Search for Lepton Flavor Violating Decays

A search for lepton flavor violating decays of Λ to a lighter mass charged lepton and an π vector meson is performed using 384 fb$^{-1}$ of e^+e^- annihilation data collected with the BABAR detector at the Stanford Linear Accelerator Center PEP-II storage ring. No signal is found, and the upper limits on the branching ratios are determined to be $B(\Lambda \rightarrow e\pi^+)<1 \times 10^{-7}$ and $B(\Lambda \rightarrow \mu\pi^+)<1 \times 10^{-7}$ at 90% confidence level.
In the Standard Model (SM) with massless neutrinos, lepton number is conserved separately for each generation. However, the discovery of large neutrino masses [1] requires that lepton number violation (LFV) occur, although decays involving charged LFV have not yet been observed. In the minimal extensions of the SM that account for neutrino oscillations by the seesaw mechanism of neutrino mass generation, the expected rates of LFV decays are too small to be observable. Thus the observation of neutrinoless decays like \(\beta \beta \) would be an unambiguous signature of new physics [2], while limits on this process provide constraints on theoretical models.

The search for \(\beta \beta \) decays presented here uses data recorded by the BABAR detector at the SLAC PEP-II asymmetric-energy \(e^+ e^- \) storage ring. The data sample corresponds to an integrated luminosity \(L = 347.5 \pm 1 \) pb\(^{-1}\) recorded at an energy \(E = 10.58 \pm 0.05 \) GeV, and \(36 \pm 1 \) pb\(^{-1}\) recorded at \(E = 10.54 \pm 0.07 \) GeV. With an average cross section of \(\sigma = (0.091 \pm 0.003) \) nb [3], this corresponds to a sample of \(3.5 \times 10^9 \) \(e^+ e^- \) events.

The details of the BABAR detector are described elsewhere [4]. Charged particles are reconstructed as tracks with a five-layer silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH) inside a 1.5 T solenoidal magnet. An electro-magnetic calorimeter (EMC) consisting of 6580 CsI(Tl) crystals is used to identify electrons and photons. A ring-imaging Cherenkov detector (DIRC) is used to identify charged pions and kaons. The ux return of the solenoid, instrumented with resistive plate chambers and limited streamer tubes, is used to identify muons.

The signature of the signal process is the presence of a \(\beta \beta \) pair having an invariant mass consistent with \(m = 1.777 \) GeV/c\(^2\) [5] and a total energy equal to \(E/2 \) in the center-of-mass frame. Along with other particles in the event, the properties of the candidate \(\beta \beta \) decay are only the common decay mode of the \(\mu \) meson \((\mu^+ \mu^-)\) is used in the analysis. The estimation of the background rate in the data sample comes from data only, while samples of Monte Carlo (MC) simulated events are used to obtain the signal reconstruction efficiency, the kinematic distributions of the signal and background events, to optimize the selection criteria and to study systematic uncertainties in the signal sample. Control samples with two identified electrons in the event are used to study background contamination from radiative Bhabha scattering, since the relevant cross-sections are large, making it impractical to generate a sufficient number of simulated events.

The signal events are simulated with KK2F [6], where one \(\mu \) decays to \(\nu \beta \beta \) according to two-body phase space and the other decays according to measured branching fractions [7] simulated with TAUOLA [8]. The \(\pi^\pm \) and \(\pi^0 \) background processes are generated using KK2F and TAUOLA, and \(p \) processes are generated using the EVTGEN [9] and JETSET [10] packages. The detector response for the MC events is simulated using the GEANT4 package [11]. Radiative corrections for signal and background processes are simulated using PHOTOS [12].

Events with four well-reconstructed tracks and zero total charge are selected, where no track pair is consistent with being a photon conversion in the detector material. Each event is divided into two hemisphere in the c.m. frame by a plane perpendicular to the thrust axis [13], calculated using all reconstructed charged and neutral particles. The events having 3-1 topology, where the signal-side hemisphere contains three tracks and the tag-side contains one track, are selected.

