Covariant formulation of Noether's Theorem for translations on \(-\text{Minkowski spacetime}\)

Alessandra AGOSTINI

Cardi School of Mathematics, Cardi University, Sengennydd Road, Cardi, CF24 4AG, United Kingdom

Abstract

The problem of finding a formulation of Noether's theorem in noncommutative geometry is very important in order to obtain conserved currents and charges for particles in noncommutative spacetimes. In this paper, we formulate Noether's theorem for translations of \(-\text{Minkowski noncommutative spacetime}\) on the basis of the 5-dimensional \(-\text{Poincare covariant}\) differential calculus. We focus our analysis on the simple case of free scalar theory. We obtain \(5\) conserved Noether currents, which give rise to \(5\) energy-momentum charges. By applying our result to plane waves it follows that the energy-momentum charges satisfy a special-relativity dispersion relation with a generalized mass given by the \(5\)th charge. In this paper we provide also a rigorous derivation of the equation of motion from Hamilton's principle in noncommutative spacetime, which is necessary for the Noether analysis.

\(1\)e-mail: alessandraagostini@libero.it
1 Introduction

Noncommutative spacetime was introduced in Ref. [1,2] in order to improve the singularity of quantum field theory at short distances. Afterwards, the idea of noncommutative structure of spacetime inspired several approaches to Quantum Gravity [3]. In particular, Doplicher et al. [4,5] explored the possibility that Quantum Gravity corrections can be described algebraically by replacing the traditional (Minkowski) spacetime coordinates x by Hermitian operators \hat{x} ($\hat{x} = 0;1;2;3$) which satisfy the nontrivial commutation relations

$$[\hat{x}, \hat{x}] = i \{\hat{x}\}. \quad (1.1)$$

The model of $-\$-deformed spacetime considered in this paper and denoted by the name of $\textit{-Minkowski}$ spacetime is a particular realization of Eq. (1.1). It is characterized by the Lie-algebra commutation relations

$$[\hat{x}_0, \hat{x}_j] = i \delta_{j0}; \quad [\hat{x}_j, \hat{x}_k] = 0; \quad j = 1;2;3;$$

where the noncommutative parameter θ^2 is usually expected to be of the order of the Planck length.

Such a model was introduced in Ref. [6]-[8] and has been widely studied both from a mathematical and a physical perspective [9,10].

$\textit{-Minkowski}$ algebra was also proposed in the framework of the Planck scale Physics [11,12] as a natural candidate for a quantized spacetime in the zero-curvature limit.

Recently, $\textit{-Minkowski}$ algebra gained remarkable attention due to the fact that its symmetries have been proven to be described in terms of a well-known deformation of the Poincare group, the $\textit{-Poincare Hopf-algebra}$ [13]-[16], which has been derived by contracting the Hopf-algebra $SO_q(3;2)$.

The conserved charges associated with the $\textit{-Poincare Hopf-algebra}$ transformations have been characterized on the basis of various heuristic arguments [14]. In particular, the identification of the energy-momentum charges with the generators of the $\textit{-Poincare}$ transformations has led to hypothesis that in $\textit{-Minkowski}$ particles may be subjected to dispersion relations modified with respect to the Einstein ones by the presence of $\textit{-corrections}$ [17,18]. If the parameter is identified with the Planck length, the modification of the dispersion relations would agree with the results of DSR theories which predict the existence of two observer-independent quantities: a velocity scale and a length scale (given by the Planck length) [19,20].

Because of these implications at the level of fundamental physics, there is a great interest in searching for a robust characterization of the conserved charges associated with the $\textit{-Poincare}$ symmetry transformations, especially those associated to the $\textit{-Poincare}$ translations, which would have the meaning of energy and momentum of particles.

The first attempt in this direction seems to have appeared in Ref. [21], where a Noether analysis has been applied to a free scalar field theory in $\textit{-Minkowski}$ spacetime.

\[\text{Historically, the noncommutative parameter } \theta^2 = 1 \text{ was introduced. This explains the origin of the name } \textit{-Minkowski}.\]
This study solved the issue about the ambiguity among different bases of Poincare by proving that they give rise to the same energy-momentum charges. However, the analysis in Ref. [21] is restricted to the class of four-dimensional differential calculus which are non-Poincare covariant. In light of this, it seems natural to look for a formulation of the Noether’s theorem based on a Poincare covariant differential calculus. Such a covariant differential calculus is shown to be uniquely defined and coincides with the five-dimensional one constructed by Sitark, see Ref. [22].

In this paper we plan to apply a generalization of Noether’s theorem to the -Minkowski space translations of a free scalar theory.[3]. In order to do this we introduce the notion of -Poincare covariant translation in -Minkowski space-time based on the five-dimensional differential calculus. By using the five-dimensional vector derivatives we introduce also a Lagrangian which gives rise to a Poincare-invariant equation of motion. By requiring the invariance of the action of the theory under the covariant spacetime translations we obtain the conserved charges. It is important to notice that the choice of a Poincare covariant Lagrangian (in the sense that it produces a Poincare invariant equation of motion) and the use of a covariant differential calculus assure step-by-step the covariance of the formulation of Noether’s theorem.

By applying our results to -Minkowski plane waves we obtain a dispersion relation for the conserved charges. It seems to be interesting that such a dispersion relation looks like the special-relativity (i.e., non-Plank-deformed) dispersion relation in which the mass is replaced by the fifth charge. In the case of a massless theory the fifth conserved charge is zero and the -Minkowski plane waves satisfy exactly the special-relativity dispersion relation.

In conclusion, the results that we have obtained in this paper seem to disagree with the deformed dispersion relation conjectured on the basis of heuristic arguments and widely used in literature so far.

2 -Minkowski Space-time and Poincare Hopf-algebra Symmetry

The coordinates of the four-dimensional -Minkowski space-time satisfy the commutation relations of Lie-algebra type

\[[x_0; x_j] = i x_j; \quad [x_j; x_k] = 0; \quad j, k = 1; 2; 3; \] \hspace{1cm} (2.2)

where \(x_0\) has the meaning of time and \(x_j\) have the meaning of space coordinates. In the commutative limit \(\hbar \to 0\), -Minkowski space reduces to the commutative Minkowski space-time.

The set of coordinates \(x\) and the Lie-algebra relation (2.2) define the associative algebraic structure \(A_x\) of -Minkowski. We can consider different bases for the algebra \(A_x\)

\[\text{Ref. [23].}\]

\[\text{Ref. [23].}\]
which are all equivalent (see Refs. [24], [25]). In this paper we shall use the time-to-the-right basis
\[\hat{e}_k = e^{ik \xi} e^{i k_0 \xi_0} g; \quad k \in \mathbb{R}^{(1,2)}; \]
where \(\xi_0 \) has the meaning of time. The product associated to this basis is
\[\hat{e}_k \hat{e}_p = \hat{e}_{(k+p)}; \]
where the non-Abelian sum is \((k+p) = (k_0 + p_0 ; k_j + e^{k_0} p_j)\).
Notice the following conjugation property
\[e^\gamma_k = e_{-k}; \quad (2.3) \]
where \(-k\) is called antipode and corresponds to \((k_0 ; e^{k_0} k_j)\).

