Light-front quark model analysis of heavy meson radiative decays

Ho-eung Choi
Department of Physics, Teachers College, Kyungpook National University, Daegu, Korea 702-701

We present the magnetic dipole(M 1) transitions $V^{+} \to P^{-}$ of various heavy-avowed mesons such as $(D \to D^{0} D^{-} D^{+} D^{0})$ and $(B \to B^{+} B^{0} s B_{s} B_{s})$ using the light-front quark model constrained by the variational principle to the QCD-motivated effective Hamiltonian. The weak decay constants of heavy mesons and the decay widths for $V^{+} \to P^{-}$ are calculated. The radiative decay rate for $\gamma \to V^{+} P^{-}$ is found to be very helpful to determine the unknown masses of D^{0} and B^{0}. Our numerical results are overall in good agreement with the available experimental data as well as other theoretical model calculations.

I. INTRODUCTION

The physics of exclusive heavy meson decays has provided very useful testing ground for the precise determination of the form factors of the standard model and the development of a better understanding of the QCD dynamics. While the experimental tests of exclusive heavy meson decays are much easier than those of inclusive ones, the theoretical understanding of exclusive decays is complicated mainly due to the nonperturbative hadronic matrix elements. Since a rigorous QCD-theoretical formulation with a first-principle application of QCD to make a reliable estimate of the nonperturbative hadronic matrix elements has not so far been possible, most of the theoretical efforts have been devoted to looking for phenomenological approaches to nonperturbative QCD dynamics.

In our previous light-front quark model [1,2] analysis, based on the QCD-motivated effective Hamiltonian, we have analyzed various exclusive processes such as the semileptonic decays between heavy pseudoscalar mesons [3] and the rare B → K decays [4] and found a good agreement with the experimental data. Along with those exclusive processes, the magnetic dipole (M 1) transitions $V(1^3S_1) \to P(1^1S_0)$ from the spin-triplet S-wave meson to the spin-singlet S-wave pseudoscalar mesons have also been considered as a valuable testing ground to further constrain the phenomenological model of hadrons [1,2,5,6,7,10,11,12,13].

In this talk, we investigate the magnetic dipole transition among the heavy-avowed mesons such as $(D \to D^{0} D^{-} D^{+} D^{0})$ and $(B \to B^{+} B^{0} s B_{s} B_{s})$ using our LFMQ [1,2,5,6]. Since the experimental data available in this heavy-avowed sector are scanty, predictions of a model, if found feasible, can be utilized quite fruitfully. In addition, we calculate the weak decay constants of heavy pseudoscalar and vector mesons. A reliable estimate of decay constants is in portant, as they appear in many processes from which we can extract fundamental quantities in the SM such as Cabibbo-Kobayashi-Maskawa matrix elements. In our LFMQ [1,2,5,6], we have implemented the variational principle to QCD-motivated effective LFMQ Hamiltonian to enable us to analyze the meson mass spectra and to nd optimized model parameters, which are to be used subsequently in the present investigation. Such an approach can better constrain the phenomenological parameters and establish the extent of applicability of our LFMQ to wider ranges of hadronic phenomena.

The paper is organized as follows: In Sec. II, we briefly describe the formulation of our LFMQ [1,2] and the procedure of using the model parameters using the variational principle for the QCD-motivated effective Hamiltonian. The decay constants and radiative $V^{+} \to P^{-}$ decay widths for heavy-avowed mesons are then uniquely determined in our model calculation. In Sec. III, the formulae for the decay constants of pseudoscalar and vector mesons as well as the decay widths for $V^{+} \to P^{-}$ in our LFMQ are given. To obtain the q^2-dependent transition form factors $F_{V^{+} P^{-}}(q^2)$ and $F_{V^{+} P^{-}}(q^2)$, we use the Drell-Yan-West $q^2 = 0$ form (i.e., $q^2 = q_0^2 < 0$) and then analytically continue the spacelike results to the timelike $q^2 > 0$ region by changing q_0 to $i q_0$ in the form factors. The coupling constants $g_{V P}$ needed for the calculation of the decay widths for $V^{+} \to P^{-}$ can then be determined in the limit $q^2 = 0$, i.e., $g_{V P} = F_{V^{+} P^{-}}(q^2 = 0)$. In Sec. IV, we present our numerical results and compare with the available experimental data as well as other theoretical model predictions. Summary and conclusions follow in Sec. V.