Photon candidates are required to have the total energy in the EMC greater than 0.1 GeV to reduce the background originating from the \(e^+ e^- \) colliding beams in the accelerator beam pipe. Pairs of these photons are combined to form 0 candidates, with the invariant mass in the range \(m > 2 \) GeV/c\(^2\). The 0 mesons are reconstructed from two oppositely charged pion candidates combined with a 0 , with the invariant mass in the range \(0 < m < 2 \) GeV/c\(^2\). In the \(\beta \beta \) decay, two of the tracks in the signal-side hemisphere have the same charge. Each of these two same-sign tracks is combined independently with the opposite-sign track and the neutral pion to form two 0 candidates. The candidate with invariant mass nearest to the nominal 0 mass [7] is considered to be the signal 0 . The signal track that is not combined to form the 0 candidate is required to have mass on the lepton on the laboratory frame greater than 0.5 GeV/c and to be identified as an electron or muon as appropriate, using BABAR particle identification techniques [14]. The three tracks in the signal-side hemisphere are tagged to a common vertex, and the photons from the 0 are assumed to originate from this vertex. The reconstructed 0 candidate from the signal is constrained to the nominal 0 mass [7]. The 0 candidate is then combined with the lepton track to form the signal candidate. The signal-side hemisphere may contain up to four photons so as to allow hadronic split-o's from the pion tracks in the EMC. Thus, there may be more than one 0 candidate, resulting in multiple candidates. In this case, the \(\beta \beta \) combination with invariant mass closest to the nominal mass is accepted as the signal candidate. From a sample of \(1.5 \times 10^6 \) generated signal MC events, all the reconstructed signal candidates are verified to have correct association with the truth-matched signal decays.

Signal events are distinguished by two kinematic vari-
ables: the beam - energy constrained m \text{ass} (m_{EC}) and the energy difference E = E_c + E_p. \text{P}_{\text{obs}} = m_{EC}^2\text{ where } E_c and E_p are energies of the lepton and the neutrino. The m_{EC} is calculated from \text{P}_{\text{ass}} \text{ to the reconstructed candidate decay products with a constraint that the energy is equal to } m_{\text{ass}}^2/2 \text{ in the c.m. fram e. These two variables are weakly correlated and have non-Gaussian tails due to initial and final state radiation. For the signa l MC events, the m_{EC} distribution peaks at } m^2 \text{, while the E distribution peaks close to but below zero, primarily due to photon energy reconstruction errors producing a small negative offset in the reconstructed energy. The peak positions (m_{EC}; E) and standard deviations \text{ of the } m_{EC} \text{ and E distributions for the reconstructed signal MC events are presented in Table 1.} To study signal-like events, a large box (LB) is defined in the m_{EC} vs. E plane as: m_{EC} 2 [15;20] GeV/c^2 and E 2 [0.8;0.4] GeV/c. To avoid event contamination, the number and the properties of data events falling within the 3 rectangular regions in the m_{EC} vs. E plane, defined as the signal box (SB), are not used to optimize the selection criteria nor to study systematics. The region inside the LB but outside the SB is called the giant side band (GSB) and is used for estimation of the background contribution in the SB. The selection requirements are optimized to yield the lowest expected upper limit (UL) on \text{ derived from the events inside the SB under a background-only hypothesis.}

To suppress non-signal backgrounds with radiation along the beam direction, the polar angle of the missing m_{\text{ass}} with respect to beam axis (\theta_{\text{miss}}) is required to lie within the detector acceptance: \cos \theta_{\text{miss}} 2 [0.76;0.92]. The total c.m. m_{\text{ass}} is less than 4.75 GeV/c^2.

The events are classified into four different categories depending on tag-side hemisphere properties: the particle identification for the track and the total neutral c.m. energy in the hemi sphere (E_{CMneutral}). If the tag-side track is identified as an electron or a muon, it is categorized as an e\text{ tag} or a muon\text{ tag}. Otherwise, it is categorized as a h\text{ tag} or a muon\text{ tag}, depending on whether E_{CMneutral} is less or greater than 0.2 GeV. The e\text{ tag} and h\text{ tag} events are not used in the final selection of e\text{ tag} candidates, but are used as the control sample to estimate the Bhabha contribution to this decay mode.

