A note on the cyclic evolution of the pulsar magnetosphere

Ioannis Contopoulos

Research Center for Astronomy, A cademy of Athens, G r -11527 A then s, G reece
E -m ail: icontop@academyofathens.gr

Received / A ccepted

Abstract.
Positive and negative pulsar breaking indices suggest that some fraction of the pulsar spindown torque undergoes a cyclic evolution. The observed strong correlation of ‘ anomalous’ breaking indices with pulsar age implies that the characteristic periodicty tim escale is in the range 100 to 10,000 years depending on the fraction of the spindown torque that undergoes cyclic evolution, 1 to 100% respectively. We argue that the longest variability tim escale is consistent with a neutron star m agnetic cycle similar to the solar cycle.

Key words. Pulsars: general | stars: magnetic fields

1. Observational evidence

A pulsar spins down due to the torque on the neutron star crust generated by the electric current owing in its magnetosphere. In the sim plified picture of a steady-state axisymmetric force-free ReallM HD m agnetosphere, Contopoulos, Kazanas & Fendt 1999 (hereafter CKF) rst showed that the distribution of the m agnetospheric electric current I can be detem ed as an eigenva lue of the problem , if one makes the natural assum ption that the m agnetosphere is smooth and continuous on the ligh t cylinder (de ned as the distance rL = c/ω , where c is the pulsar angular velocity). The unique electric current distribution thus obtained yields a unique pulsar spindown torque, and thus a unique pulsar spindown rate ν. This is of the same order as the value obtained for simple electromagnet ic vacuum dipole radiation, namely

\[\nu = f \frac{B^2 r^4}{c^3 M^3} \]

(1)

Here, B, r, and M are the neutron star polar magnetic field, radius and mass respectively; and f is a numerical factor of order unity. It turns out that this result is also valid in the general non-axisymmetric case (Bogovalov 1998; Spitkovsky 2006; Contopoulos 2007a), and therefore, one may use Eq. (1) to obtain an estimate of the polar value of the neutron star m agnetic field from m easurement ets of ν.

Strictly speaking, however, the results of CKF and subsequent related works are only valid in steady-state. Thus, as the neutron star spins down and the light cylinder moves to larger and larger distances, one needs to take into account the evolution of the pulsar magnetosphere.

The rst thing one may assume is that the m agnetosphere evolves through a sequence of steady-state equilibria of the CKE type, i.e., that it manages to readjust itself so that at all times, the region of closed lines extends all the way to the light cylinder, and the last open magnetic eld line extends to in nite distances without reconnecting across the equator. In addition, one may assume that B does not evolve with pulsar age. Unfortunately, the situation is more complicated than that, since Eq. (1) yields a braking index value

\[n = 3 \]

(2)

and most known m easurement ets of ν differ from that value. In fact, there exist today 400 pulsars in the ATNF catalogue (Manchester et al. 2005) with measured values of n in the range from 10⁶ to 10⁰. Although all but six of these values are characterized in the literature as ‘ nominal’, one thing is certain: Eq. (2) cannot be right in general.

In Figure 1 we plot log h j (with h acc ording to whether n > 0 or n < 0 respectively) as a function of the characteristic spindown time ν = (2/ω) in years. One may argue (A lli Harding, personal communication) that in young pulsars (< 10⁶), braking index m easurement ets may be ‘corrupted’ by neutron star glitches. On the other hand, in older pulsars (> 10⁶) where glitches are not as in portant, one nds the correlation

\[\log h j = (\log 3) \]

(3)

On the other hand, in a P -diagram (P 2 = is the pulsar period) containing all the cases with observed values of ν, there is no obvious correlation between P and ν.
(Figure 2). In other words, the pulsars with measured values of \(n \) have been taken randomly from the total number of known pulsars without any obvious observational bias, and therefore, they represent pulsars at various stages of their evolution. Biskin, B. Bulyukov & Karpov (2006) argued that the symmetry of Figure 1 implies that some fraction of the pulsar angular velocity undergoes a cyclic evolution. We suggest that it is more constructive to consider a cyclic component in the evolution of the pulsar spin down torque (which is, after all, the source of the angular velocity evolution). Interestingly enough, as we will see next, the data also yields some information on the periodicity of the time scale.

