion of molecular clouds, tidal disruption of stars. The decreased in postage of the BH mass driven scenario is parent from observations of low-redshift AGN, which are for the large majority hosted by undisturbed galaxies (e.g., studies of BHs in low-density environments; references therein) in low-density environments (e.g., Li et al. 2003). However, the feasibility and efficacy of some alternative channels are still to be proven (for example, about the efficiency of seeding from large scale instabilities see discussion in King & Pringle 2007, Shlosman et al. 1985, Goodman et al. 2003, Collins & Zahn 1988). In any event, while these additional channels for BH growth can modify the detailed shape of the mass function of M BH s, or of the luminosity function of quasars, they will not create a new M BH . The occupation fraction of M BH s is therefore largely independent of the accretion mechanism and a true signature of the formation process.

To date, most theoretical models for the evolution of...
M BHs in galaxies do not include how M BHs form. This work is a first analysis of the observational signatures of massive black hole formation mechanisms in the local redshift universe, complementary to the investigation by Sesana et al. (2007), where the focus was on detection of seeds at the very early times where they form, via gravitational waves emitted during M BH mergers. We focus here on possible dynamical signatures that forming massive black hole seeds carry over to the local Universe. We believe that the signatures of seed formation mechanisms will be far more clear if considered jointly with the evolution of the spheroid that they host. The mass, and especially the frequency, of the forming M BH seeds is a necessary input when investigating how the feedback from accretion onto M BHs in unces the host galaxy, and is generally introduced in numerical models using extremely simplified, ad hoc prescriptions (e.g., Springel et al. 2005; Croton et al. 2005; Hopkins et al. 2005, 2006; Cattaneo et al. 2006; Bower et al. 2006). Adapting more detailed models for black hole seed formation, as outlined here, can in principle strongly affect such results. For instance, Kau mann et al. (2004) nd that AGN activity is typically con ned to galaxies with M > 10^10 M⊙. If we consider the occupation fraction of M BHs in such galaxies, we nd that it is er by a large factor between models A and C, being of order 10% in the low eccentricity model (at z = 1) and 50% or higher in model C. Consequently, the possibility of AGN feedback and its effect on the host would be selective in the former case, or widespread in the latter case. Adopting sensible assumptions for the masses and frequency of M BH seeds in models of galaxy formation is necessary if we want to understand the bimodal growth of M BHs and their hosts.

ACKNOWLEDGMENTS

PN and MV acknowledge the 2006 KITP program titled "The Physics of Galactic Nuclei", supported in part by the National Science Foundation under Grant No. PHY 99-07949.

REFERENCES

Evolution of massive black hole seeds

Redmond J. H., Rees M. J., 1989, Comments on Astrophysics, 14, 165
Volonteri M. et al., 2007, in preparation