Evidence for a \(J=0\) \(p\bar{p}\) Pauli Strong C Coupling?

T. Barnes\(^{2}\), X. Li\(^{1}\), and W. Roberts\(^{1}\)

\(^{1}\)Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6373, USA
\(^{2}\)Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996-1200, USA
\(^{3}\)Department of Physics and Astronomy, Florida State University, Tallahassee, FL 32306-4350, USA

(Dated: April 13, 2013)

The couplings of charm onium and charmonium hybrids (generically \(J=0\)) to \(p\bar{p}\) are of great interest in view of future plans to study these states using an antiproton storage ring at GSI. These low to moderate energy \(p\bar{p}\) couplings are not well understood theoretically, and currently must be determined from experiment. In this letter we note that the two independent Dirac (\(D\)) and Pauli (\(P\)) \(p\bar{p}\) couplings of the \(J=0\) and \(J=1\) can be constrained by the angular distribution of an \(e^+e^-\) annihilations. A comparison of our theoretical results to recent unpolarized data allows estimates of the \(p\bar{p}\) couplings in the better determined \(J=0\) case. The data is consistent with a pure Dirac (\(D\)) coupling, and can be explained by the presence of a term. This Pauli coupling may signify a new state of the vector meson. The mass and widths of the states \(J=0\) and \(J=1\) to \(p\bar{p}\), assuming that the simplest Dirac couplings were dominant. These \(p\bar{p}\) couplings were then used in a PCAC-like model to give numerical predictions for several associated charm onium production cross sections of the type \(J=0\).

\(J^{PC} = 1^{++}\)

Unfortunately these low to moderate energy production reactions involve obscure and presumably rather complicated QCD processes, so for the present they are best inferred from experiment. In Ref.\(^1\) we carried out this exercise by using the measured \(p\bar{p}\) partial widths to estimate the coupling constants of the \(J=0\) and \(J=1\) to \(p\bar{p}\), assuming that the simplest Dirac couplings were dominant. These \(p\bar{p}\) couplings were then used in a PCAC-like model to give numerical predictions for several associated charm onium production cross sections of the type \(pp\).

In this paper we generalize these results for the \(J=0\) and \(J=1\) by relaxing the assumption of local invariance of the \(p\bar{p}\) vertex. We assume \(e^-e^+\) annihilations with both Dirac (\(D\)) and Pauli (\(P\)) couplings, and derive the differential and total cross sections for \(e^-e^+\) annihilations. Both unpolarized and polarized processes are treated.

A comparison of our theoretical unpolarized angular distributions to recent experimental \(J=0\) results allows estimates of both the Dirac and Pauli \(p\bar{p}\) couplings. There is a phase ambiguity that precludes a precise determination of the (com plex) ratio of the Pauli and Dirac \(p\bar{p}\) couplings from the unpolarized data; we shall see that an approximate interference effect between the Pauli and Dirac terms leads to a strong dependence of the unpolarized \(p\bar{p}\) \(J=0\) cross section near threshold on the currently unknown phase between these terms.

Determining these couplings is evidently quite important for PANDA, and can be accomplished through stud-
lies of the polarized process $e^+ e^-! pp$. The
angular distribution of the unpolarized, self-analysing
process $e^+ e^-! J= 1$ may also provide comple-
tent information regarding the closely related $J= 0$ vertex. Both of these processes should be accessible at
the upgraded BES-III facility.

II. UNPOLARIZED CROSS SECTION

The Feynman diagram used to model this process is
shown in Fig. 1. We assume a vertex for the coupling of a
genetic vector charmonium state to pp of the form

$$\langle pp\rangle = g + \frac{i}{2m} q : (1)$$

In this paper m and M are the proton and charmonium
mass, is the charmonium total width, and we assume e
massless initial leptons. Following DLS conventions, q
is the four momentum transfer from the nucleus to the
electron; thus in our reaction $e^+ e^-! pp$ in the cm. frame, we have $q = \left(\frac{S}{S}, 0 \right)$. The couplings g and λ
are actually m on entanglement factors, but since we
only access them very close to the kinematic point
$q^2 = M^2$ in the reactions $e^+ e^-! (J= 1, 0)! pp$, we
will treat them as constants.