II. MODEL DESCRIPTION

The key idea in our LFMQ [1,2] for mesons is to treat the radial wave function as trial function for the variational principle to the QCD-motivated effective Hamiltonian saturating the Fock state expansion by the constituent quark and antiquark. The QCD-motivated Hamiltonian for a description of the ground state meson mass spectra is given by

$$H_{qq} j_{n m} j^{J_{S} j_{n m}} = \frac{q_{1} q_{2}}{m_{q_{1} q_{2}}^{2} + 2} + \frac{q_{1} q_{2}}{m_{q_{1} q_{2}}^{2} + 2} + V_{qq} j_{n m} j^{J_{S} j_{n m}}$$

where $X = (k_{1}, k_{2})$ is the three-momentum of the constituent quark, M_{qq} is the mass of the meson, and $j_{n m} j^{J_{S} j_{n m}}$ is the meson wave function. In this work, we use two interaction potentials V_{qq} for the pseudoscalar(0^{-}) and
vector(1m) mesons: (1) Coulomb plus harmonic oscillator(HO), and (2) Coulomb plus linear coning potentials. In addition, the hyperfine interaction, which is essential to distinguish vector from pseudoscalar mesons, is included for both cases, viz.,

\[V_{qq} = V_0 + V_{hyp} = a + V_{conf} \frac{4}{3r} + \frac{2S_{\alpha \beta}}{3m_{qq}} r^2 V_{coul}; \] (2)

where \(V_{conf} = br^2 \) for the linear(HO) potential and \(H_{\eta} \) is 1=4 (3=4) for the vector(pseudoscalar) meson.

The meson space-light-front wave function of the ground state pseudoscalar and vector mesons is given by

\[j_{10}^j (x^i;k_{17}^i ; i) = R_{Jz}^j (x^i;k_{17}^i) (x^i;k_{17}^i); \] (3)

where \((x^i;k_{17}^i) \) is the radial wave function and \(R_{Jz}^j \) is the spin-orbit wave function, which is obtained by the interaction independent Moshin transformation from the ordinary equal-time static spin-orbit wave function assigned by the quantum number \(J^P \). The model wave function in Eq. (3) is represented by the Lorentz-invariant variables, \(x^i = \tau^0 + \tau^i \), \(k_{17}^i \) and \(i \), where \(\tau^0 = (P^0;P^0) \) and \(\tau^i = (P^i;P^i) \). The m model of the m meson M, \(P^0 \) and \(i \) are the m mom enta and the helicities of constituent quarks, respectively.

The covariant forms of the spin-orbit wave functions for pseudoscalar and vector mesons are given by

\[R_{Jz}^{00} = \frac{u(\tau^0;1) \cdot v(\tau^2;1)}{M_0}; \]
\[R_{Jz}^{1J_z} = \frac{u(\tau^0;1) \cdot (p \cdot p_2) \cdot v(\tau^2;1)}{M_0}; \] (4)

where \((J_z) \) is the polarization vector of the vector meson \(\phi \), \(M_0 = M_0^J (m_1 + m_2) \) and \(M_0^J \) is the invariant m meson mass square \(M_0^J \). The spin-orbit wave functions satisfy the following relations \(\frac{1}{2} R_{Jz}^{Jz} R_{Jz}^{Jz} = 1 \), for both pseudoscalar and vector mesons. For the radial wave function, we use the same Gaussian wave function for both pseudoscalar and vector mesons