The tag-side hemisphere is expected to contain a SM-like signal characterized by the presence of one charged particle and one or two neutrinos. The m_{\text{ass}} is due to the undetected neutrinos(s) is reconstructed as m_{\text{ass}}^2 = \text{P}_{\text{ass}}^2 = \text{P}_{\text{ass}}^2 \text{, where } \text{P}_{\text{ass}} \text{ and } \text{P}_{\text{ass}}^2 \text{ are four-momenta in the c.m. frame e. The energy and m_{\text{ass}} } \text{ are used to represent the predominant SM candidates of } \text{P}_{\text{ass}} \text{ are } (\text{P}_{\text{ass}}/2, \{s = m_{\text{ass}}^2\}) \text{, where } s \text{ is the unit vector in the direction of the signal-side } m_{\text{ass}} \text{ in the c.m. frame e. All the tracks and photon candidates observed in the tag-side hemisphere. To reduce non-signal backgrounds, tag-dependent requirements are m_{\text{ass}}^2 \text{ are applied for the ! } e\text{ tag candidates. For e\text{ tags and tags, m_{\text{ass}}^2 must be in the range } 2(1.25;2.5) \text{ GeV/c}^2 \text{ whereas for h\text{ tags and tags, m_{\text{ass}}^2 must be in the range } 2(1.25;2.5) \text{ GeV/c}^2 \text{, respectively. For the } ! e\text{ tag candidates, the ratio } \text{P}_{\text{ass}}^2/s \text{ is required to be greater than 0.061, where } \text{P}_{\text{ass}}^2 \text{ is the component of the m_{\text{ass}} m_{\text{ass}} \text{ in the c.m. frame e is reconstructed as } m_{\text{ass}} \text{, } ! e\text{ tag candidates, } \text{P}_{\text{ass}}^2/s \text{ is required to be greater than 0.034.}}