![Feynman diagram](image)

FIG. 1: The Feynman diagram assumed in this model of the
genetic reaction $e^+ e^-! pp$.

The unpolarized differential and total cross sections for
$e^+ e^-! pp$ may be expressed succinctly in terms of
the strong pp Sachs form factors $G_E = g(1 + s = 4m^2)$
and $G_M = g(1 + s = 4m^2)$. Both G_E and G_M
are complex above pp threshold, in part because phases are induced by pp
rescattering. If we assume that the lowest-order Feyn-
man diagram of Fig. 1 is dominant, the phase of g itself
is irrelevant, so here we take g to be real and positive.
However, there is a nontrivial phase. We express this by intro-
ducing a Sachs form factor ratio, with magnitude
0 and phase

$$G_E = G_M : e^i \quad : (2)$$

The corresponding relation between the Pauli coupling constant and this Sachs form factor ratio is

$$j = j^i = \frac{e^i}{(M^2 = 4m^2)} \quad (3)$$

where we have assumed that we are on a narrow
resonance, so we can replace s by M^2.

We will first consider the unpolarized process $e^+ e^-!
pp$, and establish what the differential and total cross sections imply regarding the pp vertex. The unpolarized
total cross section predicted by Fig. 1 is

$$h i = \frac{4}{3f^2} \frac{M^4}{s^2} \left(\frac{1}{(1 + 4m^2 - s)^{1/2}} \right) \frac{(2m^2 f_E f + s f_M f)}{2M^2 f}; (4)$$

(We use angle brackets to denote a polarization averaged
quantity.) Exactly on resonance (at $s = M^2$) this can be
expressed in terms of the partial widths

$$\frac{1}{e^+ e^-} = \frac{4}{3f^2} \frac{M}{s} \quad (5)$$

and

$$\frac{1}{pp} = \frac{1}{12} \frac{4m^2 - M^2}{2m^2} \left(\frac{2m^2 f_E f + s f_M f}{2M^2 f} \right); (6)$$

which gives the familiar result

$$h i = \frac{1}{2} \frac{12}{M^2} B e^+ e^- B_{pp}; (7)$$

Here $B_{e^+ e^-}$ and B_{pp} are the $e^+ e^-! pp$
branching fractions.

Since the (unpolarized) pp width and total cross section
on resonance involve only the single linear combination
$(2m^2 f_E f + M^2 f_M f)$, separating these two strong
form factors requires additional information, such as the
angular distribution. The unpolarized $e^+ e^-! pp$
differential cross section in the cm. frame is given by

$$\frac{d}{ds} = \frac{2}{4f^2} \frac{M^4}{s^2} \left(\frac{2m^2 = 4M^2}{s^2} \right) \frac{(1 + 4m^2 - s)^{1/2}}{2M^2 f}\quad (8)$$

where $= \cos(\theta)$. This angular distribution is often
expressed as $1 + \frac{3}{2},$ where

$$= \frac{1}{1 + 3m^2} \quad (2)$$

Inspection of Eqs. (3) shows that one can determine the
magnitude $G_E = G_M$ of the Sachs form factor ratio from
the unpolarized differential cross section, but that the
phase $G_E = G_M$ is unconstrained.

The undetermined phase implies an unavoidable ambiguity in
terms of the magnitude and phase of the D-meson and Paull pp couplings g and from the unpolarized $e^+ e^-! (J= 1, 0)! pp$
angular distribution. We will discuss this ambiguity in the next section.
III. COMPARISON WITH EXPERIMENT

A. Summary of the data

Experimental values of have been reported by several collaborations. The results for the \(J^p \) = 8

\[
\begin{array}{ccc}
1.45 & 0.56; & \text{MarkI} \\
1.77 & 1.7; & \text{DASP} \\
0.51 & 0.23; & \text{MarkII} \\
0.56 & 0.14; & \text{MarkIII} \\
0.52 & 0.21; & \text{DM2} \\
0.576 & 0.036 & 0.042; \text{BES} \\
\end{array}
\]

and for the \(J^p = 0 \)

\[
\begin{array}{ccc}
0.67 & 0.15 & 0.04; \text{E835} \\
0.85 & 0.24 & 0.04; \text{BES} \\
\end{array}
\]

For our comparison with experiment we use the statistically most accurate measurement for each charmonium state, and combine the errors in quadrature. This gives experimental estimates of 0.576 ± 0.055 and 0.57 ± 0.055 for the \(J^p = 8 \) and \(J^p = 0 \) respectively.