\[(x^i;k_{17}^i) = \frac{4^{3/2} 2^{3/2}}{3^{1/2} \pi M_0^2} \exp(\frac{R^2}{2}); \] (5)

where \(M_0 \) is the variational parameter. When the longitudinal component \(k_\gamma \) is denoted by \(k_\gamma = (x = 1 = 2M_0 + (m_1^2 + m_2^2) = 2m_0 \), the Jacobian of the variable transformation fix; \(k_\gamma g \) is

\[\frac{\partial k_\gamma}{\partial x} = M_0 \frac{1}{4x_1x_2} \frac{m_1^2 m_2^2}{M_0^2}; \] (6)

The normalization factor in Eq. (5) is obtained from the following normalization of the total wave function,

\[\int_0^1 \frac{d^2k_{17}^i}{16} j_{10}^{J_z} (x^i;k_{17}^i) = 1; \] (7)

Our variational principle to the QCD-motivated e-e system is to evaluate the expectation value of the central Hamiltonian \(H_0 + V_0 \), i.e., \(\langle H \rangle \langle 0|0 \rangle \rangle \). We use the trial function \((x^i;k_{17}^i) \) that depends on the variational parameters and vary until \(\langle H \rangle \langle 0|0 \rangle \rangle \) is minimized. Once these model parameters are determined, then the mass eigenvalue of each m meson is obtained by \(M_{qq} = \sqrt{\langle H \rangle \langle 0|0 \rangle \rangle} \). M ore detailed procedure of determination of the model parameters of light and heavy quark sectors can be found in our previous works [1,2]. Our model parameter (\(m; \)) for the heavy quark sector obtained from the linear and HO potential model is summarized in Table [3].

Our predictions of the ground state meson mass spectra obtained from both linear and HO potential parameters are summarized in Fig. [4]. As we shall see in our numerical calculations, the radiative decay of \(\phi \) \(\phi \) might be useful to determine the mass of \(\phi \) experimentally since the decay width \(\lambda \) \(\phi \) is very sensitive to the value of \(m = M \), viz. \(\phi \) \(\phi \).
TABLE I: The constituent quark mass [GeV] and the Gaussian parameters [GeV] for the linear and HO potentials obtained by the variational principle, q = u and d.

<table>
<thead>
<tr>
<th>Model</th>
<th>m_q</th>
<th>m_s</th>
<th>m_u</th>
<th>m_c</th>
<th>m_b</th>
<th>q_0</th>
<th>a_0</th>
<th>q_b</th>
<th>a_b</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear</td>
<td>0.22</td>
<td>0.45</td>
<td>1.8</td>
<td>5.2</td>
<td>0.468</td>
<td>0.502</td>
<td>0.651</td>
<td>0.527</td>
<td>0.571</td>
</tr>
<tr>
<td>HO</td>
<td>0.25</td>
<td>0.48</td>
<td>1.8</td>
<td>5.2</td>
<td>0.422</td>
<td>0.469</td>
<td>0.700</td>
<td>0.496</td>
<td>0.574</td>
</tr>
</tbody>
</table>

are defined by

\[H \psi \rightarrow q \psi = i f L \psi \]

where the experimental value of vector meson decay constant \(f_L \) is extracted from the longitudinal (h = 0) polarization. Using the plus component of the current, one can easily calculate the decay constants and the explicit forms of pseudoscalar and vector meson decay constants are given in [14].

III. RADIATIVE DECAY WIDTH FOR V \(\rightarrow P \)

In our LFQM calculation of V \(\rightarrow P \) decay process, we shall first analyze the virtual photon decay process so that we calculate the form factors, \(F_{VP} (q^2) \). The lowest-order Feynman diagram for V \(\rightarrow P \) process is shown in Fig. 2, where the decay from vector meson to pseudoscalar meson and virtual photon state is mediated by a quark loop with various mass and mass one and mass two.

