Experiments on charm decay results from BES

Rong-Gang Ping1, F. A. Harris2

1Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
2Department of Physics and Astronomy, University of Hawaii, Honolulu, Hawaii 96822, USA

Based on 14 m 4 106 (2S) and 58 m 4 106 J= events collected by the BESII detector, the leptonic decay of (2S) into e+e-, (2S) multi-body decays, \omega decays, and J= hadronic decays are studied, and the branching fractions of these decays are reported. These results may shed light on the understanding of QCD.

I. INTRODUCTION

The Beijing spectrometer (BES) is a general purpose solenoidal detector at the Beijing Electron Positron Collider (BEPC) storage ring, which operates at center-of-mass energies from 2 to 5 GeV. The BES detector (BESII) is described in Ref.\cite{1].

In this paper, we focus on studies of the (2S) leptonic decay, (2S) radiative decays, (2S) hadronic decays, \omega decays, and J= decays based on 14 m 4 106 (2S) and 58 m 4 106 J= events collected by the BESII detector.

II. (2S) DECAYS

A. (2S)!

The (2S) provides an opportunity to compare the three lepton generations by studying the leptonic decays (2S)! e+e-, \tau+\tau-, and \gamma. The leptonic decay widths are approximately described by the relationship B_{ee}/B_{\gamma} = 0.0005, which is in good agreement with the BESI measurement\cite{2]. Based on 14 m 4 106 (2S) events, the branching fraction for (2S)! e+e- is measured\cite{3]. The e+e- pairs are reconstructed from e+e-, with the e+e- events used in the branching fraction calculated to be (0.310 \pm 0.021 \pm 0.038)%,

B. Radiative decays

Besides the conventional meson and baryon states, QCD also predicts a rich spectrum of glueballs, meson hybrids, and multi-quark states in the 1J to 2.5 GeV=2 mass region. Therefore, searches for evidence of these exotic states play an important role to test QCD. Such studies of these states have been performed in J= radiative decays for a long time\cite{4,5}, while studies in (2S) radiative decays have been limited due to low statistics in previous experiments\cite{6,7]. The radiative decays of (2S) to hadrons are expected to contribute about 1% to the total (2S) decay width\cite{8]. However, the measured channels only sum up to about 0.05%\cite{8].

Recently BESII measured the decays of (2S) into \eta, \eta', K_\text{S}K_\text{S}+c.c., K_\text{S}K_\text{S}, K_\text{S}K_\text{S}, and 2(K^+K^-), with the invariant mass of the hadrons (m_{\text{hs}}) less than 2.9 GeV=2 for each decay mode\cite{8]. The diannihilation branching fractions are shown in Fig.a. In the mass distribution of m_{\eta}2 for (2S)! \eta, although there is some excess of events near \eta threshold as shown in Fig.b, no significant narrow structure due to the X (1859), observed in J= \eta, is seen. The upper limit on the branching fraction is measured to be B(2S) X (1859)! \eta < 5 \times 10^{-5} at the 90% C.L.

C. Hadronic decays

In perturbative QCD (pQCD), hadronic decays of both (2S) and J= proceed dominantly via the annihilation of \omega quarks into three gluons or one photon, followed by a hadronization process. This yields the so-called pQCD "12% rule", i.e.

$$Q_{\text{hh}} = \frac{B_{\text{hh}}}{B_{J=1}^+} = \frac{B_{J=1}^{\omega+}}{B_{J=1}^{\omega-}} = 12\%.$$

A large violation of this rule was recently observed in decays to \omega and K K + c.c., known as the puzzle. Since then there have been many more measurement events of (2S) decays by BES and recently
The branching fractions of (2S) decays into octet baryons have also been measured; the results are listed in Table IV. They are in agreement with the results published by the CLEO collaboration within 2 for p\bar{p} and within 1 for the 0, 0, and + channels. For (2S)! N N!, the ratios of the measured branching fractions of the p\bar{p} 0 isospin partners are given by B(2S)! p\bar{p} 0 : B(2S)! pn : B(2S)! pp * = 1:1.26:0.27:0.19:0.027, which is consistent with the isospin symmetry prediction 1:2:2.

III. cJ DECAYS

A. cJ!

Decays of cJ! K* K* K* K are measured using 14 million (2S) decays [14]. The branching fractions including intermediate states are given in Table IV. The decay cJ! K*K is observed for the first time, and the precision of these measurements is 1%, and K*K K*K are improved compared with PDG values.