After applying all the selection criteria for e\text{ tag and h\text{ tag decays, the number of events surviving inside the GSB are 39 and 502, respectively, as shown in Fig. 1. The number of background events in the } M\text{ and control samples is } 1.4 \text{% for both decay modes. An upper limit on the ratio of background events in the } ! e\text{ tag decay, the dominant contributions are from } \text{P}_{\text{ass}}^2 (54\% \text{) and } \text{P}_{\text{ass}} (34\% \text{) in the rest arise from radiative Bhabha scattering. About 92\% of the background in the } ! e\text{ tag decay is from } \text{P}_{\text{ass}} \text{ events; within this category, 94\% are due to the decay } ! 2 \text{ with one of the charged pions is } \text{P}_{\text{ass}} \text{ as a muon. The number of background events in the } ! e\text{ tag decay, the dominant contributions are from } \text{P}_{\text{ass}} (54\% \text{) and } \text{P}_{\text{ass}} (34\% \text{) in the rest arise from radiative Bhabha scattering. About 92\% of the background in the } ! e\text{ tag decay is from } \text{P}_{\text{ass}} \text{ events; within this category, 94\% are due to the decay } ! 2 \text{ with one of the charged pions is } \text{P}_{\text{ass}} \text{ as a muon. The number of background events in the } ! e\text{ tag decay, the dominant contributions are from } \text{P}_{\text{ass}} (54\% \text{) and } \text{P}_{\text{ass}} (34\% \text{) in the rest arise from radiative Bhabha scattering. About 92\% of the background in the } ! e\text{ tag decay is from } \text{P}_{\text{ass}} \text{ events; within this category, 94\% are due to the decay } ! 2 \text{ with one of the charged pions is } \text{P}_{\text{ass}} \text{ as a muon. The number of background events in the } ! e\text{ tag decay, the dominant contributions are from } \text{P}_{\text{ass}} (54\% \text{) and } \text{P}_{\text{ass}} (34\% \text{) in the rest arise from radiative Bhabha scattering. About 92\% of the background in the } ! e\text{ tag decay is from } \text{P}_{\text{ass}} \text{ events; within this category, 94\% are due to the decay } ! 2 \text{ with one of the charged pions is } \text{P}_{\text{ass}} \text{ as a muon. The number of background events in the } ! e\text{ tag decay, the dominant contributions are from } \text{P}_{\text{ass}} (54\% \text{) and } \text{P}_{\text{ass}} (34\% \text{) in the rest arise from radiative Bhabha scattering. About 92\% of the background in the } ! e\text{ tag decay is from } \text{P}_{\text{ass}} \text{ events; within this category, 94\% are due to the decay } ! 2 \text{ with one of the charged pions is } \text{P}_{\text{ass}} \text{ as a muon. The number of background events in the } ! e\text{ tag decay, the dominant contributions are from } \text{P}_{\text{ass}} (54\% \text{) and } \text{P}_{\text{ass}} (34\% \text{) in the rest arise from radiative Bhabha scattering. About 92\% of the background in the } ! e\text{ tag decay is from } \text{P}_{\text{ass}} \text{ events; within this category, 94\% are due to the decay } ! 2 \text{ with one of the charged pions is } \text{P}_{\text{ass}} \text{ as a muon. The number of background events in the } ! e\text{ tag decay, the dominant contributions are from } \text{P}_{\text{ass}} (54\% \text{) and } \text{P}_{\text{ass}} (34\% \text{) in the rest arise from radiative Bhabha scattering. About 92\% of the background in the } ! e\text{ tag decay is from } \text{P}_{\text{ass}} \text{ events; within this category, 94\% are due to the decay } ! 2 \text{ with one of the charged pions is } \text{P}_{\text{ass}} \text{ as a muon. The number of background events in the } ! e\text{ tag decay, the dominant contributions are from } \text{P}_{\text{ass}} (54\% \text{) and } \text{P}_{\text{ass}} (34\% \text{) in the rest arise from radiative Bhabha scattering. About 92\% of the background in the } ! e\text{ tag decay is from } \text{P}_{\text{ass}} \text{ events; within this category, 94\% are due to the decay } ! 2 \text{ with one of the charged pions is } \text{P}_{\text{ass}} \text{ as a muon. The number of background events in the } ! e\text{ tag decay, the dominant contributions are from } \text{P}_{\text{ass}} (54\% \text{) and } \text{P}_{\text{ass}} (34\% \text{) in the rest arise from radiative Bhabha scattering. About 92\% of the background in the } ! e\text{ tag decay is from } \text{P}_{\text{ass}} \text{ events; within this category, 94\% are due to the decay } ! 2 \text{ with one of the charged pions is } \text{P}_{\text{ass}} \text{ as a muon. The number of background events in the } ! e\text{ tag decay, the dominant contributions are from } \text{P}_{\text{ass}} (54\% \text{) and } \text{P}_{\text{ass}} (34\% \text{) in the rest arise from radiative Bhabha scattering. About 92\% of the background in the } ! e\text{ tag decay is from } \text{P}_{\text{ass}} \text{ events; within this category, 94\% are due to the decay } !
FIG. 1: The selected candidates (dots) inside the large box region of the $m_{EC} - E$ plane for $e^+ e^-$ (left plot) and $e^- e^-$ (right plot) decays. The signal box is shown by a dashed rectangle. The dark and light shading indicates contours containing 50% and 90% of the selected MC signal events, respectively. The signal box contains 67% of the selected MC signal events for $e^+ e^-$ and 77% for $e^- e^-$ decay.

TABLE I: The peak positions and standard deviations of the m_{EC} and E distributions, obtained from the t to signal MC events. Also shown are the reconstruction efficiencies ($\%$), the number of expected background (exp.) events and the observed (obs.) events inside the signal box, and the resulting upper limit at 90% confidence level (C.L.) including the systematic uncertainties.