The transition form factor \(F_{VP} (q^2) \) for the magnetic dipole decay of vector meson V \(\rightarrow P \) is defined as

\[h^\pm \psi \rightarrow \bar{q} P \psi \rightarrow 12 \] \(q \) = \(P \)

\[F(0) \bar{q} \psi = (P; \psi) \bar{q} \psi = \epsilon \psi \]

where \(q = P \) is the four momentum of the virtual photon, \((P; h) \) is the polarization vector of the initial meson with four momentum \(P \) and helicity \(h \). The kinematically allowed four momentum transfer squared \(q^2 \) ranges from 0 to \(q^2_{max} = (M_P - M_P)^2 \).

The decay form factor \(F_{VP} (q^2) \) can be obtained in the \(q^2 < 0 \) frame with the "good" component of currents, i.e., \(\epsilon = + \), without encountering zero-mode contributions [14]. Thus, we shall perform our LFQM calculation in the \(q^2 < 0 \) frame where \(q^2 = q^2 - k^2/4 < 0 \), and then analytically continue the form factor \(F_{VP} (q^2) \) in the spacelike region to the timelike \(q^2 > 0 \) region by changing \(q_j \) to \(i q_j \) in the form factor. In the calculations of the decay form factor \(F_{VP} (q^2) \), we use \(\epsilon = + \) component of currents and the transverse (h = 1) polarization.

The hadronic matrix element of the plus current, \(h^+ \psi \rightarrow \bar{q} P \psi \), is then obtained by the convolution formula of the initial and final state light-front wave functions:

\[h^+ \psi = \bar{q} P \psi \]

where \(k^0 = k_0 \), \(x_0 q_0 \), and \(e_{ij} \) is the electrical charge for j-th quark. Comparing the right-hand side of Eq. (3), i.e., \(\epsilon P \bar{q} \rightarrow F_{VP} (Q^2) \bar{q} P \), we could extract the one-loop integral, \(I(m_1, m_2, q^2) \), which is given by

\[I(m_1, m_2, q^2) = \frac{Z_1}{Z} \int_0^1 \frac{dx}{3} \frac{d^2k}{2} \frac{(x q^2)}{x_1 M^2_0 M^2_0} (x k_0^2) \]

where the primed factors are the functions of nal state momentum, e.g., \(M^2_0 = M^2_0 (x k_0^2) \).

Then, the decay form factor \(F_{VP} (q^2) \) is obtained as

\[F_{VP} (q^2) = e_1 I(m_1, m_2, q^2) + e_2 I(m_1, m_2, q^2) \]

(12)

The coupling constant \(g_{VP} \) for real photon case can be determined in the limit \(q^2 = 0 \), i.e., \(g_{VP} = F_{VP} (q^2 = 0) \). The decay width for V \(\rightarrow P \) is given by

\[\Gamma (V \rightarrow P) = \frac{2}{3} q^2_{VP} k_0^2 \]

(13)

where \(k_0 \) is the neutron structure constant and \(k_0 = (M^2_0 - 2 M_0) \) is the kinematically allowed energy of the outgoing photon.
IV. NUMERICAL RESULTS

In our numerical calculations, we use two sets of model parameters (m;) for the linear and nonlinear potential terms given in Table I to perform, in a way, a parametric free-calculation of decay constants and decay rates for heavy pseudoscalar and vector mesons. Although our predictions of ground state heavy meson masses are overall in good agreement with the experimental values, we use the experimental meson masses except b meson in the computations of the radiative widths to reduce possible theoretical uncertainties. Since the b mass is not measured yet, we use the range m = M = 60 160 MeV for ! process.

