Parametrizing the lepton mixing matrix in terms of deviations from the tri-bimaximal mixing

S.F. King

School of Physics and Astronomy, University of Southampton, Southampton, SO 17 1BJ, U.K.

Abstract

We propose a parametrization of the lepton mixing matrix in terms of an expansion in powers of the deviations of the reactor, solar and atmospheric mixing angles from their tri-bimaximal values. We show that unitarity triangles and neutrino oscillation formulae have a very compact form when expressed in this parametrization, resulting in considerable simplifications when dealing with neutrino phenomenology. The parametrization, which is completely general, should help to establish possible relations between the deviations of the reactor, solar and atmospheric mixing angles from their tri-bimaximal values, and hence enable models which predict such relations to be more directly compared to experiment.

1E-mail: sfk@hep.phys.soton.ac.uk
Over the last decade neutrino physics has undergone a revolution with the measurement of neutrino mass and lepton mixing from a variety of solar, atmospheric and terrestrial neutrino oscillation experiments [1]. Lepton mixing is described by the 3

\[
U = \begin{pmatrix}
0 & U_{e1} & U_{e2} & U_{e3} \\
1 & U_1 & U_2 & U_3 \end{pmatrix} \quad (1)
\]

The Particle Data Group (PDG) parametrization of the lepton mixing matrix (see e.g. [2]) is:

\[
U = \begin{pmatrix}
0 & c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{i\alpha} \\
s_{12}c_{13} & c_{12}c_{23} & s_{23}c_{12} & s_{23}c_{13} \end{pmatrix} \quad (2)
\]

where \(s_{13} = \sin 13, c_{13} = \cos 13\) with 13 being the reactor angle, \(s_{12} = \sin 12, c_{12} = \cos 12\) with 12 being the solar angle, \(s_{23} = \sin 23, c_{23} = \cos 23\) with 23 being the atmospheric angle, \(i\) is the (Dirac) CP violating phase which is in principle measurable in neutrino oscillation experiments, and \(P = \text{diag}(e^{2i\phi_1}, e^{2i\phi_2}, 0)\) contains additional (Majorana) CP violating phases \(\phi_1, \phi_2\). Current data is consistent with the tri-bimaximal mixing (TBM) form [4]

\[
U = \begin{pmatrix}
0 & q_3 & q_2 & 1 \\
q_1 & 1 & 0 & 0 \\
q_4 & 0 & 1 & 0 \\
q_5 & 0 & 0 & 1 \end{pmatrix} \quad (3)
\]

Many models can account for TBM lepton mixing [5,6,7,8,9,10,11]. However there is no convincing reason for TBM to be exact, and in the future deviations from it are expected to be observed. With this in mind it is clearly useful to develop a parametrization of the lepton mixing matrix in which such deviations are manifest, and in which the predictions of models for deviations from tri-bimaximal mixing can naturally be expressed. Such a parametrization must be model independent, and completely general so that it can be used by experimentalists and phenomenologists in performing analyses of neutrino experiments. It must also be sufficiently simple to be useful and yet accurate enough to be reliable.

In this paper we discuss a parametrization of the lepton mixing matrix which possesses all of the above desirable features. The parametrization exploits the empirical observed closeness of lepton mixing to the TBM form, and is analogous to the Wolfenstein parametrization of quark mixing [12]. Just as the Wolfenstein parametrization is an

\(^{1}\)Some time an alternative phase convention is chosen in which the third row of \(U_{MNS}\) has its signs reversed.
expansion about the unit matrix, so the present parametrization is an expansion about the tri-bimaximal matrix. Unlike the Wolfenstein parametrization, we introduce three small parameters parametrizing the deviations of the reactor, solar and atmospheric angles from their tri-bimaximal values. The expansion works since all three parameters are empirically small, having magnitude of order the Wolfenstein parameter \(0.227\) or less. A related proposal to expand the lepton mixing matrix elements about the tri-bimaximal matrix elements, using a different parametrization from that introduced here, was discussed in [13]. Other related proposals to parametrize the lepton mixing matrix have been considered in [14,15,17,18].