We consider \(\hat{e}_x \) in \(-\text{Minkowski spacetime} \) as elements of the algebra \(\mathbb{A}_x \)
\[\hat{e}_x \quad \text{d}^4k \quad \hat{e}_x = \hat{e}_x = \hat{e}_0 = \hat{e}_0 \quad (k) \quad (k) \hat{e}_x; \quad (2.4) \]
where \((k) \) is the Fourier transform of the commutative limit of \(\hat{e}_x \), and \((k) \) is an integration measure which is equal to 1 in the commutative limit. The expression of \(\hat{e}_x \) is the generalization of a classical \(\hat{e}_x \) which is usually represented as a Fourier expansion in plane waves. Here we do not discuss the algebraic properties of the \(-\text{Minkowski functions} \) \((\hat{e}_x) \) for which we refer to Ref. [26], where a rigorous analysis has been done on the representations of the \(-\text{Minkowski functions} \) on Hilbert spaces and their \(C^* \)-algebra properties.

In Ref. [13] it has been proven that \(-\text{Minkowski noncommutative spacetime} \) is the invariant space of a quantum deformation of the Poincare algebra, called \(-\text{Poincare algebra} \), originally obtained as a contraction of the Hopf algebra \(SO_q(3;2) \), see Ref. [4]-[8].

The \(-\text{Poincare Hopf-algebra} \) can be written in a number of different bases. In the so-called Majid-Ruegg bicrossproduct basis the generators \((P_j; N_j; M_j) \) of \(-\text{Poincare} \) satisfy the following commutation relations
\[
\begin{align*}
[P_j;P_k] &= 0; \\
[M_j;M_k] &= i^n_{jk} M_1; \\
[N_j;M_k] &= i^n_{jk} N_1; \\
[N_j;N_k] &= i^n_{jk} M_1; \\
[M_j;P_0] &= 0; \\
[M_j;P_k] &= i^n_{jk} P_1; \\
[N_j;P_0] &= i P_1; \\
[N_j;P_k] &= i \frac{1}{2} \left(e^{2P_0} \right) + \frac{1}{2} P^2 \quad (2.5)
\end{align*}
\]
where \(T B [k_0; \xi_0] = T B \xi_0 \)

The invariance of \(-\text{Minkowski} \) under \(-\text{Poincare Hopf-algebra} \) means that the commutation relations of \(-\text{Minkowski} \) are left invariant under the action of the generators of the \(-\text{Poincare} \) algebra

where \(T = (P_j; N_j; M_j) \). See Ref. [27] for the mathematical definition of action.
and the following co-algebra relations

\[
\begin{align*}
(P_0) &= P_0 \ 1 + e^{P_0} \ P_j; \\
(M_j) &= M_j \ 1 + e^{P_0} \ M_j; \\
(N_j) &= N_j \ 1 + e^{P_0} \ N_j \ "^{\ jk} P_k \ M_j. \\
\end{align*}
\]

\[(2.6) \]

The \"mass-squared\" Casimir operator in the Major dressing bicrossproduct basis takes the form

\[
C(P) = \frac{2}{2} \sinh^2 \frac{P_0}{2} \ e^{P_0}P^2;
\]

\[(2.7) \]

The symmetry generators of the \(-\)Poincare Hopf algebra act in the following way on \(-\)Minkowski functions:

\[
\begin{align*}
P \hat{\epsilon}_k &= k \hat{\epsilon}_k; \\
M_j \hat{\epsilon}_k &= i^{\ j}_m k_m \hat{\epsilon}_k; \\
N_j \hat{\epsilon}_k &= i k_j \hat{\epsilon}_0 \left(\frac{1}{2} e^{2 k_0} + \frac{1}{2} k^2 \right) \hat{\epsilon}_j + k_j k_j \hat{\epsilon}_1 \hat{\epsilon}_2. \\
\end{align*}
\]

\[(2.8) \]

As the reader can note, in the bicross-product basis the generators of the \(-\)Lorentz algebra fulfill the commutation relations of the un-deformed Lorentz Lie algebra. Nonetheless, the symmetry generators of the \(-\)Poincare Hopf algebra act in a deformed way on products of functions.

3 The 5D \(-\)Poincare–invariant Differential Calculus

The issue of finding differential calculi related to \(-\)Minkowski spacetime has been investigated in different papers\([28, 29]\). Sitarz\([22]\) proved that there are no 4D \(-\)Poincare covariant differential calculi, and proposed a 5D differential calculus which is covariant under the left action of the \(-\)Poincare Hopf algebra\([1]\). Then, Gonera et al.\([31]\) showed that the lowest dimensional left-covariant calculus for the 4D \(-\)Minkowski spacetime is uniquely defined and coincides with the 5D calculus proposed by Sitarz.

In the 5D differential calculus the exterior derivative operator \(d \) of a generic \(-\)Minkowski element \(\hat{x} \) can be written in terms of vector fields \(D_a(P) \) as follows:

\[
\begin{align*}
d(\hat{x}) &= dx^a D_a(\hat{x}); \ a = 0;1;2;3;4; \\
D_0(P) &= \frac{i}{2} \ \sinh(\ P_0) + \frac{2}{2} e^{P_0}P^2; \\
D_j(P) &= iP_j e^{P_0} \ (j = 1;2;3); \\
D_4(P) &= \frac{1}{2} \ 2 \sinh^2 \frac{P_0}{2} \ 2 e^{P_0}. \\
\end{align*}
\]

\[(3.9) \]

\[^{6} \text{or, equivalently, under the infinitesimal left action of } \text{\(-\)Poincare quantum group } P, \text{ see Ref. [30].} \]
where P are the generators of Poincare in the bicrossproduct basis and act on Minkowski as in Eq. (2.8) $P \ell_\kappa = k \ell_\kappa$. Notice that the last component $D_4(P)$ coincides with the Casimir operator (2.7).

The 5D differential calculus is obtained in Ref. [22] by the request that the commutation relations (2.2) remain invariant under the action of the Poincare generators:

$$[dx^a; x] = a x \quad \text{with} \quad T[dx^a; x] = T x \quad \text{where} \quad T \text{ denotes globally the Poincare generators (} P M_j; N_j).$$

A differential calculus in which the commutation relations between the 1-form generators and the Minkowski generators remain invariant under the action of the symmetry algebra (Poincare in our case), is called "covariant" differential calculus.

Clearly, the Minkowski derivatives D_a reduce to the commutative derivatives ∂ in the limit $t \to 0$:

$$\lim_{t \to 0} D_a(P) = iP = \partial; \quad \lim_{t \to 0} D_4(P) = 0;$$

The deformed derivatives $D_a(P)$ have some nice covariance properties. They transform in the classical way under the Poincare action

$$[M_j; D] = i \kappa D_j; \quad [N_j; D] = iD; \quad [M_j; D_4] = [N_j; D_4] = 0;$$

Their coproduct can be written as

$$D_4 = D_4 e^{P_0} + e^{P_0} D_4 + D_4 e^{P_0} (e^{P_0} - 1)(e^{P_0} - 1);$$

$$D_4 = D_4 e^{P_0} + e^{P_0} D_4 + \frac{1}{2} e^{P_0} (e^{P_0} - 1)(e^{P_0} - 1)$$

The one-form generators $\{dx^a; x\}$ satisfy the commutation relations (see Ref. [22])

$$[dx^a; x] = i (g^0 dx^a + g dx^0 + ig dx^4); \quad [dx^a; x] = dx^a$$

The fifth one-form generator is here denoted by dx^4, but this is of course only a formal notation since there is no fifth Minkowski coordinate x^4.

