Lepton flavor violating ℓ^- and ℓ^+ conversion in unparticle physics

Gui-Jun Dinga and Mu-Lin Yana,b

aDepartment of Modern Physics,
University of Science and Technology of China, Hefei, Anhui 230026, China

bInterdisciplinary Center for Theoretical Study,
University of Science and Technology of China, Hefei, Anhui 230026, China

Abstract

We have studied lepton flavor violation processes $\ell^- \ell^+$ and $\ell^+ \ell^-$ conversion in nuclei induced by unparticle. Both $\text{Br}(\ell^-\ell^+)$ and $\ell^+ \ell^-$ conversion rate $\text{CR}(\ell^+\ell^-;\text{Nuclei})$ strongly depend on the scale dimension d_U and the unparticle coupling $r_{K}^{0}(K=V,A,S,P)$. Present experimental upper bounds on $\text{Br}(\ell^-\ell^+)$, $\text{CR}(\ell^+\ell^-;\text{Ti})$ and $\text{CR}(\ell^+\ell^-;\text{Au})$ put stringent constraints on the parameters of unparticle physics. The scale dimensions d_U around 2 are favored for the unparticle scale U of $O(10\text{ TeV})$ and the unparticle coupling of $O(10^{-3})$. $\text{CR}(\ell^+\ell^-;\text{Nuclei})$ is proportional to $Z_{\ell}^4A^2Z$ for the pure vector and scalar couplings between unparticle and SM fermions, this peculiar atomic number dependence can be used to distinguish unparticle from other theoretical models.
I. INTRODUCTION

Scale invariance proves to be a very powerful concept in physics. At low energy, the scale invariance is explicitly broken by the masses of particles, and it is manifestly broken by the Higgs potential in the standard model (SM). However, there may exist a scale invariant sector at a much higher scale, e.g., above TeV scale. Motivated by the Banks-Zaks theory, recently Georgi suggested that a scale invariant sector with nontrivial infrared fixed-point may appear, which weakly couples to the SM. At low energy scale, this sector is matched onto the so-called "unparticle" with non-integral scale dimension d_u. For simplicity, most literatures so far have assumed that scale invariance remains until the low energy scale.

Unparticle is very peculiar from the viewpoint of particle physics. It looks like a non-integral number d_u of invisible massless particles, this leads to peculiar energy and momentum distributions, through which unparticle may be detected in high energy colliders. Unparticle doesn't have a definite invariant mass, instead a continuous mass spectrum, which can be represented by an infinite tower of massive particles from the perspective of particle physics. Moreover, the unparticle two-point correlation function has an unusual phase in the time-like region, which can produce interesting interference patterns between the amplitudes of S-channel unparticle exchange and that of SM processes.

Despite of the complexities of the scale invariant sector, we can use the effective theory to deal with its low energy behavior. The unparticle operator can have different Lorentz structures: scalar O_{U}, vector O_{U}, tensor O_{U}, or spinor. However, so far there is no principle to constrain the interactions between the SM fields and unparticle. The rich unparticle phenomenological implications have been extensively studied in particle physics, astrophysics, cosmology, gravity and so on.

In the minimal version of SM, lepton flavor violating (LFV) interactions are strictly forbidden. In the minimal extension of SM in order to accommodate the present data on neutrino masses and mixings, the LFV processes, such as \(\nu_i \rightarrow \nu_j \) (i\(\neq \)j) and \(e^+e^- \) are very strongly suppressed due to tiny neutrino masses and unitarity of the mixing matrix (MNS matrix). In particular, the branching ratio for \(e^+e^- \) amounts to at most \(10^{-54} \) to be compared with the present experimental upper bound \(10^{-11} \). However, most extensions
of the SM predict LFV, and some of them predict LFV at much higher rates, which may be in conflict with the existing experimental bounds. LFV provides an unique insight into the nature of new physics beyond SM, and various LFV processes have been considered in many scenarios of new physics beyond SM, such as the see-saw model with or without GUT, supersymmetry, Z^0 model and so on. Three kinds of LFV processes are usually discussed: LFV radiative decays $\ell_i \to \ell_j (i \neq j)$, $\beta \gamma$ like processes and ee conversion in nuclei. Unparticle induced ee and other cross symmetry related processes such as $e^+ + e^- \to e^+ e^-$ have been considered. In this work, we will consider LFV radiative decay $\ell_i \to \ell_j \gamma$ and ee conversion in nuclei.