Without loss of generality we define

\[

e_{13} = \frac{r}{2}; \quad e_{12} = \frac{1}{3}(1 + s); \quad e_{23} = \frac{1}{2}(1 + a);
\]

where we have introduced the three real parameters \(r; s; a\) to describe the deviations of the reactor, solar and atmospheric angles from their tri-bimaximal values. Global tests of the conventional mixing angles [19] can be translated into the 2 ranges

\[
0 < r < 0.22; \quad 0.11 < s < 0.04; \quad 0.12 < a < 0.13;
\]

The empirical smallness of these parameters suggests that we consider an expansion of the lepton mixing matrix in powers of \(r; s; a\) about the tri-bimaximal form. To first order in \(r; s; a\) the lepton mixing matrix can be written

\[
\begin{align*}
U & \approx \begin{pmatrix}
\frac{1}{2}(1 + s) & \frac{1}{3}(1 + s) & \frac{1}{2}re^i \\
\frac{1}{3}(1 + s + a + re^i) & \frac{1}{3}(1 + s + a + re^i) & \frac{1}{2}(1 + a)
\end{pmatrix}.
\end{align*}
\]

As in the Wolfenstein parametrization, the above parametrization of the lepton mixing matrix avoids the introduction of mixing angles, instead dealing directly with elements of the mixing matrix. Accordingly the parametrization results in considerable simplifications when dealing with neutrino phenomenology. For example, the complex elements of the quark mixing matrix can be visualized using unitarity triangles [20], which, when normalized, only depend on two parameters. The same proves to be true when using the above parametrization of the lepton mixing matrix. The sides of the unitarity triangles enter into the neutrino oscillation form ulae, and consequently these are also considerably

2 I am grateful to S. Parke, Z. Z. Zhang and P. Harrison for informing me about their work [14,15,17].

3 Note that \(r\) must be positive definite, while \(s; a\) can take either sign. Indeed there is a preference for \(s\) to be negative.

4 The second order corrections are expected to be very small, of order one percent or less, depending on the (presently constrained but undetermined) values of \(r; s; a\). Throughout the main text where results are presented to first order in \(r; s; a\), the second order corrections are given in Appendix A.
Figure 1: The $2:3$ unitarity triangle. The angle is equal to the CP phase to first order. The unknown Majorana phases just rotate the triangle in the complex plane. The rescaled triangle is oriented as shown with the opening angles unchanged, the horizontal side having unit length, and the shortest side having length r to first order. Currently $0 < r < 0.22$ at two, and the opening angles, and are all undetermined.

simplified by the new parametrization. In the remainder of the paper we shall discuss unitarity triangles and neutrino oscillation form factors using the above parametrization.

CP violation is described by the Jarlskog [21] invariant which to leading order is

$$J \frac{r}{6} \sin \alpha.$$ \hspace{1cm} (7)

Leptonic unitarity triangles [22] may be constructed using the orthogonality of different pairs of columns or rows of the mixing matrix. Only the opening angles, side lengths and areas of the triangles have physical significance. For example, the area of each unitarity triangle is $A = \frac{1}{2} |det J|$ and CP violation implies that the longest side of each unitarity triangle is smaller than the sum of the other two. Current solar, reactor and atmospheric experiments directly constrain the elements U_{e2}, U_{e3} and $U_{\mu3}$, which have a particularly simple parametrization in Eq(6). The most important unitarity triangles should therefore include all of the elements U_{e2}, U_{e3} and $U_{\mu3}$. There are two such unitarity triangles, the $2:3$ one [16] corresponding to the orthogonality of the second and third column, and the $\mu:3$ one [23] corresponding to the orthogonality of the first and second row. Each of them has a simple expression in terms of the new parametrization, as we now discuss.

The $2:3$ triangle in Fig[1] corresponds to the unitarity relation

$$U_{e2}U_{e3} + U_{2 \mu3} + U_{2 \mu3} = 0;$$ \hspace{1cm} (8)

To first order the sides of this unitarity triangle are given by

$$S_1 = U_{e2}U_{e3} \frac{1}{6} \frac{r}{6} e^{i \phi};$$
$$S_2 = U_{2 \mu3} \frac{1}{2} \left(1 + \frac{s}{2} + \frac{r}{2} e^{i \phi}\right);$$
$$S_3 = U_{2 \mu3} \frac{1}{6} \left(1 + \frac{s}{2} + \frac{r}{2} e^{i \phi}\right);$$ \hspace{1cm} (9)
Figure 2: The unitarity triangle. The angle α is equal to the CP phase to first order. The unknown Majorana phases cancel. The rescaled triangle is oriented as shown with the opening angles unchanged, the horizontal side having unit length, and the shortest side having length $\frac{1}{2} r$ to first order. Currently $0 < r < 0.22$ at 2 and the opening angles γ, β, and α are all undefined.