The branching fractions of cJ! cJ together with previous BES measurements on cJ! cJ [15] and cJ! K (892) K (892) [13] are used to predict the decay branching fractions of cJ to other vector meson pairs, like and ! [12], where a large double OZI suppressed amplitude is expected.
TABLE III: Summary of \(c_0 \) hadronic decays. Upper limits are given at the 90% C.L. For \(c_J \) \(K^0 \bar{K}^0 + c \pi \), and \(c_J + c \pi \), branching fractions of \(\text{Br}(0! \rightarrow c_J) = (8 \pm 0.7)\% \), \(\text{Br}(0! \rightarrow c_J) = (8 \pm 0.8)\% \), and \(\text{Br}(0! \rightarrow c_J) = (6 \pm 0.6)\% \) are used in the calculation. For other decays, branching fractions of \(\text{Br}(2S! \rightarrow c_J) \) from CLEO [13] are used.

<table>
<thead>
<tr>
<th>Decay mode X</th>
<th>(\text{Br}(c_J \rightarrow X)(10^{-3}))</th>
<th>(\text{Br}(c_J \rightarrow X)(10^{-3}))</th>
<th>(\text{Br}(c_J \rightarrow X)(10^{-3}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2(K^+ K^-))</td>
<td>3.88 (\pm 0.23) (\pm 0.47)</td>
<td>0.70 (\pm 0.13) (\pm 0.10)</td>
<td>2.17 (\pm 0.20) (\pm 0.31)</td>
</tr>
<tr>
<td>(K^+ K^-)</td>
<td>1.93 (\pm 0.22) (\pm 0.15)</td>
<td>0.46 (\pm 0.26) (\pm 0.06)</td>
<td>1.87 (\pm 0.26) (\pm 0.24)</td>
</tr>
<tr>
<td>(K^0 \bar{K}^0 + c \pi)</td>
<td>< 0.35</td>
<td>4.9 (\pm 0.3) (\pm 0.5)</td>
<td>(\geq 90%) C.L.</td>
</tr>
<tr>
<td>(K^0 \bar{K}^0 + c \pi)</td>
<td>< 1.1</td>
<td>5.9 (\pm 0.7) (\pm 0.8)</td>
<td>< 1.7</td>
</tr>
</tbody>
</table>

B. \(c_J \rightarrow K^0 \bar{K}^0 \);

Decays of \(c_0 \) and \(c_0 \) into three pseudo-scalars are highly suppressed by the spin-parity selection rule. BES measured the branching fractions of \(c_1 \) decays into \(K^0 \bar{K}^0 \rightarrow c \pi \), including the intermediate states involved in \(1^+ \). The branching fractions or upper limits at the 90% C.L. are summarized in Table III. The \(K^0 \bar{K}^0 + c \pi \) events are mainly produced via \(K \) (892) intermediate states, and \(K \) (1270) events via \(f_2(1270) \). For these resonances, the branching fractions are

\[
\text{Br}(c_1 \rightarrow K(892)^0 K^0 + c \pi) = (1.1 \pm 0.4 \pm 0.2) \times 10^{-2};
\]

\[
\text{Br}(c_1 \rightarrow K(892)^+ K^- + c \pi) = (1.6 \pm 0.7 \pm 0.3) \times 10^{-3};
\]

\[
\text{Br}(c_1 \rightarrow f_2(1270)) = (3.0 \pm 0.7 \pm 0.5) \times 10^{-3};
\]

\[
\text{Br}(c_1 \rightarrow a_0(980)^0 + c \pi) = (2.0 \pm 0.5 \pm 0.5) \times 10^{-3};
\]

Except for \(c_1 \rightarrow K^0 \bar{K}^0 + c \pi \), all other modes are not observed.

IV. \(J^P = 1^- \); 0;

The isospin violating process \(J^P = 1^- \); 0 has been studied by the DM2 [14] and BESI [15] collaborations, and its average branching fraction is quoted as \(B(J^P = 1^- \); 0) = (22 \pm 0.6) \times 10^{-1} \) [13]. However, the isospin conserving process \(J^P = 1^- \) has not been reported. Is it true that \(B(J^P = 1^- \); 0) \(> B(J^P = 1^- \); 0) \) ? BESII used 58 million \(J^P = 1^- \) events to study \(J^P = 1^- \); 0 [13]. It is found that this decay is seriously contaminated by \(J^P = 1^- \); 0 \(\rightarrow c \pi \) and \(\rightarrow c \pi \) decays.

V. SUMMARY

Using the 14 million \((2S) \) and 58 million \(J^P = 1^- \) events taken with BESII detector at the BEPC storage ring, BES Collaboration has provided many interesting results on charm hadron decays, including the observation of some \((2S) \) radiative decays, some \((2S) \) hadronic decays, \(c_J \) decays, and detemined that the isospin violating process \(J^P = 1^- \); 0 is suppressed.

Acknowledgments

I thank my colleagues in BES Collaboration for any helpfull discussions. This work was supported in part by National Natural Science Foundation of China under Contract No. 10491300, and the Department of Energy under Contract No. DE-FG 02-04ER 41291 (University of Hawaii).