B. Testing the pure Dirac hypothesis

We first examine these experimental numbers using the \"null hypothesis\" of no Pauli term, \(J^p = 0 \), in which case \(r = 1 + r \), where \(r = 4m^2/M^2 \). This \(J^p = 0 \) formula was previously given by Ljadov, Geshaw and Wiese \(\text{[13]} \) and by Carlin and \(\text{[14]} \); the value of under various theoretical assumptions has been discussed by these references and by Boddy and LePage \(\text{[15]} \), who predicted \(r = 1 \). Fig. 2 shows these two experimental values together with the pure Dirac () formula for \(J^p = 8 \). The \(J^p = 0 \) case is evidently consistent with a pure Dirac () pp coupling at present accuracy, but the better determined \(J^p = 8 \) angular distribution is inconsistent with a pure Dirac \(J^p = 0 \) coupling at the \(4 \) level.

The discrepancy evident in Fig. 2 may imply the presence of a Pauli term (\(J^p = 0 \)) in the \(J^p = 8 \) vertex. Inspection of our result for in the general case (Eq. 9) shows that one can certainly accommodate this discrepancy by introducing a Pauli term.

C. Determining \(f_{\text{E}} = G_M J \)

The dependence of the predicted on at the \(J^p = 8 \) mass (from Eq. 8) is shown in Fig. 3. The experimental value is 0.576 ± 0.055 (shown) is consistent with the Sachs form factor magnitude ratio of

\[
f_{\text{E}} = G_M J = 0.726 \pm 0.074 \quad (12)
\]

In terms of and this completes our discussion: Given the unpolarized \(e^+e^\) pp angular distribution, one obtains a result for \(f_{\text{E}} = G_M J \) from Eq. 8, but the phase of \(G_E = G_M \) is undetermined. However, we may ask the more fundamental question of what values of the Dirac and Pauli coupling constants \(g \) and \(\alpha \) in Eq. 14 are consistent with a given experimental unpolarized angular distribution.

D. Determining

First, we consider the experimentally allowed values of \(\alpha \). The unpolarized angular distribution provides us with a range of values of (Eq. 14), but is unconstrained; we may combine this information through Eq. 8 to determine the locus of allowed (complex) values of \(\alpha \). This is shown in Fig. 4.
For $J = 0$, Eq. (4) implies that the real part is real and negative, and takes on the smallest allowed magnitude. As we increase from 0, the allowed values proceed clockwise, since initially they acquire a negative imaginary part. The extremal values of the real axis in Fig. 4 are for $n = 0$, and are

$$
\kappa = 0.37, \quad 0.32; \quad 0.50, \quad 0.11;
$$

(13)

E. Determining g

Next we consider the determination of the overall $J = 1$ pp vertex strength g. Since the differential and total cross sections for $e^- e^+$ is $J = 1$ pp only involve g through the ratio $g = f$, we must introduce additional experimental data to constrain g. The partial width for $J = 1$ pp is especially convenient in this regard, since it only involves the strong $J = 1$ pp vertex, and thus depends only on g and (and kinematic factors). This partial width was given in terms of the strong Sachs form factors in Eq. (1) as a function of g and r is

$$
\Gamma_{pp} = \frac{1}{3} g^2 \frac{M}{P} \left(1 + \frac{r}{2} + 3r(x + 1 + \frac{r}{2r} j \phi) \right);
$$

(14)

This generalizes the $J = 0$ result given in Eq. (27) of Ref. [3] to a nonzero Pauli coupling. Using the PDG values [14] of $J = 934$, 21 keV and $B_{J = 1}^{pp} = (2.17 \pm 0.27) \times 10^7$, Eq. (14) in Fig. 6 implies a range of values of the overall vertex strength g for each value of the (unknown) phase. This is shown in Fig. 5. There is a range of uncertainty in g at each (not shown in the figure), due to the experimental errors in $J = 1, B_{J = 1}^{pp}$ and r, which is at most 5%.

Note that g is bounded by the limits at 0, for which $g < 2 \times 10^7$ and 3×10^7, respectively. The allowed values of g are somewhat larger than our previous estimate of $g = (1.52 \pm 0.31) \times 10^7$ assuming only a Dirac $J = 1$ pp coupling, as a result of destructive interference between the Pauli and Dirac terms.

IV. EFFECT ON $(pp \ J = 0)$

The effect of a $J = 1$ pp Pauli term on the $pp \ J = 0$ cross section may be of considerable interest for the PANDA project, since one might use this as a calibration reaction for associated charm production, and the Pauli term may be numerically important. Although we have carried out this calculation with the vertex of Eq. (4) for general m, in practice, the full result is rather complicated; here for illustration we discuss the much simpler massless pion limit.

For a massless pion the ratio of the unpolarized cross section $h^{pp \ J = 0}$ with a Pauli term to the pure Dirac result (only, denoted by D) is

![Figure 5: The value of the overall $J = 1$ pp vertex strength g implied by the experimental $J = 1$ pp and $J = 0$ pp and as a function of the unknown $J = 1$ pp Sachs phase.](image5)

![Figure 6: The dependence of the unpolarized, near-threshold cross section $h^{pp \ J = 0}$ on the (complex) Pauli coupling $-j \phi$ (from Eq. (15)).](image6)

![Figure 4: The locus of complex $(the J = 1$ pp Pauli coupling) allowed by the experimental constraint $\kappa = 0.726 \pm 0.74$, taken from the unpolarized differential cross section for $e^- e^+$.](image4)
and phase directions. For example, for our reaction angular asymmetries that arise when the polarizations of particles are aligned or anti-aligned along particular directions. For example, for our reaction \(e^+e^- \rightarrow \bar{p}p\), the difference of two angular distributions, \(d \neq 1_j\), \(d = 1_j\) \(d \neq 1_j\). Here we will use \(x\) and \(y\) for the two transverse axes and \(z\) for the longitudinal axis (see Fig. 7). \(x\) and \(z\) vary with the particle, and \(y\) is chosen to be common to all. An entry of 0 signifies an unpolarized particle. Since there are four possible arugments for each particle, \(0; x; y; z\), there are \(4^2 = 256\) polarization observables for this process. Of course there is considerable redundancy, since they are all determined by the 16 helicity amplitudes. The constraints of parity and charge conjugation reduce this set to 6 independent helicity amplitudes, and for massless leptons (as we assume here) this is further reduced to 3 independent nonzero helicity amplitudes.

We introduce the normalized polarization observables

\[
\langle \; e^+i \; e^- \; p^+ \; p^- \; / \; Q \; (0; 0; 0; 0) \; \rangle,
\]

where \(Q \langle 0; 0; 0; 0 \rangle\) is the unpolarized differential cross section. The (nonzero) polarization observables for this process satisfy the relations

\[
(a) \quad Q_{0000} = Q_{xyxy} = Q_{yxyy} = Q_{zz00} = 1;
(b) \quad Q_{00y0} = Q_{xx0y} = Q_{yy0y} = Q_{zz0y} = Q_{00yy} = Q_{00y0} = Q_{zy0y} = Q_{zy0y};
(c) \quad Q_{xx00} = Q_{yy00} = Q_{00y0} = Q_{00yy} = Q_{xyxy};
(d) \quad Q_{zzx0} = Q_{z0zx} = Q_{yzxy} = Q_{yxzy} = Q_{0zx0} = Q_{0z0x} = Q_{xyyz} = Q_{xyyz};
(e) \quad Q_{zz0o} = Q_{z00z} = Q_{xyyx} = Q_{yxxy} = Q_{0zz0} = Q_{z00z} = Q_{xyxx} = Q_{xyxx};
(f) \quad Q_{xxxx} = Q_{yyyy} = Q_{zzzz} = Q_{00zz};
(g) \quad Q_{00xx} = Q_{zzxx} = Q_{xxzz} = Q_{yyzz};
(h) \quad Q_{00zx} = Q_{zzxz} = Q_{xxzx} = Q_{yyzx} = Q_{zzxx} = Q_{xyxz} = Q_{zyxz} = Q_{00zx};
(i) \quad Q_{xx00} = Q_{xy00} = Q_{z0yz} = Q_{z0zy} = Q_{xy00} = Q_{zy00} = Q_{pz0z} = Q_{0z0y} = Q_{0z0y}; \quad (16)
\]

Explicit expressions for these observables are given in Table 8.

The results in Table 8 suggest how we may determine experimentally. Inspection of the table shows that only four of the independent polarization observables depend
TABLE I: Nonzero inequivalent polarization observables in e'e ! J= ! pp. The function F is \(2(1 + 1^2)\sin^2\).

<table>
<thead>
<tr>
<th>Pol Observable</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Q_{0000})</td>
<td>1</td>
</tr>
<tr>
<td>(Q_{00y0})</td>
<td>(4 \sin \sin \cos \neq F)</td>
</tr>
<tr>
<td>(Q_{xx00})</td>
<td>(2(1 + 1^2)\sin^2\neq F)</td>
</tr>
<tr>
<td>(Q_{00x0})</td>
<td>(4 \cos \sin \neq F)</td>
</tr>
<tr>
<td>(Q_{000x})</td>
<td>(4 \cos \sin \neq F)</td>
</tr>
<tr>
<td>(Q_{xyx0})</td>
<td>(4 \sin \sin \neq F)</td>
</tr>
<tr>
<td>(Q_{xxxx})</td>
<td>(2(1 + 1^2)\sin^2 - F)</td>
</tr>
<tr>
<td>(Q_{zzxx})</td>
<td>(F - F)</td>
</tr>
</tbody>
</table>

\(Q\) would suggest plausible \(J= pp\) couplings. This approach has some experimental advantages; the and are self-analyzing, no recoupling of the charmed baryons is required to determine their polarization. In addition no beam polarization is required, since it is observed. If three particles are polarized, one may also measure these the (odd-) polarization observables \(Q_{00y0}\) and \(Q_{00x0}\). One may also measure these even- observables \(Q_{00xx}\) and \(Q_{00zx}\) as a cross-check of the results.

Finally, we note in passing that it may also be possible to measure the appropriate polarization observables in the time-reversed reaction \(pp! J= ! e'e\).

VI. SUMMARY AND CONCLUSIONS

The unpolarized angular distribution for the process e'e ! J= ! pp is measured recently by the BES Collaboration, is inconsistent with theoretical expectations for a pure Dirac \(J= pp\) coupling. In this paper we have derived the \(e^e\) of an additional Pauli-type \(J= pp\) coupling, and it is clear that this can accommodate the observed angular distribution. The \(J= pp\) Pauli coupling may significantly a \(e^e\) the cross section for the charm production reaction \(pp! J= pp\); we noted that this ambiguity can be fully resolved through measurements of the polarized reaction. The most attractive polarized process to study initially appears to be the case of unpolarized initial e'e beam, with only the nalp (transversely) polarized. In this approach, the required polarization observable may also be possible using the time-reversed reaction \(pp! J= ! e'e\). It may also be possible to use self-analyzing processes such as e'e ! J= ! to estimate the Dirac and Pauli couplings in the closely related J= vertex.

VII. ACKNOWLEDGEMENTS

We are happy to acknowledge useful communications with W M Bugg, V Ciancolo, F E Close, C Deen, J M Richal, K Seth, S Spanier, E E Swanson, U W Jezner, E Y Wong and Q Zhao regarding this research. We also gratefully acknowledge the support of the Institute of High Energy Physics (Beijing) of the Chinese Academy of Sciences, the Department of Physics and Astronomy at the University of Tennessee, and the Department of Physics, the College of Arts and Sciences, and the Office of Research at Florida State University. This research was supported in part by the U.S. Department of Energy under contract DE-AC05-000 R.22725 at Oak Ridge National Laboratory.