Clearly $S_1 + S_2 + S_3 = 0$ to first order. The invariant J is

$$J = \text{Im} (S_1 S_2) = \text{Im} (S_3 S_1) = \text{Im} (S_2 S_3)$$

which yields Eq\[7\]. To first order the sides of this triangle are only sensitive to the solar and reactor parameters s and r and the phase α, with the atmospheric parameter a only appearing at second order. One may rescale the sides by S_3:

$$S_1^0 = \frac{U_{e2} U_{e3}}{U_{\mu 2} U_{\nu 3}} r e^{i \alpha}$$
$$S_2^0 = \frac{U_{\mu 2} U_{\nu 3}}{U_{\mu 2} U_{\nu 3}} 1 + r e^{i \alpha}$$
$$S_3^0 = 1$$

To first order the rescaled triangle is only sensitive to the reactor parameter r and the phase α, which is the anticipated result. To second order the solar parameter s (but not the atmospheric parameter a) appears.

The other unitarity triangle of interest is e; in Fig\[2\] corresponding to the unitarity relation

$$U_{e1} U_{e1} + U_{e2} U_{e2} + U_{e3} U_{e3} = 0$$

To first order the sides of this unitarity triangle are given by

$$T_1 = U_{e1} U_{e1} \frac{1}{3} (1 + \frac{s}{2} a + r e^{i \alpha})$$
$$T_2 = U_{e2} U_{e2} \frac{1}{3} (1 + \frac{s}{2} a + r e^{i \alpha})$$
$$T_3 = U_{e3} U_{e3} \frac{1}{2} r e^{i \alpha}$$
Clearly $T_1 + T_2 + T_3 = 0$ to first order. The invariant J is

$$J = \text{Im} (T_3 T_2) = \text{Im} (T_1 T_3) = \text{Im} (T_2 T_1)$$

(14)

which again yields Eq. 7. Unlike the previous case, the sides of this triangle are sensitive to the atmospheric parameter a at first order. One may rescale the sides by T_i

$$T_1^0 = 1$$
$$T_2^0 = \frac{U_{2e} U_{e2}}{U_{1e} U_{e1}} \times \left(1 + \frac{3}{2} \text{re}^i\right)$$
$$T_3^0 = \frac{U_{3e} U_{e3}}{U_{1e} U_{e1}} \times \frac{3}{2} \text{re}^i$$

(15)

As in the previous case, to first order the rescaled triangle is only sensitive to the reactor parameter r and the phase θ, which is the anticipated result. To second order the solar parameter s and the atmospheric parameter a appear.

We now turn to the application of the parameterization in Eq. 14 to neutrino oscillations. Let us denote by $P = P(\nu \rightarrow \bar{\nu})$ the probability of transition from a neutrino to a neutrino. Then expanding to second order in the parameters $r; s; a$ and 2θ, where it is assumed that $2\theta_1 = 1$ as in [24], we find considerably simplified vacuum oscillation probabilities.

The electron anti-neutrino disappearance probability relevant for a reactor experiment [25] is given to second order in $r; s; a$ and 2θ as

$$P_{ee} = 1 - 2r^2 \sin^2 \theta_1 - \frac{8}{9} \sin^2 \frac{2}{21}$$

(16)

where $i_1 = 1.27 \text{m}^2 \text{L/E with L the oscillation length in km, E the beam energy in GeV, and } m^2_{ij} = m^2_1 - m^2_2 \text{ in eV}^2$. Note that this disappearance probability is independent of the solar and atmospheric parameters $s; a$, as well as the phase θ, to this order.

The electron neutrino appearance probability relevant for a forthcoming long baseline muon neutrino beam experiment [26] is given to second order in $r; s; a$ and 2θ as

$$P_e = r^2 \sin^2 \theta_1 + \frac{4}{9} \cos^2 \theta_2 + \frac{4}{3} r \cos \theta_3$$

(17)

It is also independent of the solar and atmospheric parameters $s; a$ and only depends on the reactor parameter r and the phase θ_1 to this order. The reason is that each of the terms is second order in the parameters $r; 2\theta$, so any deviations from tri-bimaximal solar

5Similar considerations apply to oscillations in the presence of matter as discussed in Appendix B.
or atmospheric mixing only appear at third order. The muon neutrino disappearance probability is given to second order in $r; s; a$ and 21 as

$$P = 1 \left(4a^2 \right) \sin^2 31 \left(\frac{2}{9} \left(1 + 3 \cos 2 31 \right) \right) \sin 2 31 + \frac{2}{3} (1 - \sin 2 31) \cos 2 31 \sin 2 31$$

$$P = 1 \left(4a^2 \right) \sin^2 31 \left(\frac{2}{9} \left(1 + 3 \cos 2 31 \right) \right) \sin 2 31$$

M uon neutrino disappearance is clearly sensitive to deviations from tri-maximal mixing, since all three parameters $r; s; a$ and the phase appear. For example the prospects for measuring deviations from maximal atmospheric mixing in the next generation of long baseline muon neutrino beam experiments has recently been discussed [27]. Similarly the tau neutrino appearance probability is given to second order in $r; s; a$ and 21 as

$$P = 1 \left(4a^2 \right) \sin^2 31 \left(\frac{2}{9} \left(1 + 3 \cos 2 31 \right) \right) \sin 2 31 + \frac{2}{3} (1 - \sin 2 31) \cos 2 31 \sin 2 31$$

We emphasize that the parametrization discussed here is completely general and is not based on the ansatz of tri-maximal mixing, any more than the Wolfenstein parametrization [12] is based on the ansatz that the quark mixing matrix is equal to the unit matrix. Just as the Wolfenstein parametrization is an expansion about the unit matrix, so this parametrization is an expansion about the tri-maximal matrix. Unlike the Wolfenstein parametrization, there are three small parameters $r; s; a$ parametrizing the reactor, solar and atmospheric deviations from tri-maximal mixing. The expansion works since the deviations from tri-maximal mixing are empirically small, all parameter with $r; s; a$ all having a magnitude of order the Wolfenstein parameter 0.227 or less. Indeed these parameters are sufficiently small that the first order approximation is accurate enough for all purposes, resulting in quite a simple looking lepton mixing matrix in Eq.3, for example. Unitarity triangles and neutrino oscillation formula also have a very simple form when expressed in this parametrization.

The three parameters $r; s; a$ are not determined at the present time, and it is even possible that one or more of them (possibly all of them) are zero, although this seems a priori unlikely. However, as mentioned, many speculations appear in the literature as to the origin and nature of tri-maximal mixing and the deviations from it, and these speculations are expressed in this parametrization. For example certain classes of unified models [5] predict a sum rule which relates s to r and $\cos s$, where $r = 3$ and $a = 0$ (2). Alternatively it has been suggested [9] that tri-maximal solar mixing is exact, $s = 0$, with $a = \frac{1}{2} \cos s$ and r unspecified. Clearly an important goal of the next generation of neutrino experiments must be to show that the parameters $r; s; a$ differ from zero. Subsequent high precision neutrino experiments will then be required to accurately measure the values of the parameters $r; s; a$, as well
as , to investigate their possible relationships to each other and to the Wolfenstein parameter .

Acknowledgements

We would like to thank J. Flynn for useful discussions. We acknowledge partial support from the following grants: PPARC Rolling Grant PPA/G/S/2003/00096; EU Network M RTN-CT-2004-503369; EU I LIAS R III-CT-2004-506222.

Appendix

A Second order corrections

In this appendix we list the second order corrections to all the results given in the main text. The second order corrections to the first order MNS matrix elements in Eq(6) are

\[\begin{align*}
U_{e1} & = \frac{1}{3} \left(\frac{1}{4} r^2 - \frac{3}{8} s^2 \right) \\
U_{e2} & = \frac{1}{3} \left(\frac{1}{4} r^2 \right) \\
U_{e3} & = 0 \\
U_{1} & = \frac{1}{6} \left(\frac{1}{2} r s e + r a e + s a + a^2 \right) \\
U_{2} & = \frac{1}{6} \left(\frac{1}{2} r s e - \frac{1}{2} r a e - \frac{1}{2} s a + \frac{3}{8} s^2 - a^2 \right) \\
U_{3} & = \frac{1}{2} \left(\frac{1}{4} r^2 \right) \\
U_{1} & = \frac{1}{6} \left(\frac{1}{2} r s e + r a e + s a \right) \\
U_{2} & = \frac{1}{6} \left(\frac{1}{2} r s e - \frac{1}{2} r a e - \frac{1}{2} s a + \frac{3}{8} s^2 \right) \\
U_{3} & = \frac{1}{2} \left(\frac{1}{4} r^2 - a^2 \right) \\
\end{align*} \]

(20)

The second order correction to the Jarlskog CP invariant in Eq(7) is

\[J = \frac{rs}{12} \sin : \]

(21)
The second order corrections to the unscaled sides of the $2:3$ unitarity triangle in Eq. 9 are

$$S_1 = \frac{1}{6} s r e^i$$
$$S_2 = \frac{1}{6} \left(\frac{r^2}{4} + 2a^2 + \frac{3}{8} s^2 + \text{are}^i + \frac{1}{2} s r e^i \right)$$
$$S_3 = \frac{1}{6} \left(\frac{r^2}{4} + 2a^2 + \frac{3}{8} s^2 + \text{are}^i + \frac{1}{2} s r e^i \right):$$

(22)

The second order corrections to the normalized sides of the $2:3$ unitarity triangle in Eq. 11 are

$$S_0^1 = \frac{r^2}{2} e^{2i}$$
$$S_0^2 = \frac{r^2}{2} e^{2i} + \frac{3}{2} s r e^i$$
$$S_0^3 = 0:$$

(23)

The second order corrections to the unscaled sides of the $e:\sin^2\theta$ unitarity triangle in Eq. 13 are

$$T_1 = \frac{r^2}{12} + \frac{7}{24} s^2 + \frac{3}{6} + \frac{3}{6} s r e^i + \frac{3}{6} a r e^i$$
$$T_2 = \frac{r^2}{12} + \frac{7}{24} s^2 + \frac{3}{6} s a + \frac{3}{6} s r e^i + \frac{3}{6} a r e^i$$
$$T_3 = \frac{a r}{2} e^i :$$

(24)

The second order corrections to the normalized sides of the $e:\sin^2\theta$ unitarity triangle in Eq. 15 are

$$T_0^1 = 0$$
$$T_0^2 = \frac{3}{4} r e^i (2r e^i + s 4a)$$
$$T_0^3 = \frac{3}{4} r e^i (2r e^i + s 4a):$$

(25)

B Neutrino oscillations in matter

In this appendix we present the complete formulæ for neutrino oscillations in the presence of matter of constant density to second order in the quantities $r; s; a$ and 21, where
it is assumed that \(m_1 = m_2 \) as in [24]. Following [24] we write \(E = \frac{m_2}{m_1} \) and \(A = \frac{V}{L} \) where \(V \) is the potential expressed in units of eV as

\[
V = 7.56 \times 10^4 \ Y_e
\]

(26)

where \(Y_e \) is the matter density of the Earth in units of \(g/cm^3 \) and \(Y_e = 0.5 \) is the number of electrons per nucleon in the Earth. The constant density approximation is good when the neutrino beam only passes through the Earth’s crust where \(3 \ g/cm^3 \) or the Earth’s mantle where \(4.5 \ g/cm^3 \).

The complete set of neutrino oscillation probabilities for electron neutrino or muon neutrino beams in the presence of matter of constant density to second order in the parameters \(r; s; a \) and are

\[
P_{ee} = 1 \quad \frac{8}{9} \left(\frac{\sin^2 A}{A^2} \right) + \frac{2r}{A} \frac{\sin^2 (A - 1)}{(A - 1)}
\]

(27)

\[
P_{e\mu} = \frac{4}{9} \left(\frac{\sin^2 A}{A^2} \right) + \frac{r^2}{A} \frac{\sin^2 (A - 1)}{(A - 1)}
\]

\[+ \frac{4}{3} r \cos \left(\frac{\sin A}{A} \right) \frac{\sin (A - 1)}{(A - 1)} \]

(28)

\[
P_{e\tau} = \frac{4}{9} \left(\frac{\sin^2 A}{A^2} \right) + \frac{r^2}{A} \frac{\sin^2 (A - 1)}{(A - 1)}
\]

\[+ \frac{4}{3} r \cos \left(\frac{\sin A}{A} \right) \frac{\sin (A - 1)}{(A - 1)} \]

(29)

\[
P_{\mu\mu} = \frac{4}{9} \left(\frac{\sin^2 A}{A^2} \right) + \frac{r^2}{A} \frac{\sin^2 (A - 1)}{(A - 1)}
\]

\[+ \frac{4}{3} r \cos \left(\frac{\sin A}{A} \right) \frac{\sin (A - 1)}{(A - 1)} \]

(30)
\[
\begin{align*}
P &= 1 \left(1 - \frac{4a^2}{9} \right) \sin^2 \frac{2s}{3} + \frac{2}{3} (1 - s) \sin 2 \\
&\quad + \frac{4}{9} \frac{\sin^2 A}{A^2} - \frac{4}{9} \frac{2}{2} \cos 2 \\
&\quad + \frac{4}{9} \frac{\sin A}{A} \cos (\frac{A}{1}) \frac{\sin^2 (\frac{A}{1})}{(\frac{A}{1})^2} \\
&\quad + \frac{1}{A} \frac{\sin \cos A - \sin (\frac{A}{1})}{(\frac{A}{1})^1} \frac{\sin (\frac{A}{1})}{(\frac{A}{1})^1} \\
&\quad + \frac{3}{4} \frac{\cos \cos \sin A}{A} \frac{\sin (\frac{A}{1})}{(\frac{A}{1})^1} \\
&\quad + \frac{4}{9} \frac{\sin \sin A}{A} \frac{\sin (\frac{A}{1})}{(\frac{A}{1})^1}. \\
\end{align*}
\]

References