The one-forms dx^a have the following hermitian properties:

$$(dx^a) = dx^a; \quad (dx^4) = dx^4;$$

The external algebra takes the standard form

$$dx^a \wedge dx^b = dx^b \wedge dx^a \quad (a; b = 0; 1; 2; 3; 4);$$

and

$$d(dx^a) = 0; \quad d(dx^4) = \frac{2i}{d(dx^a)} d(dx^a);$$

5
More details about the 5D differential calculus can be found in Ref. [32] and references therein. For the purpose of this article we quote the following commutation relation between one form dx_a and $-\text{Minkowski}$ functions

$$dx_bD^b = dx^b[D_b() (D^b)];$$

They can be easily proven by the iterative use of Eq. (3.11).

4 Noether’s Theorem for Translations in $-\text{Minkowski}$ Spacetime

The formulation of Noether’s theorem in commutative spacetime is recalled in Appendix A. In this section we shall generalize Noether’s theorem for translations in $-\text{Minkowski}$.

We consider the in nitesimal translation in $-\text{Minkowski}$

$$\mathcal{X} ! \mathcal{X}^0 = \mathcal{X} + dx;$$

where dx are the in nitesimal displacements. In order to ensure that the point \mathcal{X}^0 still belongs to the $-\text{Minkowski}$ spacetime

$$[\mathcal{X}^0;\mathcal{X}^0] = i \mathcal{X}^0; [\mathcal{X};\mathcal{X}_j] = 0$$

the translation parameters dx must satisfy non-zero commutation relations with the $-\text{Minkowski}$ generators \mathcal{X}, namely

$$[\mathcal{X}_0;dx_j] + [dx_0;\mathcal{X}_j] = i dx_j$$

$$[\mathcal{X}_j;dx_k] + [dx_j;\mathcal{X}_k] = 0$$

There are different choices for the commutation relations $[\mathcal{X};dx]$ which full all the equations above. The various choices select different choices of differential calculus in $-\text{Minkowski}$ (see, for example, Ref. [21]) where the in nitesimal displacement is denoted by \mathcal{X}^0. In this paper we chose the 5-dimensional differential calculus (3.11).

As the spacetime changes also the field changes in order to preserve the relativistic invariance. The total variation can be written as the sum of two terms

$$\tau (\mathcal{X}) = 0(\mathcal{X}^0) \ (\mathcal{X}) \ (\mathcal{X}) + dx^aD_a ;$$

where (\mathcal{X}) is the contribution of the change of the form of the field and dx^aD_a is the contribution of the change of the argument \mathcal{X}.

The rst step for generalizing the results of Appendix A to $-\text{Minkowski}$ consists in introducing an action for free scalar particles in $-\text{Minkowski}$. In order to do this we need to introduce a Lagrangian density and de ne an integration map.

\[\text{we consider the approximation } (\mathcal{X}^0) = (\mathcal{X}) \text{ at the } \text{rst order in } \mathcal{X}. \]
A good candidate for a covariant generalization of the Lagrangian for scalar particles is
\[L(\vec{x}) = \frac{1}{2} D^a(\vec{x}) D^b(\vec{x}) m^2 \delta^a_b \] (4.15)
with \(D^a = \frac{i}{2} \sinh(P_0) \frac{2}{2} e^{P_0 P^2} \). In the next section we will see that the Lagrangian (4.15) gives rise to a Poincare covariant equation of motion (EoM). The choice of a Lagrangian which produces a Poincare-covariant EoM is fundamental to assure a Poincare-covariant formulation of Noether theorem.

Concerning the integration map, a natural Poincare translation-invariant choice is (see Refs. [33], [34])
\[Z(\vec{x}) = d^4 x(\vec{x}); \] (4.16)
where the Minkowski function \((\vec{x}) \) is written in the time-to-the-right ordering (i.e. in terms of the time-to-the-right basis \(\vec{e}_\xi \), see Eq. (2.4)) and the right side is the usual integration of the underlying commutative function \((\vec{x}) \). This prescription is such that the integral of a partial derivative of a suitably decaying function vanishes.

The next four properties of the integration we have considered will be of precious help.

The integral of an element of the Minkowski basis is a standard Dirac function
\[\vec{e}_\xi = (k); \] (4.17)

The following cyclicity property holds
\[[+] = [1 + e^3 \vec{P}_0] : \] (4.18)

The following integrations by parts hold
\[D^a = D^a; \] (4.19)
\[D^a D_a = D^a D_a; \] (4.20)
where \(D^a = \frac{i}{2} \sinh(P_0) \frac{2}{2} e^{P_0 P^2} \). The space integral of a divergence \(d^3 x P_j(\vec{x}) \) is zero:
\[d^3 P_j(\vec{x}) = d^4 k(k) d^3 P_j e^{i k \vec{x}} e^{i k_0 \vec{x}_0} = d^4 k(k) k_j^3(k) e^{i k_0 \vec{x}_0} = 0: \] (4.21)

One can prove it by using the following rule of integration by parts
\[0 = P(\vec{x}) = (P)(\vec{x}) + (e^{P_0 \vec{x}})(\vec{x}); \]
The invariance under translation can be easily proved by using property (i)
\[
[\hat{0}(\mathbf{x}) (\mathbf{x})] = \int \rho_a \mathbf{D} = \int \rho_a (\mathbf{p}) \mathbf{D} (\mathbf{p}) \mathbf{p} = 0
\]

The action of the theory is obtained by integrating the Lagrangian density
\[
\mathcal{S} = -\frac{1}{2} \int \mathbf{D} \mathbf{D}^a + \frac{m^2}{2} (\mathbf{D})^a = 0
\]

with the integral map defined in Eq. (4.16) and the operator \(\mathbf{D}^a \) introduced in Eq. (4.19).

Next, we get the EoM for free scalar particles in \(-M\)inkowski. EoM are used to obtain the conserved currents for on-shell particles.

4.1 -Poincare-covariant Equations of Motion in \(-M\)inkowski

In this section we show that the Lagrangian (4.15) gives rise to -covariant equation of motion (EoM) in \(-M\)inkowski. In this way we intend the kappa-covariance of the Lagrangian.

Let us consider an arbitrary variation \(\hat{f} \). Hamilton's principle states that
\[
\mathcal{S} = \int \frac{1}{2} \left[(\mathbf{D}^a \mathbf{D}^a + m^2) \right] f(\mathbf{x}) = 0
\]

By using properties (4.19), (4.20) and (4.18), we obtain the EoM:
\[
0 = \int \left(\mathbf{D} \mathbf{D}^a + m^2 \right) f(\mathbf{x}) = 0
\]

which contains a covariant generalization of D'Alembert's operator of order two in the generalized derivatives \(\mathbf{D}^a \)
\[
= \mathbf{D} \mathbf{D}^a = \left(\frac{4}{2} \sinh^2(\mathbf{P} + 2) \mathbf{P} \mathbf{P} e^{-\mathbf{P}} \right)
\]

which coincides with the Casimir operator (2.7) and turns out to be covariant (under the generators \(\mathbf{T} \) of -Poincare)
\[
[\mathbf{T};\mathbf{D}^a] = 0
\]

Of course, in the commutative limit, it reduces to the commutative D'Alembert operator
\[
\mathbf{D}^a \mathbf{D}^a \quad @ @
\]

Thus the Lagrangian (4.15) gives rise to EoM invariant under the action of the -Poincare generators.
4.2 Conserved charges for -Minkowski translations

In this section we obtain the conserved currents for translations in -Minkowski. We show here the main steps of the procedure. The details of the calculation can be found in Appendix B.