In Tables I and II, we present our predictions for the charm ed and bottom ed meson decay constants, respectively, and compare them with other theoretical model predictions, i.e., (15) and (20) as well as the experimental data, (11), (27), (28), (33)). Our predictions for the ratios F / = F / = 1:61 (20) and 0.91 (0.90) obtained from the linear(HO) parameters are in good agreement with the experimental data, (F = 1.23 (0.19) and 0.81 (0.19)), respectively. Our results for the ratios F / = F = 1.24 (1.32) and F / = F = 1.23 (1.32) obtained from the linear(HO) parameters are quite compatible with the recent lattice results, 120 (3) (24) and 122 (25) for F = F and 117 (4) (15) for F = F .

We show in Fig. 3 the momentum dependent form factors F / (q^2) for charm ed vector meson radiative V → P decays obtained from the linear parameters. Since the results from the HO parameters are not much different from those of linear ones, we omit them for simplicity. The arrows in the graph represent the zero recoil points of the charm state pseudoscalar meson, i.e., q^2 = q^2_{ax}. We have performed the analytical continuation of the decay form factors F / (q^2) from the spacelike region (q^2 < 0) to the physical timelike region 0 < q^2 < q^2_{ax}. The coupling constant g / at q^2 = 0 corresponds to a charmed pseudoscalar meson recoil with a maximum momentum in the rest frame of another meson. The opposite sign of coupling constants for D^+ (solid line) and D^0 (dashed line) decays are compared to the charm onium J = (dot-dashed line) decay indicates that the charm quark contribution is largely destructive in the radiative decays off D^+ and D^0 mesons. The recoilec, i.e., the difference between the zero and the maximum points, is not negligible for the D^+ ! D^+ decay, while other processes may be negligible. The recoilec for the bottom ed and bottom onium meson decays are negligible due to the very small photon energies.

In Table IV, we present our results for the decay widths and branching ratios together with the available experimental data. The errors in our results for the decay widths and branching ratios come from the uncertainties of the experimental mass values and experimental mass values plus the full widths, respectively. Our results of the branching ratios Br(J = ! c) = 1.80 (0.10, 0.17, and 0.10) and Br(D^+ ! D^+) = 0.93 (0.31, 0.34) obtained from the linear(HO) parameters are in agreement with the experimental data (15). Br(J = ! c) = (1.30 0.3%) and Br(D^+ ! D^+) = (1.6 0.3%) within the error bars. For the ! process, our predictions for the decay width and branching ratio obtained from the linear(HO) parameters are (! b) = 45.9 (7.8, 42.8, 38.3) GeV and Br(! b) = (8.8 (7.2, 12.6, 5.6)) × 10^-4, where the lower, central, and upper values correspond to m = 60 MeV, 110 MeV, and 160 MeV, respectively. The decay width (! b) is found to be very sensitive to m because it is proportional to (m)^3. Other model calculations for the (1S) radiative 1 decay rates can be found in Ref. 21.

In Fig. 4, we show the dependence of (! b) on m compared with other theoretical model calculations (32). As one can see from Fig. 4, our prediction for the dependence of (! b) on m is quite consistent with other theoretical predictions for various m (32).

V. SUMMARY AND DISCUSSION

In this work, we investigated the weak decay constants and the magnetic dipole V → P decays of heavy-avored mesons such as (D → B^0 D_s , i; i = 0) and (B^0 → B^0 D_s , i; i = 0) using the LFQM constrained by the variational principle for the QCD-motivated effective Hamiltonian. Our model parameters obtained from the variational principle uniquely determined the above
Fig. 4: The dependence of \(\phi_{\text{linear}} \) on \(m=M_c-M_b \) compared with other theoretical model calculations.

Table II: Charmed meson decay constants (in unit of MeV) obtained from the linear HO parameters.

<table>
<thead>
<tr>
<th>Method</th>
<th>(f_0)</th>
<th>(f_0)</th>
<th>(f_{B_s})</th>
<th>(f_{B_s})</th>
<th>(f_\pi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QM [22]</td>
<td>240[20]</td>
<td>290[20]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Exp.</td>
<td>222.6</td>
<td>169.7[10]</td>
<td>274[13]</td>
<td>7[28]</td>
<td>-</td>
</tr>
</tbody>
</table>

Table III: Bottom ed meson decay constants (in unit of MeV) obtained from the linear HO parameters.