Besides the great theoretical interests, there has been a lot of theoretical efforts in detecting LFV processes at CERN LEP and B-factories. The current experimental bound on the LFV radiative decay $\ell_i \to \ell_j \gamma$ is as follows [51]:

$$\text{Br}(\ell_i \to \ell_j \gamma) < 1.2 \times 10^{-11}; \ CL = 90\%$$

For ee conversion in heavy nuclei, the most stringent constraints arise for Titanium and Gold, respectively with $\text{CR}(e; Ti) < 4.3 \times 10^{-12}$ and $\text{CR}(e; Au) < 7 \times 10^{-13}$. Several experiments have been designed to explore LFV with much higher sensitivity than presently available. In particular, the MEG experiment at PSI will detect ee down to the 10^{-13} level in the very near future. Concerning the challenging ee conversion in heavy nuclei, the J-PARC experiment PR ISM/PRIME is expected to reach a sensitivity of 10^{-18}, i.e. an improvement by six orders of magnitude relative to the present upper bound.

Motivated by the future considerable progress in experimental measurements, studying ee and ee conversion in unparticle physics are of great theoretical interests. The paper is organized as follows. In Section II, we review the basic aspects of unparticle physics. In Section III, we calculate the LFV radiative decays $\ell_i \to \ell_j \gamma$ and ee conversion rates in nuclei are considered in Section IV. Finally we present our conclusions and some discussions.

II. THE MODEL

As was suggested by Georgi [2], we shall assume that at a very high energy scale, the world consists of the SM sector and the so-called Banks-Zaks (BZ) sector with non-trivial
infrared (IR) xed point, and the two sectors interact with each other via the exchange of particles with a large mass scale \(M_U > 1 \text{TeV} \). Below the scale \(M_U \), the interactions between these two sectors may be described by the effective non-renormalizable Lagrangian,

\[
\frac{1}{M_U^{d_{BZ} + d_{SM}}} O_{SM} O_{BZ}
\]

which is analogous to the four-fermion interactions in SM, where \(O_{SM} \) and \(O_{BZ} \) are respectively local operators constructed from the SM fields and the BZ fields. The BZ theory has IR xed point around an energy scale \(U \geq 1 \text{TeV} \), below this scale, the BZ sector undergoes dimensional transmutation and the scale invariant unparticle sector emerges. The BZ operator \(O_{BZ} \) matches onto the unparticle operator \(O_U \), and the interactions between the unparticle and the SM fields generally have the form

\[
L_{\text{eff}} = \frac{1}{d_{U} + d_{SM}} O_{SM} O_U
\]

where \(C_U \frac{(U_M)_{d_{BZ} + d_{SM}}}{d_{U} + d_{SM}} \) and \(C_U \) is the Wilson-like coefficient function. The lowest order effective interactions between the unparticle and the SM fermion fields are as follows

\[
L_{\text{int}} = f^0 \frac{V}{d_{U}} f^0 O_U + \frac{A}{d_{U}} f^0 S f^0 O_U + \frac{S}{d_{U}} f^0 S f^0 O_U + \frac{P}{d_{U}} f^0 S f^0 O_U
\]

Here \(f \) and \(f^0 \) denote SM fermions (leptons or quarks), and they should have same electric charges. We note that both the third and the fourth term are absent, if we require that the effective Lagrangian \(L_{\text{int}} \) is consistent with the SM symmetry with unparticle being SM singlet. The unparticle operators have been set to be hermitian, and \(O_U \) is assumed to be transverse \(@ O_U = 0 \). The couplings between the SM fermion fields and unparticle are quite arbitrary, it can be flavor conserving or changing. Moreover, there is no any correlation in the transitions among three generations for flavor changing processes. In Ref.\[8\], the authors introduced BZ charges for the SM particles at very high energy scale, then tree level flavor changing neutral current (FCNC) can be induced by re-diagonalizations of the SM fermion mass matrices. Under the Fritzsch ansatz of the mass matrices, the FCNC effects were found to associated with the mass ratios \(m_i m_j = m_i \frac{1}{2} \). Scale invariance xes the two-point correlation function of unparticle, by dispersion relation, the two-point correlation function is determined to be\[3,5\]

\[
\frac{2}{d^4 x e^{i p \cdot x} \mathcal{M} \mathcal{J} \mathcal{J}^\dagger(0)} j_0 i = \frac{i A_{d_U}}{2} \left(\frac{V}{d_{U}} \right)^{1/2} \frac{d_{u}^{2}}{s + 1} \frac{2}{2 \sin(d_{u})} (P^{2} - i d_{u}^{2})^{2}
\]

(5)
where the normalization factor A_{d_U} is chosen to be

$$A_{d_U} = \frac{16^{5n^2}}{(2^n)^{2d_U}} \left(\frac{(d_U + \frac{1}{2})}{(d_U - 1)(2d_U)} \right)$$ \hspace{1cm} (6)

and the complex function $(P^2 \ i)^{d_U}$ is defined to be

$$d_U \neq 0: (P^2 \ i)^{d_U} = \begin{cases}
(P^2 \ i)^{d_U} \ i; & P^2 < 0 \\
(P^2 \ i)^{d_U} \ e^{id_U} ; & P^2 > 0
\end{cases}$$ \hspace{1cm} (7)

In Eq. (5) the unparticle operator is scalar, it is straightforwardly to generalize to the vector unparticle operator O_U

$$Z \int d^4x \ e^{iP \ \cdot \ x} \langle \mathcal{O}_U(x) \mathcal{O}_U(0) \rangle = \text{I} A_{d_U} \left(P^2 \ i \right)^{d_U} \ i \ q (g + P \ P = P^2)$$ \hspace{1cm} (8)

We note that the dispersion representation of the unparticle two-point correlation function is very useful, if unparticle appear in the loop, e.g. the unparticle induced lepton anomalous magnetic moment and LFV radiative decay $\mu \rightarrow e$ in the following.

III. LFV RADIOACTIVE DECAYS

The diagrams for the LFV $\mu \rightarrow e$ are shown in Fig.1. Generally, the amplitude for $\mu \rightarrow e$ can be written as

$$M(\mu \rightarrow e) = \text{I} \ u_\mu(p_e) [i q \ (A + B \ \text{5}) + (C + D \ \text{5}) + q \ (E + F \ \text{5})] u(p)$$ \hspace{1cm} (9)

where q and 5 are respectively the photon momentum and polarization, $A;B;\ldots;F$ are invariant amplitudes. The electromagnetic gauge invariance requires the above amplitude is invariant under $\text{5} + q$, then we have,

$$C = D = 0$$ \hspace{1cm} (10)
Since the photon is on shell \(q^2 = 0 \) and transverse \(\mathbf{q} = (0, 0, -q) \), it is a magnetic transition

\[
M(\mathbf{q}) = \sum_{x} \langle \mathbf{p}_d | \mathbf{q} \times (\mathbf{A} + \mathbf{B} \cdot \gamma) | \mathbf{p} \rangle
\]

(11)

It is easy to calculate the corresponding radiative decay width

\[
\Gamma(\mathbf{q}) = \frac{\alpha}{8} q^3 (\Delta \gamma + \mathcal{B} \mathcal{P})
\]

(12)

where we have neglected the initial state electron mass. Using \(\alpha = 0.5 \) and \(G_F = 192 \), the Fermi constant, this can be converted into the branching ratio

\[
\text{Br}(\mathbf{q}) = \frac{\Gamma(\mathbf{q})}{\Gamma}\]

(13)

We note that the couplings between unparticle and photon such as \(O_\gamma O_\gamma F \) also contribute to \(\Gamma \). However, its contribution is highly suppressed compared with those in Fig. 1. Using the dispersion representation of the unparticle two-point correlation function, it is straightforward, although somewhat lengthy, to work out these unparticle induced radiative decay amplitude. In fact, we only need to consider Fig. 1(b), since the contributions of Fig. 1(a) and Fig. 1(c) are proportional to \(\sum_{x} \langle \mathbf{p}_d | \mathbf{q} \times (\mathbf{A} + \mathbf{B} \cdot \gamma) | \mathbf{p} \rangle \) or \(\sum_{x} \langle \mathbf{p}_d | \mathbf{q} \times (\mathbf{A} + \mathbf{B} \cdot \gamma) | \mathbf{p} \rangle \).
\[A_A = \frac{e^{A_{du}}}{4 \sin(d_u)} \left(\frac{1}{4 \sin(d_u)} \right)^2 \int_{a=e}^{\frac{1}{2}} \left(\frac{2}{U} \right) dy_0 1 \int_0^2 dx dy dz (x + y + z) \left[4z(l_x \frac{x+y}{2})^2 m_e^2 \right. \]

\[+ \frac{2}{y} (m_a + m_e) \left(\frac{1}{y} m_a + y \right) \left(l \frac{x+y}{2} m_a \right) \left[4z(l_x \frac{x+y}{2})^2 m_e^2 \right. \]

\[+ \frac{2}{y} (m_a + m_e) \left(\frac{1}{y} m_a + y \right) \left(l \frac{x+y}{2} m_a \right) \left[4z(l_x \frac{x+y}{2})^2 m_e^2 \right. \]

\[+ (m_a + m_e) \left[4z(l_x \frac{x+y}{2})^2 m_e^2 \right. \]

\[\left[4z(l_x \frac{x+y}{2})^2 m_e^2 \right. \]

\[\text{FIG. 2: Variation of the branching ratios } Br(\mu \rightarrow e^\gamma) \text{ with the scale dimension } d_u. \text{ V, A, S, and } P \text{ respectively denote the branching ratios for the pure vector, axial vector, scalar and pseudoscalar couplings between unparticle and SM fermions. The horizontal line indicates the present experimental bounds for } Br(\mu \rightarrow e^\gamma). \text{ We have taken } V = A = S = P = 0.001, \alpha = 3 \text{ and } u = 10 \text{ TeV.} \]

where the subscript denotes the contribution from the corresponding interactions between unparticle and the SM fermions, B_S, B_P, B_V and B_A equal zero. If both vector coupling and axial vector coupling between the unparticle and fermions (or scalar coupling and pseudo-
doscalar coupling) exist simultaneously, B would be non-zero. In Eq.(14)-Eq.(17), there is the factor \[xzm_\varepsilon^2 + yzm^2 (x+y)m_\varepsilon^2 + (x+y)m_\varepsilon^2(\varepsilon_0 - 1)^2\] with \(a = e; \) (or \[xzm_\varepsilon^2 + yzm^2 (x+y)m_\varepsilon^2 + (x+y)m_\varepsilon^2(\varepsilon_0 - 1)^2\]). It is well-defined if \(xzm_\varepsilon^2 + yzm^2 (x+y)m_\varepsilon^2 + (x+y)m_\varepsilon^2(\varepsilon_0 - 1)^2 > 0,\) whereas \(xzm_\varepsilon^2 + yzm^2 (x+y)m_\varepsilon^2 + (x+y)m_\varepsilon^2(\varepsilon_0 - 1)^2 = \exp(i(d_U - 2))\) if \(xzm_\varepsilon^2 + yzm^2 (x+y)m_\varepsilon^2 + (x+y)m_\varepsilon^2(\varepsilon_0 - 1)^2 < 0.\) Note that \(A_V\) and \(A_A\) are computed for a transverse vector unparticle operator \(O_u,\) both \(g\) and \(P\) \(P = P^2\) parts in the unparticle two-point correlation function contribute to the decay amplitude.

In Fig.2 we present the variation of the branching ratio \(Br(\gamma \rightarrow e)\) as a function of the scale dimension \(d_U\) respectively for the pure vector, axial vector, scalar, pseudoscalar couplings between unparticle and the SM fermions. For simplicity, we assume that the unparticle couplings with the SM fermions are universal

\[
\frac{f_{\gamma e}}{f_e} = \frac{g}{k}; f \neq f_0
\]

where \(g > 1\) and \(K = V, A, S, P\) for vector, axial vector, scalar, pseudoscalar couplings respectively.

As we can see from Fig.2, the branching ratio \(Br(\gamma \rightarrow e)\) decreases with \(d_U\) in the considered range, and it strongly depends on the scale dimension \(d_U.\) There is little difference between \(Br(\gamma \rightarrow e)\) in the pure vector coupling case and that in the pure axial vector coupling case. The same is true for the pure scalar coupling and the pseudoscalar coupling. From Eq.(13) and Eq.(14)-Eq.(17), we can see \(Br(\gamma \rightarrow e)\) is proportional to \(l = (\frac{2}{U}d_U - 2).\) The \(U\) dependence of \(Br(\gamma \rightarrow e)\) for the pure vector coupling case is shown in Fig.3.

From Fig.2, we find that \(Br(\gamma \rightarrow e),\) for \(d_U = 1.1\) or 1.3 and other input parameters in that figure, is clearly above its present experimental upper bound. The important conclusion from Fig.2 and Fig.3 is that the present experimental data on \(Br(\gamma \rightarrow e)\) favors the scale dimension \(d_U\) close to 2 for \(U\) of \(O(10\text{ TeV})\) and the unparticle couplings of \(O(10^{-3}).\)

IV. CONVERSION IN NUCLEI

The conversion in nuclei is described by the Feynman diagram presented in Fig.4, it means the following exotic process

\[+ (A;Z) \gamma + (A;Z) \]

(19)
FIG. 3: $\text{Br}(\mu \to e)$ as a function of the unparticle scale ν for various scale dimension d_ν in the pure vector coupling case. The horizontal line indicates the present experimental bound for $\text{Br}(\mu \to e)$. We have taken $\nu = 0.001$, $= 3$.

It violates the conservation of lepton number L_μ and L_e by one unit, but conserve the total lepton number L. The conversion rate is usually expressed by

$$\text{CR}(\mu; e; X) = \frac{+(X \to e + X)}{+(X \to \text{capture})}$$

(20)

where $(+X \to \text{capture})$ is the capture rate of the nuclei X. A very detailed calculation of the conversion rate in various nuclei has been performed in [60], using the methods.
developed by Czarniecki et al.\cite{61}. It has been emphasized in\cite{60} that the atomic number dependence of the conversion rate can be used to distinguish between different theoretical models of LFV.

We will calculate the conversion rates in nuclei using the general model-independent formulae of both\cite{60} and\cite{61}. For the nucleon numbers relevant for conversion experiments, the rate for the coherent process dominates over the incoherent excitations of the nuclear system, and the rate of the coherent conversion process over the incoherent ones is enhanced by a factor approximately equal to the number of nucleons in nucleus. Explicit calculations based on nuclear models\cite{62} show that the ratio between the coherent rate and the total conversion rate for nuclei as 48Ti can be as large as 90%.

For coherent conversion, only vector coupling and scalar coupling between the quarks and unparticle do contribute, and the contributions of axial vector and pseudoscalar couplings are negligible. For the pure vector coupling between SM fermions and unparticle, the four fermion effective interaction, which describes coherent electron conversion, is given by

$$L^V_{e\text{ conv}} = e^V_{\bar{q} q} \frac{A_{dV}}{2 \sin(d_{dV})} \left(\frac{q^2}{2} \right)^{d_{dV}} 2 \bar{q} \gamma_5 q$$

(21)

For the pure scalar coupling case,

$$L^S_{e\text{ conv}} = e^S_{\bar{q} q} \frac{A_{dS}}{2 \sin(d_{dS})} \left(\frac{q^2}{2} \right)^{d_{dS}} 2 \bar{q} \gamma_5 q$$

(22)

In Eq. (21) and Eq. (22), q^2 is the momentum transfer in the electron conversion process (q^2, m^2), which is much smaller than the scale associated with the structure of the nucleon, and we can neglect the q^2 dependence in the nucleon form factors. The above effective Lagrangian at the quark level is then converted to the effective Lagrangian at the nucleon level, by means of the approximate nucleon form factors\cite{52,60}. The matrix elements of the quark current for the nucleon $N = p; n$ can be written as,

$$h^p\langle k | q^{\pi p} = G^{(q\pi p)}_K \langle k | p$$

$$h^n\langle k | q^{\pi n} = G^{(q\pi n)}_K \langle k | n$$

(23)

where $K = 1,\cdots, 5$ for $K = S; V$. The numerical values of the relevant G_K are as follows\cite{52}

$$G^{(q\pi p)}_V = G^{(q\pi n)}_V = 2; \quad G^{(q\pi p)}_V = G^{(q\pi n)}_V = 1; \quad G^{(q\pi p)}_V = G^{(q\pi n)}_V = 0$$

$$G^{(q\pi p)}_S = G^{(q\pi n)}_S = 5; \quad G^{(q\pi p)}_S = G^{(q\pi n)}_S = 4.3; \quad G^{(q\pi p)}_S = G^{(q\pi n)}_S = 2.5$$

(24)
Under the approximation of equal proton and neutron densities in the nucleus, and of non-relativistic muon wavefunction for the 1s state, the formula for the e conversion rate for the pure vector coupling between SM fermions and unparticle, relative to the muon capture rate, is given by

\[
\text{CR\left(e;\text{Nucleus}\right)} = \frac{\rho_e E_m}{2} \frac{3^3 Z_e^4 F_p^2}{2^2 Z} \left[e_v \frac{A_{dw}}{2 \sin(d_w)} \right] \frac{1}{Z} \left(\frac{m_e^2}{2} \right)^{d_w} 2^2 J^X_\eta \sum_q G_{(q)^p}^{(q)} + N \right]_q \frac{1}{2} \sum_c^{\text{capt}} \left(\frac{1}{q} \right) \text{(25)}
\]

For pure scalar coupling case, it is

\[
\text{CR\left(e;\text{Nucleus}\right)} = \frac{\rho_e E_m}{2} \frac{3^3 Z_e^4 F_p^2}{2^2 Z} \left[s \frac{A_{dw}}{2 \sin(d_w)} \frac{1}{Z} \left(\frac{m_e^2}{2} \right)^{d_w} 2^2 J^X_q G_{S}^{(q)^p} \right] + N \sum_q \frac{1}{2} \sum_c^{\text{capt}} \left(\frac{1}{q} \right) \text{(26)}
\]

where \(Z \) and \(N \) are the numbers of proton and neutron in nucleus, while \(Z_e \) is an effective atom ic charge, obtained by averaging the muon wavefunction over the nuclear density [62]. \(F_p \) is the nuclear matrix element and \(\text{capt} \) denotes the total muon capture rate. \(m_e \) is the muon mass, \(p_e \) and \(E_e \) is the momentum and energy of the electron. Since \(G_{V}^{(q)^p} = G_{V}^{(q)^{np}} = 3 \) and \(G_{S}^{(q)^p} = G_{S}^{(q)^{np}} = 11.9 \), the e conversion rate is proportional to \(Z_e^4 A^2 = Z \) with the atomic number \(A = Z + N \), which can distinguish unparticle from other theoretical models.

In Fig. 5, we display the predicted e conversion rates for Al, Ti, Sr, Sb, Au and Pb as a function of the scale dimension \(d_w \), in the case of vector coupling between unparticle and SM fermions. The values of the relevant parameters for these nuclei, \(Z_e \), \(F_p \) and \(\text{capt} \) have been collected in Table I [60]. Here the universal couplings between unparticle and SM fermions are assumed as we have done in e. We clearly see that the e conversion rates in nuclei \(\text{CR\left(e;\text{Nucleus}\right)} \) are sensitive to the scale dimension \(d_w \), and they decrease with \(d_w \) as well, which is obvious from Eq. (25) and Eq. (26), since \((m_e^2)^{d_w} \) dominates the \(d_w \) dependence in the plot range, and \(m_e^2 = \frac{2}{3} \) is a small quantity. Moreover, the present experimental bound on \(\text{CR\left(e;Ti\right)} \) and \(\text{CR\left(e;Au\right)} \) favor \(d_w \) near 2 for the input parameters in this plot. The same conclusion has been found from LFV radiative decay e.
FIG. 5: \(e \) conversion rates for various nuclei as a function of the scale dimension \(d_u \) for the vector coupling between unparticle and SM fermions. The horizontal lines denote the present experimental bounds for \(\text{CR}(\mu;\text{Ti}) \) and \(\text{CR}(e;\text{Au}) \). We have taken \(V = 0.001 \), \(u = 3 \) and \(U = 10 \text{TeV} \).

V. SUMMARY

Since LFV processes are sensitive probes to new physics beyond SM, we have explored the peculiar aspects of unparticle physics in \(e \) and \(\mu \) conversion in nuclei, where vector, axial vector, scalar, pseudoscalar couplings between unparticle and SM fermions are considered. The difference between the branching ratio \(\text{Br}(\mu;e) \) in the pure vector coupling case and that in the pure axial vector coupling case is small, the same is true for scalar coupling and pseudoscalar coupling. Only pure vector coupling and scalar coupling contribute to \(e \) conversion in nuclei, which is proportional to \(Z^4 e^2 A^2 = Z \), which can be used to distinguish unparticle from other theoretical models. Both \(\text{Br}(\mu;e) \) and \(\text{CR}(e;\text{Nuclei}) \) are sensitive to the scale dimension \(d_u \) and the unparticle coupling \(f_{K}^{\mu} (K = V, A, S, P) \), and

12
<table>
<thead>
<tr>
<th>(Z/e) Nucleus</th>
<th>(Z/e)</th>
<th>(F_p)</th>
<th>(\text{capt} (\text{G eV}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(_{28}^{63}\text{Al})</td>
<td>11.5</td>
<td>0.64</td>
<td>4.64079 (10^{19})</td>
</tr>
<tr>
<td>(_{22}^{48}\text{Ti})</td>
<td>17.6</td>
<td>0.54</td>
<td>1.70422 (10^{18})</td>
</tr>
<tr>
<td>(_{38}^{80}\text{Sr})</td>
<td>25.0</td>
<td>0.39</td>
<td>4.61842 (10^{18})</td>
</tr>
<tr>
<td>(_{51}^{121}\text{Sb})</td>
<td>29.0</td>
<td>0.32</td>
<td>6.71711 (10^{18})</td>
</tr>
<tr>
<td>(_{79}^{197}\text{Au})</td>
<td>33.5</td>
<td>0.16</td>
<td>8.59868 (10^{18})</td>
</tr>
<tr>
<td>(_{82}^{207}\text{Pb})</td>
<td>34.0</td>
<td>0.15</td>
<td>8.84868 (10^{18})</td>
</tr>
</tbody>
</table>

The present data on \(\text{Br}(\pi\gamma)\), \(\text{CR}(e;\text{Ti})\) and \(\text{CR}(e;\text{Au})\) put stringent constraints on the parameters of unparticle studies. The scale dimensions of the unparticle scale of \(10^{10} \text{GeV} \) and the unparticle coupling of \(10^{-3} \). The interactions between unparticle and SM fermions can also lead to LFV \(\pi\gamma e^+ e^- e^- \) and cross symmetry related processes such as \(e^+ e^- \pi\gamma e^+ e^- \), detailed analyses of these processes have been performed [11,14,18]. Future dedicated LFV measurements in the MEG experiment and J-PARC experiment PRISM/PRIME would provide important clues to understanding the nature of unparticle.

Unparticle associated with conformal hidden sector may exist, and it has very distinctive phenomenologies. Unparticle may weakly couple to the SM field so that we are able to explore the peculiar properties of unparticle. However, whether observable effects can be produced strongly depends on how weakly the unparticle interacts with ordinary matter. So far there is no principle to constraint and organize the interactions between the SM particles and unparticles, therefore there are many freedoms in the present phenomenological studies of unparticle. It would be enlightened and interesting to build an explicit model, where hidden sector with strict or broken scale invariance is realized and it connects to the SM fields via a connector sector. These issues lie outside the scope of the this work, and will be considered elsewhere [63].
ACKNOWLEDGEMENTS

We are grateful to Prof. Dao-Neng Gao for very helpful and stimulating discussions, to Tzu-Chiang Yuan for correspondence. This work is partially supported by National Natural Science Foundation of China under Grant Numbers 90403021, and K JCX2-SW -N10 of the Chinese Academy.