There are several ways to reconcile eqs. (1) and (2): (A) Assume that the approximation of a sequence of CKF-type steady-state magnetic equilibrium holds, and that the neutron star magnetic field undergoes a cyclic evolution; (B) Relax the assumptions of the CKF analysis and assume a variable magnetic structure that would yield a cyclic evolution of the factor \(f \); (C) Relax the assumption of constant neutron star moment of inertia. Only (A) and (B) refer to the spin down torque itself. In any case,

\[
F = \frac{B^2 \rho^4}{C^4} \frac{3F(t)}{\text{cycle}},
\]

with \(f \), \(B \), \(\rho \), \(C \) characteristic values of the spin down parameters and the polar magnetic field \(B \) respectively, and

\[
F(t) = 1 - \frac{F}{\text{cycle}} \cos(2 \frac{t}{\text{cycle}} +)
\]

characterizing the cyclic variation of either \(f \) or \(B \). Here, cycle is the characteristic period of the cyclic spin down evolution in years; \(\frac{F}{\text{cycle}} \) is the fraction of the spin down torque that varies periodically (0 \%); and \(\frac{F}{\text{cycle}} \) is a random initial (at pulsar birth) phase angle. Note that, in order for the star to continuously spin down we must have \(F = 0 \) at all times. Therefore,

\[
n = 3 + \frac{F}{\text{cycle}}.
\]

For old pulsars with \(\frac{F}{\text{cycle}} \), Eq. (2) can equivalently be written as

\[
\log j = \log \frac{F}{\text{cycle}} - 1 + \log (2 +)
\]

Comparing eqs. (2) and (3), one obtains the following approximate relation between the characteristic period and the fraction of the pulsar spin down which varies in a cyclic way:

\[
\log \frac{F}{\text{cycle}} = 4 + \log (2 +)
\]

We plot in Figure 3 what Eq. (2) yields for the 400 pulsars with measured values of \(n \), assuming \(n = 100 \% \). Note that the \(t \) is independent of \(f \) and \(B \). As Biskin, B. Bulyukov & Karpov (2006) suggested, the minimum characteristic period cannot be smaller than the pulsar observation period of 40 years, and this together with Eq. (2) yields a range \(\frac{F}{\text{cycle}} < 10; 000 \) for 1 \% and \(\frac{F}{\text{cycle}} < 10, 000 \) for 100 \% respectively.

2. Cyclic magnetic evolution

Several physical models that address the issue of cyclic variation of the pulsar spin down have been proposed in the literature, ranging from neutron star interior (wobbling) on a time scale of a few years (e.g., Kudrn 1988), to magnetic field evolution (e.g., Contopoulos 2005). In the present work, we would like to focus on the simplest (one-paramater) of the anomalous braking index data, namely the one with cycle 10; 000 years.

F(t) becoming zero periodically is not compatible with a cyclic evolution of the neutron star moment of inertia (case C above). On the other hand such a scenario is compatible with a cyclic evolution of the neutron star magnetic field similar to the solar cycle (case A above). Interestingly enough, the ten thousand year time scale that we obtain is compatible with the neutron star cooling time scale (e.g., Brandford, Appling & Hemquist 1983).

It is conceivable that some sort of dynamo mechanism in the neutron star interior, may support a cyclic evolution with

\[
B = B_0 \sin(2 \frac{t}{5000 \text{ years}} +)
\]

(Eqs. (1), (2)). Note that this scenario does not require magnetic field decay at least over time scales shorter than about \(10^{11} \) years, in agreement with the analysis of the \(P \)- \(B \)-diagram presented in Contopoulos & Spitkovsky (2006).

We also tried to seek variants of the CKF solution (case B above) that would yield values of \(f \) very different from unity. In fact, what we need is a physical mechanism that will periodically turn on the neutron star magnetic field.

In a series of papers (Contopoulos 2007b, c), we relaxed the assumption of ideal MHD in the equatorial region of the pulsar magnetic field. This is the region where the magnetic reconnection occurs, and several authors before us suggested that this may be the region of electromagnetically invariant plasma. (e.g., Coroniti 1990; M. Ichihara 1994; Lyubarsksky & K. 2001; K. & Skj Raasen 2003; Romano, Chulsky & Lovelace 2005). As we argued in Contopoulos 2007c, one cannot study equatorial reconnection without taking into account the global topology of the poloidal magnetic field. The details of equatorial reconnection remain (yet) unknown. However, it is easy to realize that, when equatorial reconnection is present, magnetic fields lines that cross the light cylinder and would have extended to infinity in CKF, now continuously reconnect across the equator.

As a result, the equatorial condition for the magnetic field function \(r(z) \) (de ned as the magnetic field crossing a circle of cylindrical radius \(r \) at height \(z \) around the axis of rotation) di ers from that in CKF. In particular,

\[
(r > r_1; z = 0) \quad \text{is not constant but decreases with distance.}
\]

We assume for simplicity that

\[
(r > r_1; z = 0) = (r = r_1; z = 0) \quad \text{for all } (r > r_1).
\]
where, \(\gamma \) is a parameter that characterizes the effect of dissipation (\(\gamma = 0 \) corresponds to the ideal MHD case studied in CKF), whereas \(\gamma = 1 \) corresponds to a magnetic field with maximum equatorial dissipation. Equation (10) is a new (to our knowledge) equatorial boundary condition beyond the light cylinder, and one may thus implement the same procedure as described in CKF to solve the pulsar equation (Scharlemann & Wagner 1973), and thus obtain the magnetic structure and electric current distribution \(I(\gamma) \) for various values of \(0 < \gamma < 1 \), as seen in Figures 4-6. For each such electric current distribution the total electromagnetic spindown torque acting on the neutron-star crust is proportional to the integral

\[I(\gamma) \] (e.g. Michel 1991). Note that when \(\gamma = 0 \) (Fig. 5) there is no equatorial return current sheet (the return current is distributed along the magnetic field lines that cross the light cylinder), whereas when \(\gamma = 1 \) (Fig. 6) \(I(\gamma) = 0 \), i.e., the total neutron-star spindown torque is close to zero. In Figure 7 we plot the value of the spindown torque parameter \(f \) as a function of our dissipation parameter \(\gamma \). One sees that, as we introduce more and more dissipation in the equatorial region, the magnetic structure evolves to a con guration with less and less electromagnetic torque acting on the central neutron star. Obviously, a cyclic evolution of the physical mechanism that allows or inhibits equatorial dissipation in the pulsar magnetic field (e.g., variability in the supply of charge carriers from the neutron star surface that may be due to a periodic stellar wind) would yield a cyclic evolution of the magnetic field structure. Unfortunately, magnetic solutions for \(0 < \gamma < 1 \) (e.g., or equivalently \(\gamma = 0.5 \)) contain regions with \(I(\gamma) < 0 \), where electromagnetic energy is being dissipated from the magnetic field onto the star, and therefore, such solutions are probably unphysical.

We conclude that a cyclic component in the evolution of the magnetic field structure may account for the measured large positive and negative anomalous braking index values. If we are willing to consider a 100% cyclic evolution, this can only be due to a neutron star magnetic cycle similar to the solar cycle. In that case, the evolution timescale would be on the order of 10,000 years.

Acknowledgments. We would like to thank Alice Harding and Demos Kazanas for their hospitality at the NASA Goddard Space Flight Center in January and June 2007 where some of the ideas in the present work originated. We would also like to thank Pr. Wolfgang Kudrn for an honest exchange of ideas.

References

Kundt, W. 1988, Com. Ap. 12, 113

Spitkovsky, A. 2006, 448, 51

Fig. 1. Braking index as a function of characteristic spin-down time. We plot here \(\log j_j \) according to whether \(n > 0 \) or \(n < 0 \) vs. \(\log \tau \), where \(\tau = 2 \) in years. Note that \(j_j > 1 \) everywhere. At large \(\tau > 10^6 \), the diagram may be fitted by the simple linear relation \(\log j_j \) (log 3).

Fig. 2. \(\Psi \)-diagram for the 400 pulsars with measured braking index values shown in Figure 1. Here, \(P, \Psi \) are the pulsar period and period derivative respectively. The distribution is that of a standard sparse \(P, \Psi \)-diagram without any obvious observational bias.

Fig. 3. Fit of the distribution shown in Figure 1 assuming a 100% cyclic evolution of the pulsar spin-down torque (Eqs. 4 & 5). The fit is acceptable, even for young pulsars (\(10^6 \) years) where some of the distribution in the measurements of \(n \) is due to neutron star glitches.

Fig. 4. On the left, we plot the magnetic field structure in the case of no magnetospheric reconnection (CKF). Distances are normalized to the light cylinder distance \(r_L \). On the right, we plot the corresponding electric current distribution \(I = I(\Psi) \) along the field lines that cross the light cylinder. The magnetic flux is normalized to the canonical value \(\Phi = 4 \pi r_L^3 \). The electric current is normalized to the canonical value \(I_0 = \Phi / 4 \pi r_L^3 \). For comparison, we plot also (dashed line) the electric current distribution of a relativistic magnetic monopole using the same amount of magnetic flux crossing the light cylinder (Michel, 1991).
Fig. 5. Same as Fig. 4 with some amount of equatorial magnetospheric reconnection that corresponds to \(\sigma = 0 \) (Eq. 11).

Fig. 6. Same as Fig. 4 with maximum equatorial magnetospheric reconnection that corresponds to \(\sigma = 1 \).

Fig. 7. The spindown torque parameter \(f \) (Eq. 1) as a function of the dissipation parameter \(\zeta \). In the absence of reconnection \((\sigma = 0), f = 0.6 \) (CKF).