<table>
<thead>
<tr>
<th>Decay modes</th>
<th>m_{EC}</th>
<th>E</th>
<th>σ</th>
<th>$%$</th>
<th>SB events</th>
<th>UL (10$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^+ e^-$</td>
<td>1777.4</td>
<td>6.8</td>
<td>0.1</td>
<td>16</td>
<td>0.13</td>
<td>0.35 0.06 0</td>
</tr>
<tr>
<td>$e^- e^-$</td>
<td>1777.7</td>
<td>6.4</td>
<td>0.1</td>
<td>11</td>
<td>0.2</td>
<td>0.35 0.06 0</td>
</tr>
</tbody>
</table>

TABLE II: The expected number of background events obtained from the t to $m_{EC} - E$ distributions within the (3 5), (5 7), (7 9), (9 11) and the combined (3 11) nested rectangular regions centered around the signal box. Also shown are the number of observed events inside the corresponding regions.

<table>
<thead>
<tr>
<th>Decay modes</th>
<th># of events</th>
<th>(3 5)</th>
<th>(5 7)</th>
<th>(7 9)</th>
<th>(9 11)</th>
<th>(3 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^+ e^-$</td>
<td>expected</td>
<td>0.6</td>
<td>0.1</td>
<td>1.0</td>
<td>0.2</td>
<td>1.9</td>
</tr>
<tr>
<td></td>
<td>observed</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>$e^- e^-$</td>
<td>expected</td>
<td>1.9</td>
<td>0.1</td>
<td>3.9</td>
<td>0.2</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>observed</td>
<td>2</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td>22</td>
</tr>
</tbody>
</table>

and resolution, which affect the position and spread of the E and m_{EC} distributions. There is a 3.3% uncertainty in the reconstruction efficiency, the uncertainty in lepton identification is 1.1% for electrons and 4.5% for muons, and there is a 1% uncertainty on the number of pairs produced. After combining these individual contributions in quadrature, the total systematic uncertainty on efficiency is 4.4% for $e^+ e^-$ and 6.2% for $e^- e^-$. The uncertainties on background estimation are determined by the background t errors. The uncertainty due to MC statistics is negligible.

The signal is simulated according to the two body phase space, i.e., with a uniform distribution of the cosine of the helicity angle with respect to the spin. Since pairs are produced with spin correlation, the event selection efficiency may be sensitive to the helicity angle distribution of the $e^+ e^-$ decay, which depends on the model of the LFV interaction [13]. This effect is simulated by weighting the generated events to match the helicity angle distributions of both V^-A and V^+A in-
teractions and its consequences on the measured upper limit is found to be negligible.

The upper limits for the '!' !' decays are calculated using $B_{UL}^{90} = N_{UL}^{90} = (2L \cdot B^*)$, where N_{UL}^{90} is the 90% C.L. upper limit on the number of signal events inside the SB. B is the branching fraction [3] of the decay '!' !' $0^+ (0^+) \rightarrow \pi^0\pi^0$ and θ is the reconstruction efficiency of the signal decay mode under consideration. The expected and observed upper limits, including all contributions from systematics uncertainties, are calculated using the technique of Cousins and Highland [18] with the implementation of Barlow [19]. No signal is found, and the upper limits on the branching ratios are determined to be $B(\pi^0\pi^0) < 1 \times 10^{-7}$ and $B(\pi^0\pi^0) < 1 \times 10^{-7}$ at 90% confidence level, as shown in Table 1.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMF and DFG (Germany), FOM (The Netherlands), NFR (Norway), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A.P. Sloan Foundation.

Deceased

\footnote{N. S. Bramhall, Compton Phys. Com. Rev., 82, 74 (1994).}
\footnote{S. Brandt et al., Phys. Lett. 12, 57 (1964); E. Farhi, Phys. Rev. Lett. 39, 1587 (1977).}
\footnote{B. Aubert et al. [BABAR Collaboration], Phys. Rev. D 66, 032003 (2002).}
\footnote{R. Kizano and Y. Okada, Phys. Rev. D 63, 113003 (2001).}

Also with Universita' di Sannio, Sannio, Italy

A iso with Universita' di Sannio, Sannio, Italy

1 B. T. Cleveland et al., A strophys. J. 496, 505 (1998);