As in the commutative case, the symmetry condition of the action can be formulated as

\[S[\phi] = \frac{1}{2} Z \left[L(\phi^0) - L(\phi)\right] = 0. \]

According to the variation of Eq. (4.14), the variation of the action has two contributions

\[S[\phi] = \frac{1}{2} Z \left[L + dx_\mu D^\mu L\right]. \]

Considering the variation of the action on the EoM, and after some calculations, we can put the variation in the form (see appendix for details)

\[Z \delta \phi = dx^b J^b. \]

The invariance with respect to spacetime translations gives rise to the continuity equation

\[D(P)J^b = 0; \quad (4.25) \]

where \(D = \) is a function of momenta and \(J^b = \) is a 4-dimensional generalization of the energy-momentum tensor.

The nutshell (nitshell)\(^{10}\) -Minkowski-particle can be written as

\[0 = d^4k \sim(k) \delta_h (C(k)); \quad (4.26) \]

where \(C(k) = \frac{k^0}{4} \sinh^2\left(\frac{k^0}{2}\right) e^{k^0 k^2 - m^2}. \)

The explicit form of \(J^b \) for on-shell particle \(0 \) is obtained in Appendix C and corresponds to

\[
\begin{align*}
 J &= e^{P_0 D^0} D_0 + e^{P_0 \phi^0 D^0} D_0 i_0 \phi^0 D_0 \phi^0 D_0 + \\
 &\quad + i g_0 m^2 e^{P_0 D_0} e^{P_2 \phi^0} g (1 + e^{P_0}) D_0 L_0 \\
 J_4 &= e^{P_0 D_0} D_0 + e^{P_0 \phi^0 D^0} D_0 i_0 \phi^0 D_0 \phi^0 D_0 + \\
 &\quad + i g_0 m^2 e^{P_0 D_0} e^{P_2 \phi^0} g_0 D_0 L_0 \phi^0
\end{align*}
\]

By spacial integration of \(D J^b \) we obtain

\[Z \int Z D^0 d^3J_0 = d^3D J_{3b} = 0; \quad (4.27) \]

\(^{10}\)We call nutshell -Minkowski-particles the free scalar particles \(0 \) which satisfy the EoM in -Minkowski spacetime \((+ m^2) = 0.\)
where we used the property that the space integral of a divergence is zero, see Eq. (4.21).

Thus \(J_{0b} \) are the conserved currents which we are looking for. On the EoM, the components of the current \(J_{0b} \) are (see the detailed computation in Appendix C)

\[
J_{00} = D_0^* D_0 + D_j^* D_j + m^2 e^{p_0} e^{\bar{p}_0} \mathbb{I} J_{04}
\]

\[
J_{0j} = D_j^* D_0 + D_0^* D_j + i m^2 D_j^* e^{p_0}
\]

\[
J_{04} = \frac{m^2}{2} (D_0^* + i m^2) (e^{p_0} e^{\bar{p}_0}) D_0 D_j^* D + D_0^* L
\]

Eq. (4.27) implies that the quantity \(Q_a = \int d^3 x J_{0a} \), corresponding to the conserved charges, is \(x_0 \)-independent. We show the time-independence in Appendix D, where an explicit construction of the conserved charges is obtained. The explicit form of the conserved charges is

\[
Q_b = \frac{i}{2} \int d^4 p \sim (-p) \sim (p) e^2 p_0 D_b(p) \text{sgn} \left(\frac{2}{2} (1 + e^{p_0}) + m^2 \right) [C(p)]
\]

where \(D_b(p) \) is defined as in the Eq. (B.3) and \(\text{sgn}(y) = \frac{y}{|y|} \) is the sign function. This form shows the time-independence of the charges \(Q_b \).

In this way we have obtained the conserved charges on the equations of motion. In the limit \(m = 0 \) the \(b \)th charge \(Q_b \) is zero for on-shell massless particles, and we have four-conserved charges.

In the next section we show that the analysis in terms of plane waves allows us to recognize a relation between conserved charges. This relation can have the meaning of dispersion relation for particles and it allows to identify the energy-momentum vector.

4.3 Plane waves and energy-momentum conservation law

In Appendix E we have proved that the Fourier transform of a real on-shell plane wave in Minkowski is described by the function

\[
\sim_p(k) = (3) (k \cdot p) \eta_0 \ln(1 + \frac{m^2}{2}) + (3) (k + p) \eta_0 \ln(1 + \frac{m^2}{2})
\]

and we have also proved that

\[
\sim_p(-k) = e^{-3k_0} \sim_p(k):
\]

By substituting Eq. (4.29) and Eq. (4.30) in Eq. (4.28), we can compute the ve-
conserved charges

\[Q_b = \frac{1}{2} \int \frac{d^4k}{(2\pi)^4} \sim (k) e^{k_0} D_b(k_0;\mathcal{R}) \text{sgn} \left(\frac{2}{2} (1 - e^{P_0}) + m^2 \right) \mathcal{C}(k) \]

\[= \int \frac{d^4k}{(2\pi)^4} e^{k_0} (k, p) H(k_0, \ln(1 + \frac{2m^2}{2})) D_b(k_0;\mathcal{R}) \text{sgn} \left(\frac{2}{2} (1 - e^{P_0}) + m^2 \right) \mathcal{C}(k) \]

\[= \int \frac{i\mathcal{V}}{2} dk_0 e^{k_0} D_b(k_0;\mathcal{P}) \frac{[k_0, w_+(p)]}{j + \frac{e^{k_0} m^2}{2}} e^{k_0 j} \]

Thus, the conserved charges are proportional to \(D_b(w_+(p);\mathcal{P}) \): \(Q_b \sim D_b(w_+(p);\mathcal{P}) \) and, because of the following relation

\[[D, D^\dagger](w_+(p);\mathcal{P}) = [D_0(w_+(p);\mathcal{P}) + i\frac{e^{k_0} m^2}{2}, D^2_0 + \frac{2m^2}{4}] = e^{w_+(p)m^2 + i\frac{e^{k_0} m^2}{2} D_0 - \frac{2m^2}{4}} = \frac{4}{2m^2 + 1} D^2_0 \]

the relation among the charges is

\[Q\bar{Q} + (1 + \frac{4}{2m^2})Q_4^2 = 0; \quad (4.31) \]

Notice that in the massless case (\(m = 0 \)) the relation \((4.31) \) reads as

\[Q\bar{Q} = 0 \]

Thus, if we give \(Q \) the meaning of the energy-momentum vector, the relation above says that the dispersion relation for massless Klein-Gordon particles in Minkowski spacetime is not deformed and coincides with its special-relativistic limit.

In the case of massive particles a fifth conserved charges \((Q_4) \) appears. If we define \(\bar{Q}_b = i\frac{e^{k_0}}{4} (1 + \frac{4}{2m^2}) \bar{Q}_b \), all the charges are real and we get the relation

\[\bar{Q} \bar{Q} = Q_4^2 \]

which might be viewed as a special-relativistic dispersion relation with a generalized mass term represented by \(\bar{Q}_b \).

\[^{11} \text{This result has been also obtained, independently, by G. Amelino-Camelia et al. in Ref. 23.} \]
5 Comparison with Previous Results

To our knowledge, the first exploratory analysis of Noether’s theorem in noncommutative spacetime appeared in ref. [21]. In this paper the study of translation symmetries has been applied to the example of -Minkowski noncommutative spacetime. According to some algebraic arguments, the symmetries of -Minkowski should be described in terms of a Planck-scale-deformation of the Poincaré algebra, and a Planck-scale-deformation should affect the particle dispersion relations. The paper Ref. [21] was aimed at establishing whether these formal observations about the presence of nonclassical symmetries might have been confirmed by a physical perspective based on Noether’s analysis.