<table>
<thead>
<tr>
<th>Method</th>
<th>(f_0)</th>
<th>(f_0)</th>
<th>(f_{B_s})</th>
<th>(f_{B_s})</th>
<th>(f_{s})</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCD [24]</td>
<td>216[22]</td>
<td>259[32]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sum-rules [26]</td>
<td>210[19]</td>
<td>244[21]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Exp.</td>
<td>229[18]</td>
<td>715[5]</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fig. 4: The dependence of \(\phi \) on \(m=M_M_b \) compared with other theoretical model calculations.

Our predictions of mass spectra and decay constants for heavy pseudoscalar and vector mesons are overall in excellent agreement with the available experimental data as well as other theoretical model calculations. Our numerical results of the decay widths for \(J=1 \) and \(D^+ \) fall within the experimental error bars. Our predictions for the branching ratios for the bottom and bottom ed-strange mesons are quite competitive with other theoretical model predictions. For the radiative decay of the bottomonium, we find that the decay widths \(f \) is very sensitive to the value of \(m=M_M_b \). This sensitivity for the bottomonium radiative decay may help to determine the mass of \(b \) experimentally.

Since the form factor \(F_{VP} \) \(m_b \) of vector meson radiative decay \(V \) \(P \) presented in this work is precisely analogous to the vector current form factor \(g(q^2) \) of weak decay of ground state pseudoscalar meson to ground state vector meson, the ability of our model to describe such decay is therefore relevant to the reliability of the model for the weak decay. Consideration on such exclusive weak decays in our LFQM is underway. Although our previous LFQM [1,2] and this analysis did not include the heavy mesons com ping both \(c \) and \(b \) quarks such as \(B_c \) and \(B_b \), the extension of our LFQM to these mesons will be explored in our future communication.

Acknowledgments

This work was supported by a grant from Korea Research Foundation under the contract KRF-2005-070-C00039.
TABLE IV: Decay widths and branching ratios for radiative $V \rightarrow P$ decays obtained from our linear HQCD model parameters. We used $M_b = 953$ MeV for $b \rightarrow c$ decay.

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>$[\text{keV}]$</th>
<th>Br</th>
<th>Br_{exp}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$J^P = 0^-$</td>
<td>1.69 0.05 [0.85 0.05]</td>
<td>(1.60 0.10) [1.76 0.10]</td>
<td>(1.3 0.1)$%$</td>
</tr>
<tr>
<td>D^-</td>
<td>0.90 0.02 [0.86 0.02]</td>
<td>(0.93 0.03) [1.00 0.04]</td>
<td>(1.8 0.4)$%$</td>
</tr>
<tr>
<td>$D^- \rightarrow D^0$</td>
<td>0.03 [0.03]</td>
<td>-</td>
<td>(381 29)$%$</td>
</tr>
<tr>
<td>$D^+_s \rightarrow D^+_s$</td>
<td>0.18 0.01 [0.17 0.01]</td>
<td>-</td>
<td>(942 0.7)$%$</td>
</tr>
<tr>
<td>$B^- \rightarrow B^-$</td>
<td>0.40 0.03 [0.40 0.03]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$B^- \rightarrow B^0$</td>
<td>0.13 0.01 [0.13 0.01]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$B^+_s \rightarrow B^+_s$</td>
<td>0.068 0.007 [0.064 0.006]</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$\bar{B}^+_s \rightarrow \bar{B}^+_s$</td>
<td>0.045 [0.042 0.048]</td>
<td>(8.4 1.1)$%$</td>
<td>(1.7 0.4)$%$</td>
</tr>
</tbody>
</table>

References: