CROSS-CORRELATION WEAK LENSSING OF SDSS GALAXY CLUSTERS III: MASS-TO-LIGHT RATIOS

Erin S. Sheldon, David E. Johnston, Morad Asgari, Timothy A. McKay, Michael R. Blanton, Ryan Scranton, Rima H. W. Ekers, Benjamin P. Koester, Sarah M. Hansen, Joshua A. Frieman, and James Annis

Abstract

We present measurements of the excess mass-to-light ratio measured around M axBCG galaxy clusters observed in the SDSS. This red sequence cluster sample includes objects from small groups with $M_{200} < 5 \times 10^{15} h^{-1} M_{\odot}$ to clusters with $M_{200} > 10^{15} h^{-1} M_{\odot}$. Using cross-correlation weak lensing, we measure the excess mass density profile above the universal mean $\epsilon(r) = \langle \epsilon(r) \rangle$ for clusters in bins of richness and optical luminosity. We also measure the excess mass density $\epsilon(r) = \langle \epsilon(r) \rangle$ at $z = 0.25$. For both mass and light, we de-project the profiles to produce 3D mass and light profiles over scales from $25 h^{-1} \text{kpc}$ to $22 h^{-1} \text{Mpc}$. From these profiles we calculate the cumulative excess mass ϵ_{200} and excess light $L(r)$ as a function of separation from the BCG. On small scales, where $\epsilon(r)$, the integrated mass-to-light ratio $M/L = \langle \epsilon(r) \rangle$ may be interpreted as the cluster mass-to-light ratio. We find the $M/L = \langle \epsilon(r) \rangle$ may be consistent with the cluster mass-to-light ratio. For all small clusters, the $M/L = \langle \epsilon(r) \rangle$ is much smaller than the asymptotic value, while for large clusters M/L approaches an asymptotic value independent of cluster richness. For all small groups, the mean $M/L = \langle \epsilon(r) \rangle$ is much smaller than the asymptotic value. This asymptotic value should be proportional to the mean mass-to-light ratio of the universe $M/L = \langle \epsilon(r) \rangle$. On large scales, where $\epsilon(r)$, the mass-to-light ratio M/L approaches an asymptotic value independent of cluster richness. For all small clusters, the $M/L = \langle \epsilon(r) \rangle$ is much smaller than the asymptotic value. This asymptotic value should be proportional to the mean mass-to-light ratio of the universe $M/L = \langle \epsilon(r) \rangle$.

Subject headings: dark matter | galaxies: clusters: general | gravitational lensing | large-scale structure of the universe
measuring the mass of individual clusters\(^{12}\). However, averaging the lensing signal over many clusters is more robust and easier to interpret (see the discussions in Johnston et al. 2007; Shekton et al. 2007; Johnston et al. 2007b). With this method, the full M/L profile can be measured from all scales to well beyond the bounds of the clusters. Early stacked M/L results for group-sized objects (Hoekstra et al. 2003; Parker et al. 2005, e.g.) showed the promise of this approach. The pilot study of Shekton et al. 2003 dem- onstrated the great potential of the Sloan Digital Sky Survey (SDSS; York et al. 2000) for measuring cluster m asses.

In this work we measure the mean m ass-to-light ratios for SDSS groups and clusters drawn from the M-aXCG cluster sample (Keeser et al. 2007b). We compare the ensemble mean mass estimates from the first two papers in this series (Shekton et al. 2003; Johnston et al. 2007b) with ensemble mean measures of the total light. We measure the mean m ass using lensing, and the mean m ass by correlating the clusters with the surrounding galaxies. Each m ass measurement spans a range of separations from 25 h\(^{-1}\) kpc to 22 h\(^{-1}\) M pc, extending the volume over which the M/L is measured well beyond the virial radii of the clusters.

Because lensing is not sensitive to uniform m ass distributions, aka ‘m as sheet’ solutions, we measure the mean m ass density of a lens sample above the m ean density of the universe = \(\rho_c \). However, we measure a 2D projection of the 3D which we will de-project). In other words, we measure the cluster m ass cross correlation function times the m ean density of the universe = \(\rho_c \). On small scales this is a m easure of the m easure of the m ean density profile, but on large scales, where the density approachs the background, it can only be interpreted in terms of the correlation function.

We measure the light using a stacking technique directed to the lensing m easurements. We include light from all galaxies surrounding clusters with luminosity above a threshold, and then subtract the m easurements around random points in order to remove the uniform background. This m eans we measure the luminosity density above the m ean \(\rho_c \), so it is a uniform function just like the m ass m easurement.

The excess m ass within radius r divided by the excess luminosity within radius r is the integral of the correlation functions:

\[
\frac{M}{L}(r) = \frac{\int_0^r \sigma^2 \rho_c(r) \, dr}{\int_0^r \rho_c(r) \, dr} = \frac{\int_0^r \rho_c(r) \, dr}{\int_0^r \rho_c(r) \, dr} = \rho_c \frac{\int_0^r \sigma^2 \rho_c(r) \, dr}{\int_0^r \rho_c(r) \, dr} = \rho_c \frac{\int_0^r \sigma^2 \rho_c(r) \, dr}{\int_0^r \rho_c(r) \, dr}.
\]

(1)

On the scale of virialized halos, denoted where the m ean density is a few hundred times the m ean, equation (1) can be interpreted as the m ean m ass-to-light ratio \(M/L \) in a straightforward way. On very large scales, as the density approaches the m ean, equation (1) becomes proportional to the m ean m ass-to-light ratio of the universe. The proportionality constant is related to the particular m ass function correlation m easurements. For example, the light and m ass m ay be clustered di erently, and this di erence in m ay depend on the properties of the galaxies chosen as tracers of the light. Thus we expect this m easurement to depend on the \(\rho_c \) of the light tracers relative to the m ass. This bias depends primarily on the m ass of the halos hosting these tracers. The bias also depends on the variance of the m ass density \(\rho_c \) as the larger the variance in the \(\rho_c \) and the larger the bias at xed m ass \(M \).

Full theoretical models of this m easurement on all scales will require substantial effort. For this paper we will parametrize our ignorance at large scales in terms of the bias. We will write the asymptotic M/L as

\[
\text{(M = L)}_{\text{sym}} = \frac{M}{L} = \rho_c^{2} \frac{b_{\rho}}{b_{L}},
\]

(2)

Here \(\rho_c^{2} \) is the m ean m ass-to-light ratio of the universe, but it is multiplied by a bias factor \(b_{\rho}/b_{L} \). This factor depends on the bias of the galaxy tracers relative to m ass \(b_{\rho} \), which should be of order unity for tracers near \(L \) since these galaxies are expected to be only slightly anti-biased (Sheth & Tormen 1999; Seljak & Warren 2004). This term also depends on the variance of the bias of clusters relative to m ass and light \(b_{\rho}/b_{L} \), which should also be near unity for the same reasons. The cluster bias is likely to cancel this equation because the cluster term appears in a ratio \(b_{\rho}/b_{L} \).

On large enough scales, \(M = L\) should approach a constant value independent of the halo m ass as long as the bias of the light tracers, and thus \(b_{\rho}/b_{L} \), is equivalent in all cases. This appears to be the case, as we will demonstrate.

We assume a Friedmann-Robertson-Walker cosmology with \(H_0 = 0.27, \Omega_{m} = 0.73, \) and \(H_0 = 100 \text{ h km s}^{-1} \text{Mpc}^{-1} \). Distances are m easured in physical, or proper units, rather than comoving units.
2. METHODS

2.1. Lensing Methods

We will briefly describe the lensing measurements as these were described in detail in [Sheldon et al. 2007] and [Johnston et al. 2007]. We measure the tangential shear induced in background galaxies by a set of foreground clusters and convert that shear to a redshift independent density contrast:

\[
\tau(R) = (\langle R \rangle - \langle R \rangle_R) ;
\]

where \(\tau \) is the projected surface mass density at radius \(R \), and \(\langle R \rangle_R \) is the mean projected density within radius \(R \). In using this equation, we assume the shear is weak. This is not always the case for the largest clusters on the smallest scales, as was discussed in [Johnston et al. 2007].

We average for an ensemble of clusters in radial bins from \(25h^{-1}\) kpc to \(30h^{-1}\) Mpc, using the brightest cluster galaxy (BCG) as the center for all measurement. (see [3] for a description of the cluster selection). The function is linear in the density and so averaging averages the density directly (again assuming weak shear).

A number of corrections were made to the \(\tau \), as discussed in detail in [Sheldon et al. 2007]. Using random points, corrections were applied for contamination of the background source sample with cluster members that are not sheared; this correction is large but well determined on all scales, and negligible on large scales. We also correct for residual additive biases in the shear. These results in perfect correction for biases in the galaxy shapes caused by PSF anisotropy. We use random points for this correction as well, as the additive biases will appear in random points as well as around clusters. This correction is negligible on small scales but significant on large scales.

There are selection uncertainties in the overall calibration of the \(\tau \). These come primarily from uncertainties in photon metric redshift determinations for the background source galaxies and correction for blurring of the galaxy shapes by the PSF. Simulations of the PSF correction suggest it is good to a few percent under photometric circumstances (Massey et al. 2008). The photon metric redshift calibrations are probably less well constrained. Comparisons with studies using Luminous Red Galaxies as sources, for which the redshift is better determined, suggest the calibrations are good to about 10% (Mandelbaum et al. 2005), although that study used a different photometric algorithm. This work. Simulations of the algorithm used in this study also suggest 10% errors given the size of the training set (Lima et al. 2003).

In [22] we will present inversions of the integrated excess mass. These mass profiles are model-independent, but as with the light measurements presented in [22], only the excess above the mean can be measured with lensing.

2.2. Cluster-luminosity Correlations

We used the method of [Massey et al. 2003] to estimate the mean number density and luminosity density of galaxies around clusters. This method is essentially a correlation function with units of density: corrections are made for random pairs along the line of sight as well as pairs missed due to edges and holes. We define two samples: The primary sample denoted \(p \) and the secondary sample denoted \(s \). In our case, the primary galaxies are distant clusters with redshift estimates and the secondary galaxies were the imaging sample with no redshift information, but in what follows, we will use a more general notation. For example, the counts of real data secondaries around real data primaries are denoted \(D_p D_s \), while the counts of real secondaries around random primaries is \(s p D_s \). If instead of counting \(\lambda \) for each object, we count some other quantity such as the luminosity of the secondary, we say we have weighted the \(\tau \) measurement by the luminosity.

The mean luminosity density of secondaries around primaries is

\[
\rho_s \rho_p \left(\frac{D_p D_s}{D_p D_s} - \frac{D_s D_p}{D_s D_s} \right) \cdot \frac{\rho_p D_s}{\rho_p D_s}
\]

where \(\rho_s \) is the mean luminosity density of the secondary sample, averaged over the redshift distribution of the primaries, and \(\rho_p \) is the projected correlation function. This is the estimator from [Massey et al. 2003] where the weight of each primary-secondary pair is the luminosity of the secondary. We have written the \(\tau \) as \(\omega \) to illustrate that the estimator gives the mean density of the secondaries times the projected correlation function \(\omega \). Only the excess mean luminosity density with respect to the mean can be measured. Using a weight of unity gives the numerator.

The first term in equation [3] estimates the total luminosity density around the clusters including everything from the secondary in an imaging sample projected along the line of sight, and the second term corrects for the random pairs along the line of sight. Note, the sample may be counted around multiple primaries (or random primaries).

The numerator of the \(\omega \) term in equation [3], \(D_p D_s \), is calculated as:

\[
D_p D_s = \frac{P \cdot P L_s}{N_p} = \frac{P L_{\text{pair}}}{N_p} \cdot \frac{P L_{\text{pair}}}{N_p} = \frac{f A \cdot (w + 1)}
\]

where the sum is over all pairs of primaries and secondaries, weighted by the luminosity of the secondary. The secondary luminosity is calculated by K-correcting each secondary galaxy's \(\lambda \) assuming it is at the same redshift as the primary (see [3] for details of the K-corrections). The total luminosity is the sum over correlated pairs \(\left(L_{\text{pair}} \right) \) as well as random pairs along the line of sight \((L_{\text{pair}}) \). By the definition of \(\omega \), this is the total luminosity per primary times \(w + 1 \). This can be rewritten to term in terms of the luminosity density of the secondaries \(\omega \) times the area probed \(A \). Some fraction of the area searched around the lenses is empty of secondary galaxies due to survey edges and holes. The factor \(f \) represents the mean fraction of area around each primary actually covered by the secondary catalog. It is a function of pair separation, \(w \) with a mean value close to 1 on small scales but then dropping rapidly at large scales.

Again, a single secondary may be counted around multiple primaries and K-corrected to different redshifts. Statistically, they will only contribute when paired with a physically associated object, due to the background subtraction described below. In fact, most of the calculations involved in this measurement are for pairs that are not physically associated, which is part of the reason this is computationally difficult.
The denominator of the first term in Equation (2) calculates the factor f_A, the actual area probed around the primaries. This term in the denominator corrects for the effects of edges and holes. As a result, it has units of area, we recover the density rather than just the correlation function.

$$D_pR_z = \frac{N_p}{n_p} = f_A; \quad (6)$$

The numerator is the pair counts between primaries and random secondaries, and the denominator is the expected density of pairs averaged over the redshift distribution of the primaries, times the number of primaries. The ratio is the actual mean area used around each primary as f_A.

The second term in Equation (2) accounts for the random pairs along the line of sight. The numerator and denominator are calculated the same way as the first term in Equation (2), but with primary and secondary distributed randomly over the survey geometry. The redshifts are chosen such that the density of redshifts smoothed in bins of $z = 0.01$ match that of the clusters.

$$R_pD_z = \frac{N_p}{n_p} = H/R_{pair} = f_A R^R; \quad (7)$$

$$R_pR_z = \frac{N_p}{n_p} = H/R_{pair} = f_A R^R; \quad (8)$$

The ratio of these two terms, R_pD_z/R_pR_z, calculates the mean density of the secondaries after correcting for the survey geometry.

The density n measured with this technique could be tabulated in various ways, typically as a function of projected radial separation R. We tabulate in a cube which represents bins of separation R, luminosity L, and color c. This facilitates the study of the radial dependence of the luminosity function and the color-density relation. These procedures can be inverted to obtain the three-dimensional excess density and integrated to get the total excess light.

We will present this form of α in section 3.2.

3. DATA

The data used for lensing was described in detail in paper I (Sheldon et al. 2003) and the cluster sample is described in Koester et al. (2007a), with the modifications detailed in Sheldon et al. (2007). We will briefly describe relevant details of the cluster sample and give a full description of the galaxies used as light tracers in the cluster-light cross-correlation measurements. All the primary data in this study come from the Sband Digital Sky Survey (SDSS; York et al. 2003) data release 4 (Adelman-McCarthy et al. 2003).

3.1. Cluster Sample

Full details of the cluster sample and catalog can be found in Koester et al. (2007a). The cluster norder is a red-sequence method, limited to the redshift range 0.1-0.3. The basic galaxy count N_{200} is the number of galaxies on the red sequence with rest-frame g-band luminosity $L > 0.4L_{\odot}$ within r_{200}. The i-band Lense is used in the cluster redshift $z = 0.01$ value from Blandon et al. (2003), corresponding to $M_{L\odot} = 20.82 \pm 0.02$. The radius r_{200} is determined from the size-richness relation presented in Hansen et al. (2003). Note, this relation gives roughly a factor of 2 larger radius than the r_{200} determined from the mass in Paper II (Johnston et al. 2007). (see Table 1 for details about the various richness measures). The published catalog contains clusters with N_{200} = 10, and we augment this catalog with $N_{200} = 3$ objects. The cluster photometric redshifts are accurate to 0.004 over our redshift range with a scatter of z = 0.01 for N_{200} = 10; the scatter degrades to z = 0.02 for $N_{200} = 3$, with the same accuracy.

3.2. Galaxy Sample

For the cluster-light cross-correlations we separated galaxies from stars using the Bayesian techniques developed in Scranton et al. (2004). The primary source of confusion in star-galaxy separation at faint magnitudes is shot noise. Stars scatter out of the stellar locus and galaxies scatter into the stellar locus. This technique uses known leverage of the true size distribution of stars and galaxies as a function of apparent magnitude to assign each object a probability of being a galaxy.

We characterized the distribution of star and galaxy sizes as a function of magnitude and seeing using the deeper southern SDSS stripe. The SDSS southern stripe has a been repeatedly scanned. We chose regions of sky which were scanned at least 20 times and chose the 20 best-seeing observations for each object. We then simply added the ux at the catalog level to increase the S/N. Thus, the selection is close to that of single scans but with a better S/N for a given magnitude. The distribution of measured sizes is closer to the truth. For a range of seeing values, we then calculated the probability that an object in a single-epoch image with a given magnitude and size is truly a galaxy, and applied this to all objects in the survey. The resulting distribution is highly peaked at probability 0 and 1, such that our chosen probability cut at $p > 0.8$ results in a sample of 99% pure with our magnitude limit.

We chose to K-correct to band-passes shifted to the mean cluster redshift 0.25 rather than redshift 0.1 to minimize the corrections. We will refer to all such magnitudes with a superscript, e.g., 25^i. For a full discussion of the band-shifting process see L3.

We chose a volume v and magnitude limit m_{lim} galaxy sample for $L_{g} > 10^{10} L_{\odot}$ (or $M_{I} > 18$) and $m < 0.3$. This corresponds to an apparent magnitude limit of $r < 21.5$, and both mag $r < 2$ and $r < 1$. All magnitude agglomerates are SDSS m_{lim} objects.

3.3. Survey Geometry

We characterized the survey geometry using the SDSS b-code 13. This code represents the survey using nearly equal-area pixels, including edges and holes in m missing e-bands and b-bands near bright stars. We removed areas with extinction greater than 0.2 mag in the u, g, r, i, and z bands. This window function was used in the cluster finding and in deprojection of the galaxy catalog for the cross-correlations. By including objects only from within the window, and generating random catalogs in the same regions, we controlled and corrected for edges and holes in the observed counts as described in 4.

13 http://lahm.phyast.pitt.edu/scranton/SDSS/b-code/
3.4. K-corrections

We calculated K-corrections using the template code kcorrect from Blanton et al. (2003). This code is accurate for a grid of colors in advance. We took galaxies from the SDSS Main sample as representative of all galaxy types. We then computed their K-corrections on a grid of redshifts between 0 and 0.3, the largest redshift considered for clusters in this study. The mean K-correction in a 21 × 21 80 grid of observed g-r, and z was saved. We interpolated this cube when calculating the K-correction for each neighboring galaxy. This interpolation makes the calculation computationally feasible for this study, but is still the bottleneck.

4. Clustering Populations: Measurements

4.1. Radial, Color, and Luminosity Binning

Using the estimator presented in equation 4.2, we measured the number and luminosity density of galaxies around the clusters as a function of radius R from the BCG, color g-r, and luminosity L. The bins in radius, color, and luminosity from a data cube with 18 bins in radius, 20 bins in color, and 20 bins in luminosity. The range in each variable is 0.02 < R < 11.5 h⁻¹ Mpc, 0 < g-r < 2, and 9.5 < log₁₀(L/L⊙) < 11.7. The initial cube before background correction was kept separately for each cluster to allow flexibility when later estimating the average profile. Two versions of this cube were kept, one with number counts and another with the total luminosity. In other words, in the worst case we counted each galaxy and in the other we counted the luminosity. A subset of measurements was also performed to 30 h⁻¹ Mpc, but binning only in radial separation to save resources. More detailed analysis of the full cube will be presented in Hansen et al. (2007), where we will present what is needed for the particulars of the M/L m measurement.

4.2. Random Catalogs

We generated random catalogs uniformly over the survey area using the window function described in equation 4.3. We chose the redshift distribution to be that of constant density in comoving volume over the redshift range of the clusters. We matched subsets of these redshifts to the redshift distribution of each cluster sample as described in equation 4.4. We performed the same galaxy counting as described in equation 4.5 for a set of 15 million random points in order to correct for the random background. These are used in the RD team from the estimator described in equation 4.4 (Equations 4 and 4.5). We also ran sets of 15 million random points for the DR and RR team s.

4.3. Histogram Matching

The redshifts used for random points must statistically match that of each cluster sample in order for the background subtraction to be accurate. The random primes described in equation 4.6 were generated with constant comoving density. We drew random redshifts from this sample such that the distribution matched that of the cluster sample when binned with z = 0.01.

4.4. Clustering Richness Binning

Because the measurements before background correction were saved for each cluster separately, the clusters could be binned at a later time to produce mean density profiles. For this work we binned the clusters into 12 bins of N₂₀₀ and 16 bins of i-band cluster luminosity L₂₀₀, where the luminosity is that of the N₂₀₀ red galaxies counted within r₂₀₀ as described in equation 4.4. These bins were chosen to correspond with the binning presented in the lensing analysis of Sheldon et al. (2007). Some statistics of this sample are shown in Tables 4 and 4.5.

4.5. Corrections for Edges and Holes

The terms DᵢRₛ and DᵢᵦRₛ introduced in equation 4.6 correct for the survey edges and holes by m measuring the actual area searched. An example DR is shown in Figure 1, generated for one of the richness bins described in equation 4.4. This is expressed as the mean fractional area searched relative to the area in the bin. For small separations, edges and holes make little difference so the fractional area is close to unity. On larger scales edges are important.

On smaller scales the number of pairs in each bin is relatively small so the correction is not as well constrained. However, we know that the fractional area must approach unity smoothly, and this can be seen from visual inspection. To smooth the result, we t a fifth order polynomial constrained to be unity on small scales, to the fractional area as a function of the logarithmic separation. Due to the weighting, this results in a curve that approaches unity smoothly on small scales, yet matches intermediate separation points exactly. Points on larger scales are well-constrained and do not need smoothing.
5. LUMINOUS DENSITY AT z = 0.25

We are interested in the background luminosity density at z = 0.25, in the 0.25 band for comparison with our luminous mass measurements. We use an evolved version of the SDSS spectroscopic sample (whose median redshift is about z ≈ 0.1). For this purpose, we use the DR4 version of the New York University Value-Added Galaxy Catalog (NYU-VAGC) [Blandford et al. 2003]. We select a subset of the galaxies in the redshift range 0.01 < z < 0.25, in the apparent magnitude range 14.5 < m < 17.5. The NYU-VAGC provides the angular completeness necessary to calculate for each galaxy the quantity V_{ab} in the m biggest volume element over which each galaxy could be observed. We do so using the same method as used by Blandford [2003], which accounts for the evolution and K-corrections within this redshift range. We use the kcorrect v4.1 code of Blandford & Roche (2003) to estimate the 0.25 magnitude, Galactic extinction-corrected, K-corrected absolute magnitude of each galaxy, based on the model used by SDSS.

Finally, we evolve the correction and magnitudes in the following way, based on the results of Blandford (2004). For each galaxy, we apply a simple correction of the form:

\[M_{0.25} (z = 0.25) = M_{0.25} (z = 0.1) + A(z) \]

For galaxies on the blue slope, based on their 0.25 (g) colors, we use A = 0.05. For galaxies on the red slope, we use A = 0.35. The red-blue split is defined by the line 0.25 (g - r) = 1.205 M_{0.25} (r) + 20. These values are calculated by evaluating the simple star-forming history models of Blandford (2004). These models explain the evolution of the blue and red sequences in the 0.25 band well, and we use the corresponding predictions for the 0.25 band. In practice, these corrections are quite small (at most 0.16 mag) and so the inevitable uncertainty in this correction is likely to be unimportant.

By using the evolution-corrected magnitudes and weighting each galaxy by 1/V_{ab}, we estimate the luminosity function using the method of Schmidt (1968).
The resulting lum inosity density for galaxies above our lum inosity threshold \(10^{9.5}h^{-2}L_\odot\) is \((1.61 \pm 0.05) \times 10^{-7}\) L/Mpc in co-moving coordinates, or \((3.14 \pm 0.10) \times 10^{-8}\) L/H Mpc in physical coordinates. Our lum inosity limit is equivalent to \(M_{R_{200}} = 5 \log_{10} h < -19.08\), where we use \(M = 4.57\) in the \(3^\text{rd}\) band. The uncertainty is dominated by the absolute calibration of the SDSS. Fitting a single Schechter function to the lum inosity function, we find that \(M = 5 \log_{10} h = 20.9\) (with \(1.21\)), equivalent to \(L = 1.7 \times 10^{9.5}h^{-2}L_\odot\). Thus the lower lum inosity threshold corresponds to \(0.19L_\odot\).

6. Simulations

In order to study the impact of the M axBCG algorithm on our conclusions, and in particular the differences between how our m ethod operates on dark matter halos and on M axBCG clusters, we have repeated the lum inosity measurement on a mock catalogue. These catalogs, which have been used in previous M axBCG studies, are populated with dark matter halos using the ADDGALS technique, to be described in M axBCG clusters. This method is designed to populate large volume simulations with galaxies that have realistic lum inosities, colors, clustering properties, and galaxy clusters.

The catalog is based on the light-cone from the Hubble volume simulation (Evrard et al., 2002), and extends from \(0 < z < 0.34\). Galaxies are assigned directly to dark matter particles in the simulation, with a lum inosity-dependent mass scheme that is tuned to match local clustering data. First galaxy lum inosities are generated in the \(z=0.1\) shifted r-band, drawn from the lum inosity function of M axBCG clusters. The lum inosity function is assumed to evolve passively, with 1.3 magnitudes of evolution in M per unit redshift (M (z) = M (\(z = 0.1\)) + 1.3(z - 0.1)). Particles in the simulation are then assigned these lum inosities based on the following prescription.

We measure the local m ass density around each dark matter particle, de ned here as the radius enclosing a mass scale of \(10^{16}\) M. For sets of points binned by local m ass density, we measure the auto-correlation function and the distance to the 5th nearest neighbor with the same local density. From galaxy surveys we know the correlation function as it depends on galaxy lum inosity, so by nding the set of particles with a correlation function that matches that of galaxies in the real universe, we make a connection between the local m ass density in the simulation and galaxy lum inosity. We use this to parametrize the probability distribution of these dark matter densities as a function of lum inosity, and constrain these param values so that the resulting lum inosity-dependent two-point clustering properties of the m ock galaxies are in agreement with those measured in the SDSS (Benz et al., 2003).

Once placed on a dark matter particle according to this prescription, each m ock galaxy is then assigned to a real SDSS galaxy that has approximately the same lum inosity and local galaxy density, measured here as the distance to the 5th nearest neighbor. The color for each m ock galaxy is then given by the SED of this m atched galaxy transformed to the appropriate redshift. The m atching of local galaxy density helps to ensure the relationship between color and density is preserved.

This procedure produces a catalog which matches several statistics of the observed SDSS population, including the location, width and evolution of the ridge in color-lum inosity characteristic of galaxy clusters. The lum inosity limit for galaxies in these mocks is slightly lower than that of the M axBCG cluster, so the catalogs are well-designed for testing the M axBCG algorithm. However, this limit is higher than for our lum inosity measurements, so the results cannot be compared at low lum inosities. Therefore, in this paper the simulations are used strictly to understand the effects of cluster selection on our measurements (see [3]).

7. Notation

The notation may get confusing due to the use of multiple methods and apertures in the course of cluster ng and lensing measurements. The notation for cluster variables, introduced in [3], is the same as [3]: the mass, richness, and lum inosity we refer to as \(N_{200}\) and \(L_{200}\). These are the counts and band lum inosity for galaxies with \(L > 0.4L_\odot\), colors consistent with the cluster ridge-line, and projected separation less than \(200\) as calibrated in [3]. Note, \(g_{200}\) was only used for \(200\) and \(L_{200}\), no other quantities in this paper use that aperture. For more information about the richness m easures see [Koester et al., 2007]. This radius is derived from the radius \(r_{200}^\text{gal}\) calculated from the mass profile, which is typically half as big (Johnston et al., 2007); this difference is primarily due to differences in convention between [Hansen et al., 2003] and [Johnston et al., 2007].

Hansen used projected over-densities relative to the mean lum inosity density and Johnston used 3D over-densities relative to the critical m ass density. The \(L_{200}\) is only used for binning the clusters; because our results are essentially the same for \(L_{200}\) and \(N_{200}\) binning we will not us these apart from the discussion below. We will refer to the total excess lum inosity measured below, which includes the light of all types of galaxies above a lum inosity threshold, as \(L\). This lum inosity, and excess m ass \(M\), are the new m easures presented in this paper. The total excess m ass and light within \(r_{200}^\text{gal}\) are denoted \(M_{200}\) and \(L_{200}\). Projected 2D radii are referenced to as \(R\) and 3D radii are referenced to as \(r\).

8. Results

In the following sections we show the results for clusters binned by \(N_{200}\). Similar results were obtained by \(L_{200}\), and we summarize all results in Table 1 and 2, but for the sake of brevity we include plots only for the \(N_{200}\) binning.

8.1. The Radial Dependence of the Joint Lum inosity-color Function

Figure 2 shows the joint color-lum inosity distribution function for each radial bin in the cluster richness sample (12 \(N_{200}\) 17). Similar distributions were created for each of the cluster richness bins used in this study. We will present detailed analyses of these type of data in [Hansen et al., 2003], but we also present a sample here in order to demonstrate a few aspects in the joint color-lum inosity function.
The most point is that the population is quite di erent at small scales relative to large scales. On small scales, near the BCGs, the galaxy population is dominated by red galaxies, while on large scales the color distribution looks more like the cosmological average. Similarly, on large scales the luminosity function looks more like that of the average, although they are poor to Schechter functions on large scales because we measure the ratio of correlation functions (see the following sections for more details). These facts are relevant to the M/L for a few reasons. We want to make sure that the population we are seeing around clusters makes sense; that we, for example, are complete in the color-luminosity range we have probed. Again, detailed analysis will come in Hansen et al. (2007), but these color and luminosity trends are exactly what is expected. We will discuss the shape of the luminosity function in §3.

§3. Radial Luminosity and Number Density

Further integrating the luminosity functions from section §2 across the luminosity axis produces the luminosity function in each radial bin. Recall that to produce these curves we have statistically subtracted the background, so the luminosity function is the luminosity function of galaxies minus that mean density of the universe. The value of these functions in a luminosity bin is

\[c(R) = n(R) = \int w_c(R) dR \]

where \(n \) is the number density, \(w_c(R) \) is the projected cross-correlation function between clusters and galaxies in luminosity bin \(i \) at projected radius \(R \) and \(c \) is the value of the luminosity function of the universe in that luminosity bin.

Because of the statistical subtraction, the value of the luminosity function in luminosity bin \(i \) is weighted by the cross-correlation function of clusters with galaxies of that luminosity. This is important because galaxies of di erent luminosities correlate with clusters di erently. An example of this is denoted for the lowest luminosity bin in Figure 2, which shows \(c(R) \) in each radial bin. This Figure shows that, near the virial radius, the inferred luminosity function for small groups is actually negative for galaxies with \(L_{200} \approx 10^{10} L_{\odot} \). This is not because there is a negative number density of these galaxies around the groups, but because they are anti-correlated with the groups at this separation. This means that, near the virial radius, there are fewer of these high luminosity galaxies relative to the background.

This e ect is strongest in our lowest-200 bin, although there is a slight feature in the luminosity function at virial radius for high luminosity galaxies. The fewest cluster bins.

In order to understand whether these e ects are physical, due to selection e ects of the cluster center, or are artifacts of our method, we ran the M aBCG algorithm and our cross-correlation code on the simulation-based mock catalogs described in §3. We performed this test twice, stacking on both cluster centers (BCGs) and halo centers. For the mock stacked on the aBCG clusters, a similar e ect is seen, although it is suppressed relative to the e ect in the real data. As in the data, the effect is strongest in the lowest richness bin. When the measurement is done around halo centers, there is no significant e ect seen. This indicates that it is mostly an e ect introduced by the selection criteria of the M aBCG algorithm.

This lowest luminosity bin is peculiar in that it requires the close proximity of only three very luminous red galaxies, one of which has extremely BCG-like luminosity. This is an unusual situation; BCGs of this luminosity are usually surrounded by many more galaxies. In order to nd only two such galaxies within a few hundred kpc of a BCG type galaxy, the algorithm selects objects embedded in slight under-densities. This can occur naturally in the M aBCG algorithm due to the percolation step, which does not allow clusters to be embedded within larger clusters. This may limit low richness systems to very particular regions of space.
Fig. 2. Joint galaxy $g-i$ and i-band luminosity densities as a function of projected separation from BCGs for the 8th cluster richness bin (12 N_{200} = 17). The luminosities are expressed in the $r = 0.25$ shifted bandpass. Each frame corresponds to a different radial bin; the radius is indicated in the legend. The one-dimensional distributions for color and luminosity are also shown as the solid histograms along the left and bottom axes. The luminosity distribution is expressed as log of the number density as a function of log luminosity; the color distribution is linear density as a function of color. At small separations red galaxies dominate while on large scales there is a bivariate color distribution similar to the cosmological average. A smaller fraction of galaxies is highly luminous at all separations as compared to large.

Fig. 3. Excess luminosity functions for the first cluster richness bin $N_{200} = 3$. This is the integral across the color axis of the joint luminosity functions shown for another richness bin in Figure 2. As in that figure, each panel is a radial bin with mean radius indicated in the legend. Each bin in the excess luminosity function is the amplitude of the projected cluster-galaxy cross-correlation function at that radial separation times the mean density. In some bins the galaxies are anticorrelated. This cluster richness bin was chosen as the extreme example of these anti-correlations; they are smaller or non-existent in higher richness bins. As discussed in Figure 2, this feature is a result of the MaxBCG selection function at low richness.
8.4. Integrated Lum Inosity Profiles

We will use integrated luminosity profiles to compute themean M/L within a given three-dimensional radius. We invert the projected twodimensional profile shown in Figure 5 using a standard Abel type inversion (e.g., Plummer 1911):

$$
(\rho(r)) = \left(\rho'(r) - \frac{1}{r} \int_{\infty}^{\rho(r)} \frac{\rho'(r')}{r'} dr' \right)
$$

where we have re-used the notation for the excess luminosity density from equation 14 but replaced projected radius r with three-dimensional radius r. We have been explicit here in indicating we use the density minus the mean $\rho'(r)$. Thus the $\rho'(r)$ is proportional to the cluster-light cross-correlation function:

$$
\rho'(r) \propto \rho(r')
$$

The assumption behind the inversion in equation 13 is that $\rho'(r)$ is the line of sight projection of a spherically symmetric three-dimensional function $\rho(r)$. This follows from the isotropy of the universe as long as the cluster selection function does not select structures preferentially aligned relative to us. Results from simulations suggest such preferential alignment is not important for our cluster sample where the sample can be tested $N_{200} > 10$. A publication on these simulations is forthcoming (Hao et al. 2008).

Because the maximum separation we measure is $30\ h^{-1} \ Mpc$ rather than infinity, we cannot accurately calculate $\rho(r)$ over the entire range. We lose the last point entirely, and the second to last point, at $22\ h^{-1} \ Mpc$, must be corrected slightly for the endpoint. We perform a power-law extrapolation of the profile and nd this to be a 5% upward correction.

We then integrate the excess luminosity density to obtain the total luminosity within radius r. Because the profile only extends to $25\ h^{-1} \ Mpc$, we are missing some light interior to this radius. This light is dominated by the BCG, however, so we can add that component back in as the average BCG luminosity for a given cluster sample:

$$
L(<r) = \int_{r}^{\infty} \frac{d\rho}{dr} r^2 \rho'(r) \ dr
$$

where we have again been explicit in denoting our measured quantity as $L(<r)$, the integrated excess luminosity above the mean density.

Figure 6 shows this quantity $L(<r)$ for the richness and luminosity cluster binning. There are two curves for each richness bin: one including the mean BCG luminosity L_{BCG} and one without. The light is dominated by the BCG on small scales. The luminosity within r_{200}^{mass} is marked with an asterisk. The r_{200}^{mass} is calculated from the mass profiles (see §2.2).
8.5. Integrated Mass Profiles

The cluster mass profiles were measured from the lensing mass measurements presented in [Sheldon et al. (2007)] and [Johnston et al. (2007)]. These mass measurements were performed for the same sample presented above. The basic lensing mass measurement is, which is a projected quantity:

\[
(\frac{< R >}{R}) = \frac{(\frac{< R >}{R})}{2}
\]

where is the projected surface mass density at radius R and \(<R>\) is the mean projected density within radius R. The subtraction in this equation is a manifestation of the mass sheet degeneracy.

In [Johnston et al. (2007)] we inverted the projected profiles to the three-dimensional excess mass density using the techniques presented in [Johnston et al. (2007)]. This inversion is a procedure analogous to the inversion of the luminosity density presented in 5.3:

\[
\frac{d}{dr} = \frac{d}{dr} + \frac{2}{R} \frac{2}{r}
\]

Again, the assumption is that the profiles are projections of spherically symmetric three-dimensional functions. We can recover the total excess mass within radius r, including that within our innermost radius, because it is a non-local mass measurement:

\[
M(\frac{< R >}{R}) = \frac{R}{R} + \frac{2}{R} \frac{2}{r}
\]

As with the luminosity inversions, the last point must be thrown out and a 5% correction is applied to the second to last point. Figure 7 shows these excess mass profiles for the N 200 bins. The error bars are from jackknife re-sampling. See [Sheldon et al. 2003] for details about the error estimation, and for more details about errors in this work. These data are the same as presented in [Johnston et al. 2007]. We note that there could be a level of systematic error in these measurements, primarily from the photometric redshift errors on the background source galaxies used for the shear mass measurement. It is difficult to know this error, but simulations suggest the calibration is good to 10%.

In order to get a size scale for each cluster, we use a simple model to the data. The model is that of an NFW profile on small scales (Navarro et al. 1997) and linear correlations on large scales. This model was presented in detail in [Johnston et al. 2007]. For this paper, we only use this to in order to estimate a size \(r_{200,0}\), from which we can also calculate the mass \(M_{200}\). The \(r_{200,0}\) is the radius at which the mean mass density falls to 200 times the critical density, and it is contained within that radius. This radius \(r_{200,0}\) will be a reference point for the \(M/L\) measurements. The \(r_{200,0}\) is a function of each richness bin, as shown in Figure 7 and \(r_{200,0}\) is a function of mass, radius. Note, these values are somewhat different than those in [Johnston et al. 2007], where power-law interpolation was used to extract \(r_{200,0}\).

In [Johnston et al. 2007]) it is shown that if a bias fraction of the BCGs are not centered on the peak of the halo mass distribution, the shape can be strongly effected. In that work an offset distribution was determined from simulations, and used to recover the underlying halo mass distribution. In this work we do not try to recover halo mass, but work directly with the observations around the BCGs chosen as centers. Thus it is important to keep in mind that these are the mass profiles and light profiles around BCGs, not necessarily peaks of the halo mass distribution. This is probably not a large effect for the \(M/L\) at the virial radius, and is negligible on the largest scales. On the other hand, for relatively small radii, the shape of the \(M/L\) profile around BCGs may be different than that around halo centers.

8.6. Mass-to-light Ratio Profiles

In order to determine \(M/L\) profiles we simply divide the integrated excess mass \(M\) by the integrated excess light \(L\) profiles. These profiles are shown for each cluster richness bin in Figure 9.

The \(M/L\) is shown with and without the mean BCG luminosity. When the mean BCG luminosity is included, the profiles rise steeply and then attains at large radius. The \(r_{200,0}\) is marked for reference. The \(M_{200}\) is the mean \(M/L\) within radius \(r_{200,0}\), as a function of cluster richness. However, the asymptotic \(M/L\) is nearly independent of cluster richness.

Without the mean BCG luminosity included, the \(M/L\) is relatively at and exceeds to large scales, indicating that the relative amount of mass and light on those scales is not a strong function of radius. There is a upturn at small scales, however. This is partly due to the fact that we do not measure light on scales less than 25h \(^{-1}\) kpc. However, there is also light not accounted for in our luminosity measurements. It is known that there is a significant amount of intra-cluster light (ICL), light not associated with galaxies, in many clusters (e.g. Gonzalez, Zaritsky, & Zabludoff 2003). There is also a missing light from galaxies below the luminosity threshold 10\(^{10}\)h\(^{-1}\) M\(_{\odot}\) and the light not accounted for the outskirts of detected galaxies, probably dominated by the outskirts of the BCGs on these scales. Only by estimating this missing light will we know the true \(M/L\) profile on all scales, and the absolute \(M/L\) for all excess light in these clusters.

In order to more quantitatively describe the shape of the \(M/L\) curves, we use a simple fitting function that captures the main features of our profiles. It is a function which would describe the ratio of two equal-index power laws in mass and light plus a delta function for the mean BCG luminosity.

\[
M = L(\frac{< R >}{R}) = \frac{M_{0}}{M_{0} + L_{0}(r=1h^{2}Mpc)}
\]

\[
= \frac{L_{1}^{2}}{L_{2}^{2}} = \frac{L_{1}^{2} + L_{2}^{2}}{L_{2}^{2}} = \frac{L_{1}^{2}}{L_{2}^{2}}
\]

where \(L_{1,2} = (L_{BCG} + L_{0})^{1/2}\) is the radius at which the \(M/L\) reaches half its asymptotic value at \(N = 1\) h M/L asym. A larger \(L_{1,2}\) at \(x < r_{200,0}\) implies a larger fraction of the total light is in the BCG, which results in a slower transition to the asymptotic \(M/L\) at \(L_{2}\).

Although we know the mass and light profiles are not pure power laws, they tend to deviate from a power law in...
Fig. 7. Cumulative 3D excess mass profiles for each cluster N_{200} bin derived from weak gravitational lensing. The solid curves show the best $tNFW + linear$ bias model. The dotted curve is the corresponding linear model and the dot-dashed curve is the NFW only. The asterisk marks r_{500}, note these models do not account for possible offsets between the BCG and the halo mass peak, which would alter the profile on small scales.

Fig. 8. Excess mass to excess light ratio profiles for each of the N_{200} bins. Light is measured in the 0.25 bandpass. These curves are the ratio of the curves shown in Figures 6 and 7. The points with error bars include the mean BCG luminosity, while the dotted curves exclude the luminosity of the BCG. The asterisk marks r_{500}. The curve through the data is a simple descriptive model as discussed in §5.
similar ways, which partially cancels this error. However, this means that should not be interpreted as the slope of the mass or light profile.

The best ts for equation [13] are over-plotted in Figure 8 for the N_{200} binning. We use the full covariance matrix of $M = L_r$, generated from the covariance matrices of M and L_r for the ts. Using the covariance matrix accounts for the strong correlations in the errors caused by the radial integration. The best-fit $r_{1/2}$, and $(M = L)_{ asym}$ are listed in Tables 1 and 2. There is a weak trend of decreasing $r_{1/2}$ with N_{200}, while it is relatively constant except for the highest richness bins. Recall that $r_{1/2} = (N_{BCG} = L_0)^{1/2}$, and thus a smaller $r_{1/2}$ at x_0 is indicative of a less dominant BCG relative to the overall cluster luminosity, which we had already seen to be true in Figure 6. However, at high mass the value of $r_{1/2}$ increases also, weakening the change in $r_{1/2}$ seen so far. We will discuss the $(M = L)_{ asym}$ values in section 8.8.

8.7. Mass-to-light Ratio Within r_{200}

In Figure 9 we show the mean $M = L$ with $r_{ mass}$, $(M = L)_{200}$, for each of the cluster richness and luminosity bins, plotted as a function of the mean N_{200}. The $M = L$ increases strongly with N_{200} over two orders of magnitude in mass. N_{200} is also shown on the top axis, but note this is rough as the transformation is non-linear. The $(M = L)_{200}$ versus M_{200} is a good fit to a power law with index 0.33 0.02. The $(M = L)_{200}$ vs. N_{200}, however, is not a good fit to a power law due to the non-linear relationship between mass and galaxy counts.

Over-plotted in Figure 9 is a prediction based on the models of Tinker et al. (2005) for $z = 0$ rest-frame i-band light rather than 0.25. The predicted N_{200} have been scaled by a factor of 1.5 to pass over the points. We do not expect this prediction to match our data, which is in a different band and for which there are BCG centering effects. However, the point is to show a rough expected trend with mass. There is qualitative agreement with the mass scaling of this prediction and our data. Note, it is tempting to think our data do not asymptote at high mass as expected from the models, but there is actually agreement at the one sigma level.

8.8. A Symptotic Mass-to-light Ratio

The $M = L$ profiles shown in Figure 8 rise quickly and attain at large separations. We measure the asymptotic value in two separate ways. First we use the last point in the $M = L$ curve at $r < 22h^{-1}Mpc$, which we will refer to as $(M = L)_{22h}$. The $(M = L)_{22h}$ for each richness bin is shown in Figure 11. The value at $22h^{-1}Mpc$ should be insensitive to any r_0 between the BCGs and the true halo mass peak. We detect no trend in the $(M = L)_{22h}$ as a function of N_{200}. For the average value of r_{200} the halo mass peak and $349 \pm 51h$ for the luminosity binning. Note these are not independent, measured, and thus the same for clusters used for both binning.

For the second method we examine the $(M = L)_{ asym}$ values measured from the ts in Figure 8, which are listed in Tables 1 and 2. As with the $(M = L)_{22h}$ values, they are roughly constant with N_{200}. The errors on $(M = L)_{ asym}$ are much smaller than those on $(M = L)_{22h}$ because the model uses all data points.
rather than just the last data point to infer the asymptotic mass-to-light ratio. We will discuss the interpretation of these errors more in the discussion.

The average median asymptotic mass-to-light ratios are 357 9h for the richness binning and 335 9h for the luminosity binning. Note the two binnings are not independent means as the same clusters are used for both. Both are consistent with the values we get just taking the last point \((M = L)_{22Mpc}\).

9. ERRORS

As stated earlier, all errors come from jackknife resampling of the data. The method was discussed in Sherston et al. [2004, 2007] in context of the lensing mass measurements. The same technique was used for the light measurements. The main difference between jackknifing in the lensing and luminosity mass measurements is that for the luminosity correlations we must jackknife all pieces of the estimator in Equation 3.

The systematics in the \(M/L\) measurements are dominated by calibration uncertainties in the lensing mass measurements, in particular the photometric redshift estimates for the background source galaxies. These errors were discussed in Sherston et al. [2007b]. Although it is difficult to know the absolute scale of the expected uncertainties, based upon the results of both simulations and real world tests shown in Lim et al. [2008] we estimate the overall level of systematics to be of order 10% for all contributing factors.

We want to stress again that the errors on the asymptotic mass-to-light ratio differ greatly for the two methods for a very simple reason: the \((M = L)_{22Mpc}\) is derived from the last point on the \(M/L\) curve and the \((M = L)_{\text{asym}}\) is derived from fitting a simple describable model to all points. Because this model is not a physically meaningful model the points on small scales should not be expected to be constraining of the large scale \(M/L\). So the errors on \((M = L)_{\text{asym}}\) must be thought of as lower limits at this stage. The errors on \((M = L)_{22Mpc}\) can be thought as upper limits since there is certainly some information in points at smaller radii.

10. DISCUSSION

The integrated \(M = L\) around MaxBCG clusters has a generic form. At 25h \(^{-1}\) kpc, where the light of the cluster is dominated by the BCG, the \(M = L\) is 10h \(^{-1}\) Mpc \(= L\). There is a sharp rise and then the profile attains a large scale (22h \(^{-1}\) Mpc). We test a simple model to extract \(r_{22}\), the radius at which the \(M = L\) reaches half its value at infinity (see \(\mathbf{5}\) for details).

For \(M_{2200} < 10^{14}\) M, \(r_{22}\) is determined primarily by the relative amount of light in the BCG compared to the rest of the cluster. For higher masses the \(M = L\) asymptotes to \((M = L)_{\text{asym}}\) more quickly relative to the lower masses, resulting in a smaller \(r_{22}\).

The decreasing \(r_{22}\) with richness is partly due to the less dominant BCGs for higher richness clusters; the effect of the BCG on the integrated light is only important on small scales for very rich systems. But it is also partly because the measured \(M = L\) within the large clusters is closer to the universal value. Figure 5 indicates that the \(M = L\) not including the BCG light is more at for the high richness clusters that have especially sharp transitions. The \(M = L\) would be essentially equal to \((M = L)_{\text{asym}}\) if we were not for the presence of the BCG. This is not true for the lower richness systems.

This difference between high and low richness systems leads us back to the discussion of uncounted light. Uncounted light is any light not counted in our measurements. This uncounted light is partly intra-cluster light (ICL), light not associated with galaxies. There is also light from galaxies less luminous than the threshold \(10^{15}\)h \(^{-1}\) L. The total luminosity of galaxies below this threshold is probably not dominant, and the radial profile is probably similar to that of galaxies above the threshold, so including it would not change the profile dramatically. But the ICL has a steeper profile. It appears to follow a \(\rho^{-1}L\) law, with scale length of order 100 h \(^{-1}\) kpc, and contains many times more light than the BCG [Gonzalez et al. 2003]. The total light in this component scales slowly with richness, and is only an order of magnitude on small scales in smaller systems. This could explain what appears to be a slower rise in \(M = L\) relative to larger systems. We will explore the ICL for MaxBCG clusters in a future paper.

The \((M = L)_{200}\), the excess mass-to-light within \(r_{200}\), scales with richness and \(M_{200}\). For lower richness systems, the \((M = L)_{200}\) is considerably smaller than \((M = L)_{\text{asym}}\), while for larger systems it is of order \((M = L)_{\text{asym}}\). This trend is probably a result of the fact that in some cases \(M = L\) and the extent of the ICL, which may be an order of magnitude smaller, is more important. For lower richness systems, this uncounted light is any light not associated with galaxies and in some cases is dominant. The (\(M = L)_{200}\) versus \(N_{200}\) is not a good proxy for power law, but \((M = L)_{200}\) versus \(M_{200}\) is well by a power law. This trend is probably a result of the fact that in some cases \(M = L\) and the extent of the ICL, which may be an order of magnitude smaller, is more important. For lower richness systems, this uncounted light is any light not associated with galaxies and in some cases is dominant. The (\(M = L)_{200}\) versus \(N_{200}\) is not a good proxy for power law, but \((M = L)_{200}\) versus \(M_{200}\) is well by a power law with index 0.37 ± 0.2 (there is a non-linear relationship between mass and galaxy counts).

However, no attempt was made to model possible offsets between BCGs' locations and the halo mass peaks. The \(M = L\) will not be strongly affected because the luminosity roughly traces mass, the \(M_{200}\) as a function of \(N_{200}\) does change significantly [Johnston et al. 2007b]. A fully model-dependent analysis for both the mass and light profiles following Johnston et al. [2007b] may imply different results for \((M = L)_{200}\) measured around dark matter halos that are around MaxBCG clusters.

It is difficult to compare with other methods due to the many conventions and methods in use. With regards to cluster selection, lower luminosity thresholds, galaxy aperture deblending, mass apertures and estimators, projected vs. de-projected mass, luminosity with or without backgroud subtraction, and the various band-passes used for the exposures. With these caveats, we will say that there is broad agreement in the literature that \(M = L\) \(0.2\) ± 0.3 (e.g., Girardi et al. 2004; Lim et al. 2004; Pope et al. 2007). Below we compare the mass calculated from the inferred global mass-to-light ratio, which may be less dependent on these factors.

We used two methods to extract the asymptotic mass \(M = L\) : with the value with \(22h^{-1}\) Mpc, \((M = L)_{22Mpc}\), and the best-t value from our fitting function, \((M = L)_{\text{asym}}\). Note, on these large scales, any offsets between the BCGs' positions and the halo mass peak is irrelevant. We see no trend of either measured as the asymptotic mass \((M = L)_{\text{asym}}\) with \(N_{200}\).

As we discussed in the introduction, for any given clus-
The receiver is really more informative than we have used since end point of documentation. So independent information. In principle a hand, the error bar on the asymptotic is

\[M = L \text{ asymptotic } \]

where \(b_{M,L} \) is independent of cluster richness, and then the lack of a trend of \((M = L) \) 220 pc with \(N_{200} \) means we have measured the same asymptotic \(M = L \) for all richness bins. If \(b_{M,L} \) is independent of \(N_{200} \), then by chance the variations in asymptotic \(M = L \) were canceled by a corresponding change in the bias. So we need to determine whether this bias is constant.

The bias \(b_{M,L} \) should primarily depend on the mass of the halos hosting the light traces, and this should be related to the luminosity of these galaxies. Included in the Tables 1 and 2 is the mean band luminosity of galaxies at 10\(h^{-1} Mpc \) per cent \(H_{0.01} \). The value on larger scales was not well constrained for all richness bins. There is not a strong variation of this mean luminosity between the richness bins. The average, over all cluster richness bins, of the luminosity of galaxies within 100 Mpc \(L_{0.01} = 1.10 \times 10^{10} L_\odot \) (2043 ± 0.94 mJy). Note in we saw that \(L_{0.01} = 1.17 \times 10^{10} h^{-1} L_\odot \). Given the small variation in luminosity, and the fact that the bias varies quite slowly for \(L < L_\odot \) galaxies (Tegmark et al. 2004), the bias \(b_{M,L} \) should be roughly constant for each cluster sample. Thus we assume we are measuring the true asymptotic value at large separations, and average these values from all cluster richness bins.

In Section we calculated this asymptotic value in two ways: first by taking the value of the integrated \(M = L \) for the last radial bin 22 h Mpc pc to get \((M = L) \) 220 pc, and secondly the same simple description model to get \((M = L) \) asymptotic. Averaging over all cluster luminosity bins gives

\[M = L \text{ asymptotic } = 362 \text{ Mpc pc} \]

in solar units, where the bias \(b_{M,L} \) corresponds to that of \(L_{0.01} = 1.10 \times 10^{10} h^{-1} L_\odot \) galaxies at \(z = 0.25 \).

In we calculated that the luminosity density in the 0.25 h Mpc band is \((314.0 \pm 10.6 h^{-1} Mpc^3 \text{ Mpc}^{-3} \), multiplying the asymptotic M/L above this, and dividing by the critical density, number we get an estimate of \(M \) that is independent of\:

\[M = L \text{ asymptotic } = 0.20 \pm 0.03 \text{ in } 22 h^{-1} Mpc \text{ pc} \]

There is certainly more information than we have used in the 22 h Mpc values since points at smaller radius do not contain independent information. So in principle a more precise measure could be made, but the error within 22 h Mpc can be considered conservative. On the other hand, the error bars on the asymptotic t is certainly an underestimate, as the t is not based on a physical model. The errors are small in size because all the points in the curve are used rather than just the last, but in fact the points on small scales are not necessarily informative in interpreting the points on larger scales in absence of a physical model, this error should be thought of as a lower limit.

In addition there is a level of systematic error not accounted for here. A though the level of systematic error is not precisely known, we expect it to be 10%, mostly due to errors in photometric redshifts of lensing source galaxies. See Johnston et al. (2007) for a more complete discussion of systematic errors.

There have been several errors in measuring the mass-to-light ratios of clusters. As discussed above with regard to the \((M = L) \) 200 Mpc relation, there are a wide variety of techniques and conventions in place. M of any of these studies use the mass-to-light ratio to infer \(\sigma \) by assuming the value they get is equal to that of the universe. A though this is not always a well-justified assumption, converting to \(\sigma \) does remove most of the dependence on the bandpass, galaxy aperture, and mass aperture (as long as the mass aperture isn’t too small). Using the inferred \(\sigma \) may lead to a more robust comparison between the various results.

The series of papers by Bahcall et al. have consistently estimated \(n \) 0.2 from this technique, using various mass estimators. For example, using X-ray clusters (Bahcall & Comerford 2002) found 0.17 0.05 and SDSS clusters whose masses are calibrated from velocity dispersions gave 0.19 0.08 (Bahcall et al. 2003). Cluster velocity dispersions in the CNO C data have also been used to calculate \(n \). Using stacked velocity and B-band light profiles, Carlin et al. (1997) found \(n = 0.39 \pm 0.06 \). A recent analysis using individual masses and K-band light found 0.22 0.03 (Muzzin et al. 2007).

Using the "caustic" method for estimating masses and K-band light in the CaRNS survey, Rines et al. (2004) inferred \(n = 0.18 \pm 0.03 \). This method claims to yield more accurate masses by correctly modeling the infall regions around clusters. The study of CNO C groups by Parker et al. (2003) using weak lensing for group masses and B-band light found \(n = 0.22 \pm 0.06 \). It should be noted that these are rather small groups; as we have shown in this work the mass-to-light ratio is less than universally useful in their virial radii. Using X-ray data for a set of 2MASS clusters, and 2MASS K-band luminosities, Lin et al. (2003) found \(n = 0.19 \pm 0.03 \).

A though there is an agreement on when using mass-to-light ratios to infer \(n \), these measurements give smaller values for \(n \) than baryonic fraction measurements, although baryonic fraction measurements do their dependence on \(h \). This is not, for example, by Lin et al. (2003) where they nd a higher \(n = 0.28 \pm 0.03 \) using the baryonic fraction using their own data, and suggest their mass-to-light ratios are too low.

In our analysis we demonstrated that the mass-to-light ratio reaches an asymptotic value at large radius, which removes one possible error in determining the global M/L. The mass selected, ICL and others, will generally push the mass-to-light ratios even lower. It is possible that the \(b_{M,L} \) is considerably greater than unity, but
this is not the theoretical expectation. The light tracers are $L < L_\star$ galaxies which should reside in under-dense halos (Sheth & Tormen 1999; Seljak & Wamit 2004). Note we have assumed a fiducial at cosmology with $\Omega_m = 0.27$ when performing these measurements, and this has not been varied properly in order to constrain Ω_m above. Thus the calculated σ_8 could be slightly biased, and there could be some additional statistical error not accounted for here. Generally, decreasing the assumed Ω_m increases the inferred σ_8 using this technique, through it's a eont the critical density for lensing. But at these redshifts such Ω_m ects are secondary, well below our errors. In a future paper we will present a full cosmological analysis including these ects as well as a proper model for BCG displacement from the halo mass peak as carried out in Johnston et al. (2007c).

These results are a precise test for Ω_m models of structure and galaxy formation. The M/L results, coupled with the galaxy color and luminosity distributions as a function of radius from clusters (sections 8.1 and 8.3) show in detail how different types of galaxies are distributed in and around these clusters and how they are clustered relative to the underlying mass distribution (see also Hansen, Sheldon, W. C. & Koeberl 2007). These are the most basic cross-correlation statistics that can be addressed, and are perhaps the most precise and powerful statistics that can be measured by a photon etric survey.

It is significant that these measurements were carried out in a purely photon etric data set. Every step of the process uses photon etric data only, from cluster finding, to galaxy cross-correlations, to lensing measurements. These types of measurements can be carried out in any high-quality survey with properly chosen bandpasses. Future surveys such as DES, SNAP, and LSST will greatly extend these measurements and further challenge our theories of cosmology and galaxy formation.

E. S. thanks the Aspen Center for Physics and the organizers of the "W modeling Galaxy Clustering" workshop for creating such a productive working environment; the majority of this paper was written during his two weeks there.

Thanks to David Hogg for any helpful comments. We are grateful to Rom an Scoccimarro and M. L. D. for use of the "M afalda" com putting cluster at NYU. Thanks to Jeremy Tinker and David W. E. for the model predictions and many helpful discussions.

E. S. was supported by NSF grant AST-0428465, B. K. and T. A. M. gratefully acknowledge support from NSF grant AST-0443277 and the Michigan Center for Theoretical Physics.

The research described in this paper was performed in part at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Funding for the SDSS and SDSS-II has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, the U.S. Department of Energy, the National Aeronautics and Space Administration, the Japanese Monbukagakusho, the Max Planck Society, and the Higher Education Funding Council for England. The SDSS Web Site is http://www.sdss.org/.

The SDSS is managed by the Astrophysical Research Consortium for the Participating Institutions. The Participating Institutions are the American Museum of Natural History, Astrophysical Institute Potsdam, University of Basel, Cambridge University, Case Western Reserve University, University of Chicago, Drexel University, Fermilab, the Institute for Advanced Study, the Japan Participation Group, Johns Hopkins University, the Joint Institute for Nuclear Astrophysics, the Kavli Institute for Particle Astrophysics and Cosmology, the Korean Academy of Sciences and the Arts, the Kavli Institute of astrophysics and Cosmology, the Chinese Academy of Sciences (LAMOST), Los Alamos National Laboratory, the M. P. Planck-Institute for Astronomy (MPIA), the Max Planck-Institute for Astrophysics (MPA), New Mexico State University, Ohio State University, University of Pittsburgh, University of Portsmouth, Princeton University, the United States Naval Observatory, and the University of Washington.

REFERENCES

Hao, J. et al. 2006, in preparation