By considering a much used (four-dimensional) differential calculus in -Minkowski spacetime, the presence of some nonlinearity in the energy-momentum relation for scalar fields did emerge in Ref. [21]. For massless particles it has been obtained the following dispersion relations

\[
\frac{4}{2} \sinh^2 \frac{E}{2} e^{\frac{E}{2}} \sum_{i=1}^{X^3} P_i = 0; \tag{5.33}
\]

where \(E; P_i \) are the energy and momenta of the physical particle.

However it is natural to wonder if this result might depend on the choice of the differential calculus and to search for an alternative formulation based on a different calculus.

The present paper has generalized the study of Ref. [21] by replacing the four-dimensional differential calculus by the five-dimensional Poincaré-covariant differential calculus. This replacement should guarantee a Poincaré-covariant formulation of Noether’s theorem. As in Ref. [21], our study has been focused on translations for a scalar field theory in -Minkowski spacetime. Our analysis has revealed that the relation \(5.33 \) does depend on the choice of the differential calculus. Indeed, using a Poincaré-covariant differential calculus we have found classical properties for the energy-momentum charges which, in the massless case, turn out to satisfy the special-relativity relation

\[
E^2 \sum_{i=1}^{X^3} P_i = 0;
\]

6 Conclusions

In this paper we have constructed a Poincaré-covariant formulation of Noether’s theorem for translations in -Minkowski. In order to guarantee the Poincaré covariance of the formulation we have based our analysis on the five-dimensional covariant differential calculus. We have obtained exactly the special-relativistic dispersion relations for massless free scalar particles, while for massive particles we have found a dispersion relation similar to the special-relativistic one but with a further (fifth) conserved charge which might have the meaning of a generalized mass.

Our results do not agree with the -Minkowski deformation dispersion relation conjectured on the basis of some heuristic arguments and widely used in literature. However, the
fact that in this exploratory application of our description of symmetries we have only considered a free scalar theory in Minkowski spacetime might be a significant limitation. One may think that the theory considered here does not have enough structure to give proper physical significance to energy-momentum; such hypothesis may deserve attention for future investigations. It would be of interest to explore whether massless particles in Poincare spacetime be acted by a Planck-scale-deformation of the special-relativistic dispersion relations if one attempts to extend our result to the case of more structured theories, such as interacting theories or gauge theories.

We remark that in this paper only translations are considered. In principle, the same method we have used for translations can be applied to the Lorentz transformations. Future studies may wish to investigate Lorentz transformations in Minkowski and the construction of conserved angular momentum (if it exist).

Acknowledgements

I would like to thank G. Amelino-Camelia for any ideas and inspiring discussions.

A Noether Theorem in Commutative Spacetime

Classical Noether's theorem states that symmetry properties of the Lagrangian (or Hamiltonian) imply the existence of conserved quantities (see for example Ref. [35]).

In order to formulate Noether's theorem we need the equation of motion (EoM). For the sake of simplicity, we consider the case of a scalar field \(\phi \).

Let us introduce the Lagrangian density \(L(\phi, \partial_\mu \phi, \partial_\nu \phi) \) which is, in general, a function of the fields as well as the field derivatives \(\partial_\mu \phi \), and in general, might well be an explicit function of \(\phi \).

We derive the EoM through Hamilton's principle by variation of the action, i.e. the integral of \(L(\phi, \partial_\mu \phi, \partial_\nu \phi) \), over a region in four-space

\[
S = \int d^4x L(\phi, \partial_\mu \phi, \partial_\nu \phi) \quad (A.1)
\]

We consider an arbitrary variation on \(\phi \) and \(\partial_\mu \phi \), which are taken to be zero at the bounding surface \(\partial S \). Hamilton's principle states that

\[
S = \int d^4x L = 0
\]

The variation \(L \) of the Lagrangian can be written as

\[
L(\phi, \partial_\mu \phi, \partial_\nu \phi) = \frac{\delta L}{\delta \phi} + \frac{\partial L}{\partial \phi} \partial_\mu \phi
\]

or equivalently, by using the linearity of \(\partial \) with respect to the derivative \(\partial = \partial_\mu \partial_\mu \),

\[
L(\phi, \partial_\mu \phi, \partial_\nu \phi) = \frac{\delta L}{\delta \phi} + \frac{\partial L}{\partial (\partial_\mu \phi)} \partial_\mu \phi \quad (A.2)
\]
Thus

$$S = \int d^4x \frac{\partial L}{\partial \dot{x}} + \frac{\partial L}{\partial \dot{x}} \frac{\partial \dot{x}}{\partial x}$$

$$= \int d^4x \frac{\partial L}{\partial \dot{x}} + \frac{\partial L}{\partial \dot{x}} \frac{\partial \dot{x}}{\partial x} + \int d^4x \frac{\partial L}{\partial \dot{x}} \frac{\partial \dot{x}}{\partial x} \tag{A.3}$$

$$= \int d^4x \frac{\partial L}{\partial \dot{x}} + \frac{\partial L}{\partial \dot{x}} \frac{\partial \dot{x}}{\partial x} = 0;$$

where the second integral in Eq. (A.3) can be transformed by a four-dimensional divergence theorem into an integral over the surface () bounding the region and then vanishes since $j(x)$.

By requiring that $S = 0$ for any arbitrary variation, we get the EoM

$$\frac{\partial L}{\partial \dot{x}} = \frac{d}{dx} \frac{\partial L}{\partial \dot{x}} \tag{A.4}$$

which is satisfied by on-shell particles.

We now recall the formulation of Noether's theorem for on-shell particles, which is useful in order to extend the construction to the noncommutative case.

Noether's theorem applies to continuous transformations, and here we are dealing only with them. Symmetry under coordinate transformation refers to the effects of an in infinitely small transformation of the form

$$x \rightarrow x^0 = x + \delta x;$$

where the infinitely small change δx may be a function of all the other coordinates x. The effect of a transformation in the fields then selves may be described by

$$\left(x \right) \rightarrow \left(x^0 \right) = \left(x \right) + \delta \left(x \right);$$

where the total variation $\delta \left(x \right)$ results from changes of both the form and the argument of the function $\left(x \right)$.

As a consequence of the transformations of both the coordinates and fields, the Lagrangian appears, in general, as a different function of both the spacetime coordinates and the fields

$$L \left(\dot{x}; \dot{x} \right) \rightarrow L^0 \left(\dot{x}^0; \dot{x}^0 \right).$$

The symmetry or invariance condition of the Lagrangian, can be generalized at the level of the action integral, so that the invariance of the magnitude of the action integral under the transformation leads to the existence of conserved quantities

$$\int d^4x L^0 \left(\dot{x}^0; \dot{x}^0 \right)\dot{x}^0 = \int d^4x L \left(\dot{x}; \dot{x} \right) = 0;$$

where is an arbitrary region in the 4-D spacetime, and 0 its transformation.
By means of some computations we get

\[0 = \int d^4x fL(\phi(x)) L'(x) + \int [L \times \partial x] g : \]

The variation \(S \) has two contributions: the integral of \(L(\phi) \) is the variation of the action due to the variation of the functional form of the fields, while the integral of \(\int [L \times \partial x] \) comes from the variation in the four-volume

\[0 = \int d^4x fL(\phi) + \int [L \times \partial x] g : \quad \text{(A.5)} \]

Writing the variation \(L(\phi) \) as in Eq. (A.2) and integrating by part, we get

\[0 = \int d^4x \left(\frac{\partial L}{\partial \phi} - \frac{\partial L}{\partial \partial x} \right) + \int \left(\frac{\partial L}{\partial \partial x} \right) + L \times : \]

The first integral is zero for on-shell particles because of EoM Eq. (A.4), and the formulation of the invariance reads

\[0 = \int d^4x \frac{\partial L}{\partial \phi} + L \times ; \quad \text{on-shell:} \quad (A.6) \]

Since the previous equality holds for any \(\phi \), we have the continuity equation for the current

\[J = \frac{\partial L}{\partial \phi} + L \times \]

\[\int d^4x \frac{\partial L}{\partial \phi} + L \times = 0: \]

The continuity equation tells us that if we integrate this current over a space-like slice, we get a conserved quantity called the Noether charge.

As a consequence of Noether’s theorem, the invariance of physical systems with respect to the 10-Poincare transformations gives the law of conservation of 10-quantities. Here we focus only on translations. The invariance with respect to spacetime translations gives the well-known law of conservation of energy-momentum.

A space translation \(x \rightarrow x' = x + a \) induces the following field transformation

\[\phi(x) = \phi(x + a) \]

Noether’s theorem states that then the existence of a energy-momentum tensor \(T \) which satisfies the continuity equation

\[0 = \int \frac{\partial L}{\partial \phi} + L \times : \]

This equation describes the conservation of four energy-momentum charges

\[Z Z Q = \int d^3x T_0 = \int d^3x \frac{\partial L}{\partial \phi} : g_0 L : \]

\[\footnote{which affects also the derivatives of the fields :} \]
It is easy to show that the energy-momentum tensor for a real, free scalar field \((\phi)\) described by a Lagrangian density \(L = \frac{1}{2} \partial_\mu \phi \partial^\mu \phi\) is of the form

\[
T = \frac{\partial L}{\partial \partial_t \phi}; \quad g L = \frac{\partial L}{\partial \partial_x \phi} g L.
\]

(A.7)

In the following section, we shall construct a formulation of Noether’s theorem in Minkowski which provides us a generalization of this result.

B Properties of the 5D Vector Fields on the Solutions of the EoM

We notice that the deformed derivatives take the following form on the solutions of the EoM \((\phi_0 : (1 + m^2) \phi_0 = 0)\)

\[
D_a \phi_0 = \frac{i}{2} e^\phi_0 (1 + \frac{m^2}{2}) e^{P_0} P_0 e^{P_0} \phi_0; i P_j e^\phi_0 e^{P_0} \phi_0; -m^2 \phi_0;
\]

B.1

\[
D_a \phi_0 = \frac{i}{2} e^\phi_0 (1 + \frac{m^2}{2}) e^{P_0} P_0 e^{P_0} \phi_0; i P_j e^\phi_0 e^{P_0} \phi_0; -m^2 \phi_0;
\]

(B.1)

It is useful to introduce the following vector fields (which correspond to Eq. (B.1) in the limit \(m = 0\))

\[
D_a = \frac{i}{2} e^\phi_0 e^{P_0} lP_j 0; e^{P_0} P_0 lP_j 0
\]

\[
D_a = \frac{i}{2} e^\phi_0 e^{P_0} lP_j 0; e^{P_0} P_0 lP_j 0
\]

(B.2)

The following relations hold

\[
D_a \phi_0 = D_0 \frac{i}{2} e^{P_0} e^{P_0} \phi_0; D_0 \frac{i}{2} e^{P_0} e^{P_0} \phi_0;
\]

\[
D_a \phi_0 = D_0 \frac{i}{2} e^{P_0} e^{P_0} \phi_0; D_0 \frac{i}{2} e^{P_0} e^{P_0} \phi_0;
\]

(B.3)

It is easy to find the coproduct of \(D\) and \(D^\star\) on \(\phi_0\)

\[
(D) = D_0 e^{P_0} \phi_0 + 1 + D;
\]

\[
(D^\star) = D^\star_0 + 1 + e^{P_0} D^\star;
\]

(B.4)

(B.5)

Observe that the action for on-shell particles can be written as

\[
S[\phi_0] = \frac{1}{2} \int_Z [D^a \phi_0 D_a \phi_0 m^2 \phi_0] = \frac{1}{2} \int_Z [D^a \phi_0 D^a \phi_0 m^2 \phi_0 e^{P_0} \phi_0] \]

(B.6)
C Deformed Conserved Currents

Let us consider the infinitesimal translation in Minkowski spacetime

\[\dot{x} = x + \dot{x} \quad (C.1) \]

where \(\dot{x} \) is the infinitesimal displacement.

The total variation \(\tau (x) \) of the field \(\phi(x) \) under Eq. (C.1) can be written as

\[\tau (x) = 0(\phi^0) (\dot{x}) = [0(\phi^0) (\dot{x}^0)] + [(\phi^0) (\dot{x})] \]
\[= (\dot{x}^0) + \dot{d} \]
\[+ dx^a D_a \]

where \((\dot{x}^0) = 0(\phi^0) (\dot{x}^0) \), \(0(\phi) (\dot{x}) = (\dot{x}) \) at the first order in \(\dot{x} \), and \(\dot{d} = dx^a D_a \) according to Eq. (3.3) of the 5D differential calculus. Since for scalar fields \(\tau (x) = 0 \), we get the relation

\[0(\dot{x}) = (\dot{x}) dx^a D_a \quad (C.2) \]

Let us consider the formal Action for free scalar particles in Minkowski spacetime at the finite 4-volume

\[S[] = \frac{1}{2} \int \left(\partial_\alpha D^\alpha - m^2 \phi^0 \right) \phi^0 \frac{1}{2} \left(\partial_\alpha D^\alpha - m^2 \phi^0 \right) \phi^0 \quad (C.3) \]

The translation-invariance of the action implies that the total variation of the action under the transformation Eq. (C.1)

\[S[] = \frac{1}{2} \int \left(\partial_\alpha D^\alpha - m^2 \phi^0 \right) \phi^0 \frac{1}{2} \left(\partial_\alpha D^\alpha - m^2 \phi^0 \right) \phi^0 = 0 \]

be zero. Because of the translation-invariance of the integral, we can write

\[S[] = \frac{1}{2} \int \left(\partial_\alpha D^\alpha - m^2 \phi^0 \right) \phi^0 \frac{1}{2} \left(\partial_\alpha D^\alpha - m^2 \phi^0 \right) \phi^0 = 0 \]

and we get

\[S[] = \frac{1}{2} \int \left(\partial_\alpha D^\alpha - m^2 \phi^0 \right) \phi^0 \frac{1}{2} \left(\partial_\alpha D^\alpha - m^2 \phi^0 \right) \phi^0 = 0 \]

Let us consider the solution of EoM \(\phi = 0 \) in the previous equation

\[S[0] = \frac{d^N}{2} \left[\frac{1}{2} \int \left(\partial_\alpha D^\alpha - m^2 \phi^0 \right) \phi^0 \right] = 0 \quad (C.4) \]
where \(a, b = 0; 1; 2; 3; 4 \).

Let us consider the term \(\text{d}x \ (b = \cdot) \) in Eq. (C.4). Using Eq. (C.10) we obtain

\[
D \left[D^a \ D_a \ m^2 \ e^{P_0} \right] = D \left[D^a \ e^{P_0} D_a \ m^2 D \ e^{P_0} \right] + e^{P_0} \ D^a \ D_a \ m^2 e^{P_0} \ \ e^{P_0} D_i \ D_j D_a + i_0 \ m^2 D^a D_j \ e^{P_0} D_j :
\]

Using the coproduct of \(D^a \), Eq. (B.4), and the equality \(D^a D_a = m^2 e^{P_0} \), we get

\[
D \left[D^a \ D_a \ m^2 \ e^{P_0} \right] = D_a \left[e^{P_0} D_0 \ D_j \right] + m^2 e^{P_0} D_0 \ e^{P_0} D_i \ D_j
\]

Thus,

\[
\text{D} \left[D^a \ D_a \ m^2 \ e^{P_0} \right] = \text{D}_a \left[e^{P_0} D_0 \ D_j \right] + m^2 e^{P_0} D_0 \ e^{P_0} D_i \ D_j :
\]

Moreover, we can write \(D = \left(1 + e^{P_0} \right) \ D + i_0 e^{P_0} P^2 \) so that

\[
D \left[L_0 \right] = \frac{1 + e^{P_0}}{2} D \left[L_0 \right] + i_0 e^{P_0} P^2 L_0 \ (C.5)
\]

where we can ignore the last term since it does not contribute to the conserved quantities which are defined up to divergence terms, as in the commutative case.

Using the same procedure for the term \(\text{d}x^4 \ (b = 4) \) in Eq. (C.4), we obtain

\[
D^4 \left[D^a \ D_a \ m^2 \ e^{P_0} \right] = D_a \left[e^{P_0} D^4_0 \ D_j \right] + e^{P_0} D^a \ D_i \ D_j
\]

(\(\text{let us remember that } D^4 \text{ acts as a constant over } \ e^{P_0} \ D_j \ D_i \). Moreover, we can write

\[
D^4 \left[L_0 \right] = \frac{1 + e^{P_0}}{2} D_0 \left[L_0 \right] + i_0 e^{P_0} P^2 L_0 \ (C.5)
\]

where we can ignore the last term as in Eq. (C.5).

The variation of the action (C.4) can be finally written as

\[
S = \frac{\text{d}x}{2} \ h^Z D \left[e^{P_0} D \right] + e^{P_0} \ D_j D_i \ D^a D_j
\]

\[
+ i_0 m^2 e^{P_0} D_i \ D_j \ e^{P_0} \ G \ (1 + e^{P_0}) \ D^4_0 \ L = 0
\]

\[
\frac{\text{d}x^4}{2} D^4 \left[e^{P_0} D \right] + e^{P_0} \ D_j D_i \ D^4_0 \ D^4_0 \ D^4_0 \ D^4_0
\]

\[
+ i_0 m^2 e^{P_0} D^4_0 \ e^{P_0} + G_0 D^4_0 \ L = 0
\]

18
The continuity equation is \(D \cdot \nabla J = 0 \) where
\[
J = e^{P_0 D_0} D_0 + e^{P_0 D_0} D_0 i_0 D_j D_0 \ud J_0 + \nonumber \\
+ i g_0 m^2 e^{P_0 D_0} D_0 i_0 g (1 + e^{P_0}) \ud L_0
\]
\[
J_4 = e^{P_0 D_0} D_0 + e^{P_0 D_0} D_0 D_j D_0 \ud D_0 + \nonumber \\
+ i g_0 m^2 e^{P_0 D_0} D_0 i_0 g_0 D_j D_0 \ud L_0
\]
and the conserved currents are
\[
J_{00} = e^{P_0 D_0} D_0 + e^{P_0 D_0} D_0 i_0 D_j D_0 \ud D_0 + \nonumber \\
+ i m^2 e^{P_0 D_0} D_0 i_0 (1 + e^{P_0}) L_0
\]
\[
J_{0j} = D_j D_0 + D_0 D_j \ud D_0 + i m^2 D_j D_0 \ud D_0
\]
\[
J_{04} = e^{P_0 D_0} D_0 + e^{P_0 D_0} D_0 D_j D_0 \ud D_0 + \nonumber \\
+ i m^2 e^{P_0 D_0} D_0 i_0 (1 + e^{P_0}) L_0
\]

After some calculations they read as
\[
J_{00} = D_0 D_0 + D_0 + D_j D_0 \ud D_0 + m^2 e^{P_0} D_0 \ud D_0 + i J_04
\]
\[
J_{0j} = D_j D_0 + D_0 D_j \ud D_0 + i m^2 D_j D_0 \ud D_0
\]
\[
J_{04} = i m^2 (D_0 + i m^2) (e^{P_0} D_0 \ud D_0 D_0 D_0 + D_0 L_0 \ud C_6)
\]

To simplify the calculation of the conserved charges \(Q_b = \int d^3 x J_{0b} \) we introduce the following linear combinations of \(J_{0b} \):
\[
K_{00} = J_{00} + i J_{04} = D_0 D_0 + D_0 + D_j D_0 \ud D_0 + m^2 e^{P_0} D_0 \ud D_0
\]
\[
K_{0j} = J_{0j} = D_j D_0 + D_0 D_j \ud D_0 + i m^2 D_j D_0 \ud D_0
\]
\[
K_{04} = J_{04} = i m^2 (D_0 + i m^2) (e^{P_0} D_0 \ud D_0 D_0 D_0 + D_0 L_0 \ud C_6)
\]

and in the next section we compute the conserved quantities \(Q_b = \int d^3 x K_{0b} \). We will then obtain \(Q_b \) by linear combinations of \(Q_b \)
\[
Q_b = Q_b \ud i_{0b} Q_4
\]

D Construction of the Conserved Charges

By using the expression \(\text{(4.26)} \) for the field \(\chi \), we can write the conserved quantities \(Q_b \)
associated with the currents \(K_{0b} \)
\[
Z \ud Z \ud Z
\]
\[
Q_b(\xi_0) = K_{0b}(\xi) = \frac{1}{2} d^3 x \ud d^4 k d^4 p \ud (k) K_{0b}(k \ud p) \ud (p) \ud [C(k)] \ud [C(p)] c_0 \ud c_0
\]
where \(K_{0b} \ud p \) represent the Fourier-transforms of \(K_{0b}(\xi) \ud C_6 \).
The conserved quantities associated with the currents \(K_{0b} \) are

\[
\mathcal{Q}_b(\mathbf{X}_0) = K_{0b}(\mathbf{X}) = \frac{1}{2} Z \int d^3x \, d^4kd^4p \, \sim(k) K_{0b}(k \cdot \mathbf{p}) \sim(p) \, [C(k)] \, [C(p)] \mathbf{A}_b \mathbf{A}_p,
\]

where

\[
K_{0b}(k \cdot \mathbf{p}) = \mathcal{D}_0(k) \mathcal{D}_0(p) + \mathcal{D}_j(k) \mathcal{D}_j(p) + m^2 e^{k_0 \, e^{p_0}}
\]

\[
K_{0j}(k \cdot \mathbf{p}) = \mathcal{D}_j(k) \mathcal{D}_0(p) + \mathcal{D}_0(k) \mathcal{D}_j(p) + i m^2 \mathcal{D}_j(k) e^{p_0}
\]

\[
K_{04}(k \cdot \mathbf{p}) = \frac{m_0^2}{2} e^{p_0} \mathcal{D}_0(k_0 + p_0) + i m^2 \mathcal{D}_j(k) e^{p_0}
\]

Integrating in \(d^3x \) we obtain

\[
\mathcal{Q}_b(\mathbf{X}_0) = \frac{1}{2} Z \int d^4kd^4p \, \sim(k) K_{0b}(k \cdot \mathbf{p}) \sim(p) \, [C(k)] \, [C(p)] \, (3) (k + e^{k_0 \, e^{p_0}}) e^{i(k_0 + p_0) \mathbf{X}_0}
\]

and computing the \((3)k \) we get

\[
\mathcal{Q}_b(\mathbf{X}_0) = \frac{1}{2} Z \int d^4kd^4p \, \sim(k) \, e^{k_0 \, p_0} K_{0b}(k_0) e^{p_0} \, (p) e^{i(k_0 + p_0) \mathbf{X}_0}
\]

\[
\frac{4}{2} \sinh^2(\frac{k_0}{2}) \, e^{k_0 \, p_0^2 \, m^2} \quad \frac{4}{2} \sinh^2(\frac{p_0}{2}) \, e^{p_0 \, p_0^2 \, m^2}
\]

By considering the product of the two delta functions, it is easy to see that only two solutions are possible \(k_0^{(1)} = p_0 \) and \(k_0^{(2)} = \frac{1}{2} \ln(2 + 2m^2 e^{p_0}) \). However, we can prove that the second solution does not contribute to the integral, in fact

\[
K_{00}(k_0^{(2)}; e^{k_0 \, p_0}) = e^{k_0 \, c_0 \, p_0 + m^2}
\]

\[
K_{0j}(k_0^{(2)}; e^{k_0 \, p_0}) = 0
\]

\[
K_{04}(k_0^{(2)}; e^{k_0 \, p_0}) = 0
\]

Thus, for \(k_0 = k_0^{(2)} \), the integral is zero and we are left with the solution \(k_0 = k_0^{(1)} = p_0 \). In this way the term dependent on \(\mathbf{X}_0 \) disappears and \(\mathcal{Q}_b \) turns out to be time-independent. Thus, \(\mathcal{Q}_b \) take the form

\[
\mathcal{Q}_b = \frac{1}{2} Z \int d^4kd^4p \, \sim(-p) K_{0b}(-p \cdot \mathbf{p}) \sim(p) \, \frac{4}{2} \sinh^2(\frac{k_0}{2}) \, e^{k_0 \, p_0^2 \, m^2}
\]

\[
\frac{4}{2} \sinh^2(\frac{p_0}{2}) \, e^{p_0 \, p_0^2 \, m^2}
\]

20
and after some calculations they become

\[
Q_b = \frac{1}{2} \int d^4p \sim(-p)K_{ob}(-p, p)\sim(p) \frac{(k_0 + p_0)}{\frac{1}{2}e^{\frac{p_0}{2}}\sinh(\frac{p_0}{2}) + m^2 - j} \quad [C(p)]
\]

One can verify that for \(k_0 = p_0 \) the functions \(K_{ob}(-p, p) \) are

\[
K_0(-p, p) = i e^{p_0}D(p)\left(\frac{4}{e^{p_0}}\sinh(\frac{p_0}{2}) + m^2\right)
\]

\[
K_0(-p, p) = i e^{2m^2}e^{p_0}\left(\frac{4}{e^{p_0}}\sinh(\frac{p_0}{2}) + m^2\right)
\]

Substituting this expression in \(Q_b \) we get

\[
Q = \frac{1}{2} d^4p \sim(-p)\sim(p)e^{p_0}D(p)\operatorname{sgn}\left(\frac{2}{2}(1 + e^{p_0}) + m^2\right) \quad [C(p)]
\]

\[
Q_4 = \frac{1}{2} d^4p \sim(-p)\sim(p)e^{2m^2}D(p)\operatorname{sgn}\left(\frac{2}{2}(1 + e^{p_0}) + m^2\right) \quad [C(p)]
\]

where \(\sim(p) = (p_0; e^{p_0}) \) is the antipode of \(p \) and \(\operatorname{sgn}(y) = y \) is the sign function.

The conserved charges \(Q_b (b = 0; 1; 2; 3; 4) \) can be obtained by linear combinations of \(Q_b \):

\[
Q_b = Q_b \quad \text{and} \quad Q_4 = \frac{1}{2} d^4p \sim(-p)\sim(p)e^{2m^2}D_b(p)\operatorname{sgn}(\frac{2}{2}(1 + e^{p_0}) + m^2) \quad [C(p)]
\]

where \(D_b(p) \) is defined as in the Eq. (E.3).

E -\(\text{Minkowski plane waves} \)

Let us consider the function \(\sim(k) \) in Eq. (4.26) given by

\[
\sim(p)(k) = N_p^{(3)}(p, k)H(k_0)\ln(1 + \frac{m^2}{2}) \quad \text{; (E.3)}
\]

where \(H(x) \) is the Heaviside function (equal to 0 if \(x \leq 0 \) and equal to 1 if \(x > 0 \)), and \(N_p \) is a suitable normalization which can be chosen in different ways as in the commutative case. To be simple, let us set \(N_p = 1 \).

In this appendix we want to show that the \(\text{el} \) \(\sim_p^{(p)}(x) \)

\[
\sim_p^{(p)}(x) = \int \frac{d^4k}{Z} k_p(\sim(p))e^{ikx}e^{ik_0x_0} \quad [\text{C(p)}] \quad \text{(E.4)}
\]

Corresponds to an on-shell plane wave in -\(\text{Minkowski} \). By substituting the function \(E.3 \)

in Eq. (E.4) we obtain

\[
\sim_p^{(p)}(x) = \int \frac{d^4k}{Z} (p, k)H(k_0)\ln(1 + \frac{m^2}{2}) \quad \frac{4}{2}\sinh^2(\frac{k_0}{2}) \quad e^{k_0k^2}m^2e^{ikx}e^{ik_0x_0}
\]

\[
= \frac{1}{2} \int dk_0H(k_0)\ln(1 + \frac{m^2}{2}) \quad \frac{(k_0w(p))}{j + \frac{m^2}{2}e^w} \quad + \quad \frac{(k_0w(p))}{j + \frac{m^2}{2}e^w} \quad [\text{C(p)}]
\]

21
where \(w(p) = \ln \left(1 + \frac{\gamma p^2}{2} \right) \). Since \(w(p) < \ln 1 + \frac{2m^2}{2} \) then

\[
\langle \delta(p) \rangle = Z \frac{\langle k_0 w, (p) \rangle e^{ipx - i\hbar \omega t}}{\langle \gamma p^2 \rangle e^{ipx - i\hbar \omega t}} = \frac{2}{Z} \frac{\langle k_0 w, (p) \rangle e^{ipx - i\hbar \omega t}}{\langle \gamma p^2 \rangle e^{ipx - i\hbar \omega t}}
\]

and we see that the \(\langle \delta(p) \rangle \) corresponds to a on-shell plane wave in Minkowski.

The real version of the \(\langle \delta(p) \rangle \) is

\[
\langle \delta_{\text{real}}(p) \rangle = \frac{2}{Z} \frac{\langle k_0 w, x_0 \rangle e^{ipx - i\hbar \omega t}}{\langle \gamma p^2 \rangle e^{ipx - i\hbar \omega t}}
\]

where we have used the property \(\langle \delta(k) \rangle^* = \langle \delta(-k) \rangle \).

It is easy to see that the Fourier transform corresponding to the real plane wave \(\langle \delta_{\text{real}}(p) \rangle \) is

\[
\tilde{\delta}_{\text{real}}(k) = (3)(k \cdot p)H^* k_0 \ln(1 + \frac{\gamma p^2}{2}) + (3)(k \cdot p)H^* k_0 \ln(1 + \frac{2m^2}{2})
\]

Under the transformation \(k \to -k \) we get

\[
\tilde{\delta}_{\text{real}}(-k) = e^{3} k_0 (3)(k \cdot p)H (k_0 \ln(1 + \frac{\gamma p^2}{2}) + (3)(k \cdot p)H (k_0 \ln(1 + \frac{2m^2}{2}))
\]

References

